working parser tm

This commit is contained in:
Maieul BOYER 2024-06-30 18:32:35 +02:00
parent 8d192a0abc
commit 2d88b6af25
No known key found for this signature in database
51 changed files with 33 additions and 31734 deletions

View file

@ -1,65 +0,0 @@
#ifndef TREE_SITTER_ARRAY_H_
#define TREE_SITTER_ARRAY_H_
#include "me/char/char.h"
#include "me/mem/mem.h"
#include <assert.h>
#include <limits.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "./api_structs.h"
#include "./array.h"
#include "./funcs.h"
#define ts_builtin_sym_error_repeat (ts_builtin_sym_error - 1)
#define LANGUAGE_VERSION_WITH_PRIMARY_STATES 14
#define LANGUAGE_VERSION_USABLE_VIA_WASM 13
#define ERROR_STATE 0
#define ERROR_COST_PER_RECOVERY 500
#define ERROR_COST_PER_MISSING_TREE 110
#define ERROR_COST_PER_SKIPPED_TREE 100
#define ERROR_COST_PER_SKIPPED_LINE 30
#define ERROR_COST_PER_SKIPPED_CHAR 1
#define MAX_STEP_CAPTURE_COUNT 3
#define MAX_NEGATED_FIELD_COUNT 8
#define MAX_STATE_PREDECESSOR_COUNT 256
#define MAX_ANALYSIS_STATE_DEPTH 8
#define MAX_ANALYSIS_ITERATION_COUNT 256
#define MAX_LINK_COUNT 8
#define MAX_NODE_POOL_SIZE 50
#define MAX_ITERATOR_COUNT 64
#define TS_MAX_INLINE_TREE_LENGTH UINT8_MAX
#define TS_MAX_TREE_POOL_SIZE 32
#define ts_builtin_sym_error ((t_symbol)-1)
#define ts_builtin_sym_end 0
#define POINT_ZERO ((t_point){0, 0})
#define POINT_MAX ((t_point){UINT32_MAX, UINT32_MAX})
#define TS_TREE_STATE_NONE USHRT_MAX
#define NULL_SUBTREE ((t_subtree){.ptr = NULL})
#define STACK_VERSION_NONE ((t_stack_version)-1)
#define TS_DECODE_ERROR (-1)
#if true
# undef malloc
# undef calloc
# undef realloc
# undef free
# define malloc(s) mem_alloc((s))
# define calloc(s, l) mem_alloc_array((s), (l))
# define realloc(p, t) mem_realloc((p), (t))
# define free(p) mem_free((p))
#endif
// Get a subtree's children, which are allocated immediately before the
// tree's own heap data.
#define ts_subtree_children(self) ((self).data.is_inline ? NULL : (t_subtree *)((self).ptr) - (self).ptr->child_count)
static const t_length LENGTH_UNDEFINED = {0, {0, 1}};
static const t_length LENGTH_MAX = {UINT32_MAX, {UINT32_MAX, UINT32_MAX}};
#endif // TREE_SITTER_TREE_H_

View file

@ -1,546 +0,0 @@
#ifndef API_STRUCTS_H
#define API_STRUCTS_H
#define TREE_SITTER_SERIALIZATION_BUFFER_SIZE 1024
#include "./array.h"
#include "me/types.h"
#include <stdint.h>
typedef uint16_t t_field_id;
typedef uint16_t t_state_id;
typedef uint16_t t_symbol;
typedef uint64_t t_parser_clock;
typedef uint64_t t_parser_duration;
typedef uint32_t t_stack_version;
typedef union u_parse_action_entry t_parse_action_entry;
typedef union u_subtree t_subtree;
typedef union u_mutable_subtree t_mutable_subtree;
typedef union u_parse_action t_parse_action;
typedef struct s_char_range t_char_range;
typedef struct s_external_scanner_state t_external_scanner_state;
typedef struct s_field_map_entry t_field_map_entry;
typedef struct s_field_map_slice t_field_map_slice;
typedef struct s_first_parser t_first_parser;
typedef struct s_first_tree t_first_tree;
typedef struct s_input_edit t_input_edit;
typedef struct s_language t_language;
typedef struct s_length t_length;
typedef struct s_lex_mode t_lex_mode;
typedef struct s_lexer t_lexer;
typedef struct s_lexer_data t_lexer_data;
typedef struct s_lookahead_iterator t_lookahead_iterator;
typedef struct s_parse_input t_parse_input;
typedef struct s_parse_logger t_parse_logger;
typedef struct s_parse_node t_parse_node;
typedef struct s_parse_query t_parse_query;
typedef struct s_parse_query_cursor t_parse_query_cursor;
typedef struct s_parse_query_error t_parse_query_error;
typedef struct s_parse_query_error_cost t_parse_query_error_cost;
typedef struct s_parse_range t_parse_range;
typedef struct s_parse_state t_parse_state;
typedef struct s_point t_point;
typedef struct s_query_capture t_query_capture;
typedef struct s_query_cursor t_query_cursor;
typedef struct s_query_match t_query_match;
typedef struct s_query_predicate_step t_query_predicate_step;
typedef struct s_reduce_action t_reduce_action;
typedef struct s_reusable_node t_reusable_node;
typedef struct s_stack t_stack;
typedef struct s_stack_entry t_stack_entry;
typedef struct s_stack_slice t_stack_slice;
typedef struct s_stack_summary_entry t_stack_summary_entry;
typedef struct s_subtree_heap_data t_subtree_heap_data;
typedef struct s_subtree_inline_data t_subtree_inline_data;
typedef struct s_subtree_pool t_subtree_pool;
typedef struct s_symbol_metadata t_symbol_metadata;
typedef struct s_table_entry t_table_entry;
typedef struct s_tree_cursor t_tree_cursor;
typedef struct s_tree_cursor_entry t_tree_cursor_entry;
typedef enum e_input_encoding t_input_encoding;
typedef enum e_log_type t_log_type;
typedef enum e_parse_action_type t_parse_action_type;
typedef enum e_quantifier t_quantifier;
typedef enum e_query_error t_query_error;
typedef enum e_query_predicate_step_type t_query_predicate_step_type;
typedef enum e_symbol_type t_symbol_type;
typedef Array(t_parse_range) t_range_array;
typedef Array(t_subtree) t_subtree_array;
typedef Array(t_mutable_subtree) t_mutable_subtree_array;
typedef Array(t_reduce_action) t_reduce_action_set;
typedef Array(t_stack_slice) t_stack_slice_array;
typedef Array(t_stack_summary_entry) t_stack_summary;
typedef void (*StackIterateCallback)(void *, t_state_id, uint32_t);
struct s_point
{
uint32_t row;
uint32_t column;
};
struct s_length
{
uint32_t bytes;
t_point extent;
};
struct s_stack_slice
{
t_subtree_array subtrees;
t_stack_version version;
};
struct s_stack_summary_entry
{
t_length position;
unsigned depth;
t_state_id state;
};
enum e_input_encoding
{
TSInputEncodingUTF8,
TSInputEncodingUTF16,
};
enum e_symbol_type
{
TSSymbolTypeRegular,
TSSymbolTypeAnonymous,
TSSymbolTypeAuxiliary,
};
struct s_parse_range
{
t_point start_point;
t_point end_point;
uint32_t start_byte;
uint32_t end_byte;
};
struct s_parse_input
{
void *payload;
const char *(*read)(void *payload, uint32_t byte_index, t_point position, uint32_t *bytes_read);
t_input_encoding encoding;
};
enum e_log_type
{
TSLogTypeParse,
TSLogTypeLex,
};
struct s_parse_logger
{
void *payload;
void (*log)(void *payload, t_log_type log_type, const char *buffer);
};
struct s_input_edit
{
uint32_t start_byte;
uint32_t old_end_byte;
uint32_t new_end_byte;
t_point start_point;
t_point old_end_point;
t_point new_end_point;
};
struct s_parse_node
{
uint32_t context[4];
const void *id;
const t_first_tree *tree;
};
struct s_tree_cursor_entry
{
const t_subtree *subtree;
t_length position;
uint32_t child_index;
uint32_t structural_child_index;
uint32_t descendant_index;
};
struct s_tree_cursor
{
const t_first_tree *tree;
Array(t_tree_cursor_entry) stack;
t_symbol root_alias_symbol;
};
struct s_query_capture
{
t_parse_node node;
uint32_t index;
};
enum e_quantifier
{
TSQuantifierZero = 0, // must match the array initialization value
TSQuantifierZeroOrOne,
TSQuantifierZeroOrMore,
TSQuantifierOne,
TSQuantifierOneOrMore,
};
struct s_query_match
{
uint32_t id;
uint16_t pattern_index;
uint16_t capture_count;
const t_query_capture *captures;
};
enum e_query_predicate_step_type
{
TSQueryPredicateStepTypeDone,
TSQueryPredicateStepTypeCapture,
TSQueryPredicateStepTypeString,
};
struct s_query_predicate_step
{
t_query_predicate_step_type type;
uint32_t value_id;
};
enum e_query_error
{
TSQueryErrorNone = 0,
TSQueryErrorSyntax,
TSQueryErrorNodeType,
TSQueryErrorField,
TSQueryErrorCapture,
TSQueryErrorStructure,
TSQueryErrorLanguage,
};
struct s_parent_cache_entry
{
const t_subtree *child;
const t_subtree *parent;
t_length position;
t_symbol alias_symbol;
};
typedef enum e_tree_cursor_step
{
TreeCursorStepNone,
TreeCursorStepHidden,
TreeCursorStepVisible,
} t_tree_cursor_step;
// The serialized state of an external scanner.
//
// Every time an external token subtree is created after a call to an
// external scanner, the scanner's `serialize` function is called to
// retrieve a serialized copy of its state. The bytes are then copied
// onto the subtree itself so that the scanner's state can later be
// restored using its `deserialize` function.
//
// Small byte arrays are stored inline, and long ones are allocated
// separately on the heap.
struct s_external_scanner_state
{
// TODO: extract this anonymous struct
union {
char *long_data;
char short_data[24];
};
uint32_t length;
};
struct s_subtree_inline_data
{
bool is_inline : 1;
bool visible : 1;
bool named : 1;
bool extra : 1;
bool has_changes : 1;
bool is_missing : 1;
bool is_keyword : 1;
uint8_t symbol;
uint16_t parse_state;
uint8_t padding_columns;
uint8_t padding_rows : 4;
uint8_t lookahead_bytes : 4;
uint8_t padding_bytes;
uint8_t size_bytes;
};
struct s_subtree_heap_data
{
volatile uint32_t ref_count;
t_length padding;
t_length size;
uint32_t lookahead_bytes;
uint32_t error_cost;
uint32_t child_count;
t_symbol symbol;
t_state_id parse_state;
bool visible : 1;
bool named : 1;
bool extra : 1;
bool fragile_left : 1;
bool fragile_right : 1;
bool has_changes : 1;
bool has_external_tokens : 1;
bool has_external_scanner_state_change : 1;
bool depends_on_column : 1;
bool is_missing : 1;
bool is_keyword : 1;
// TODO: extract these anonymous struct
union {
// Non-terminal subtrees (`child_count > 0`)
struct
{
uint32_t visible_child_count;
uint32_t named_child_count;
uint32_t visible_descendant_count;
int32_t dynamic_precedence;
uint16_t repeat_depth;
uint16_t production_id;
struct
{
t_symbol symbol;
t_state_id parse_state;
} first_leaf;
};
// External terminal subtrees (`child_count == 0 &&
// has_external_tokens`)
t_external_scanner_state external_scanner_state;
// Error terminal subtrees (`child_count == 0 && symbol ==
// ts_builtin_sym_error`)
int32_t lookahead_char;
};
};
// The fundamental building block of a syntax tree.
union u_subtree {
t_subtree_inline_data data;
const t_subtree_heap_data *ptr;
};
// Like t_subtree, but mutable.
union u_mutable_subtree {
t_subtree_inline_data data;
t_subtree_heap_data *ptr;
};
struct s_subtree_pool
{
t_mutable_subtree_array free_trees;
t_mutable_subtree_array tree_stack;
};
union u_parse_action {
// TODO: extract this anonymous struct
struct
{
uint8_t type;
t_state_id state;
bool extra;
bool repetition;
} shift;
// TODO: extract this anonymous struct
struct
{
uint8_t type;
uint8_t child_count;
t_symbol symbol;
int16_t dynamic_precedence;
uint16_t production_id;
} reduce;
uint8_t type;
};
struct s_table_entry
{
const t_parse_action *actions;
uint32_t action_count;
bool is_reusable;
};
struct s_lookahead_iterator
{
const t_language *language;
const uint16_t *data;
const uint16_t *group_end;
t_state_id state;
uint16_t table_value;
uint16_t section_index;
uint16_t group_count;
bool is_small_state;
const t_parse_action *actions;
t_symbol symbol;
t_state_id next_state;
uint16_t action_count;
};
struct s_symbol_metadata
{
bool visible;
bool named;
bool supertype;
};
enum e_parse_action_type
{
TSParseActionTypeShift,
TSParseActionTypeReduce,
TSParseActionTypeAccept,
TSParseActionTypeRecover,
};
union u_parse_action_entry {
t_parse_action action;
// TODO: extract this anonymous struct
struct
{
uint8_t count;
bool reusable;
} entry;
};
struct s_field_map_entry
{
t_field_id field_id;
uint8_t child_index;
bool inherited;
};
struct s_field_map_slice
{
uint16_t index;
uint16_t length;
};
struct s_lexer_data
{
int32_t lookahead;
t_symbol result_symbol;
void (*advance)(t_lexer_data *, bool);
void (*mark_end)(t_lexer_data *);
uint32_t (*get_column)(t_lexer_data *);
bool (*is_at_included_range_start)(const t_lexer_data *);
bool (*eof)(const t_lexer_data *);
};
struct s_lex_mode
{
uint16_t lex_state;
uint16_t external_lex_state;
};
struct s_char_range
{
int32_t start;
int32_t end;
};
struct s_language
{
uint32_t version;
uint32_t symbol_count;
uint32_t alias_count;
uint32_t token_count;
uint32_t external_token_count;
uint32_t state_count;
uint32_t large_state_count;
uint32_t production_id_count;
uint32_t field_count;
uint16_t max_alias_sequence_length;
const uint16_t *parse_table;
const uint16_t *small_parse_table;
const uint32_t *small_parse_table_map;
const t_parse_action_entry *parse_actions;
const char *const *symbol_names;
const char *const *field_names;
const t_field_map_slice *field_map_slices;
const t_field_map_entry *field_map_entries;
const t_symbol_metadata *symbol_metadata;
const t_symbol *public_symbol_map;
const uint16_t *alias_map;
const t_symbol *alias_sequences;
const t_lex_mode *lex_modes;
bool (*lex_fn)(t_lexer_data *, t_state_id);
bool (*keyword_lex_fn)(t_lexer_data *, t_state_id);
t_symbol keyword_capture_token;
// TODO: extract this anonymous struct
struct
{
const bool *states;
const t_symbol *symbol_map;
void *(*create)(void);
void (*destroy)(void *);
bool (*scan)(void *, t_lexer_data *, const bool *symbol_whitelist);
uint32_t (*serialize)(void *, char *);
void (*deserialize)(void *, const char *, uint32_t);
} external_scanner;
const t_state_id *primary_state_ids;
};
struct s_lexer
{
t_lexer_data data;
t_length current_position;
t_length token_start_position;
t_length token_end_position;
t_parse_range *included_ranges;
const char *chunk;
t_parse_input input;
t_parse_logger logger;
uint32_t included_range_count;
uint32_t current_included_range_index;
uint32_t chunk_start;
uint32_t chunk_size;
uint32_t lookahead_size;
bool did_get_column;
char debug_buffer[TREE_SITTER_SERIALIZATION_BUFFER_SIZE];
};
struct s_reduce_action
{
uint32_t count;
t_symbol symbol;
int32_t dynamic_precedence;
uint16_t production_id;
};
struct s_stack_entry
{
t_subtree tree;
uint32_t child_index;
uint32_t byte_offset;
};
struct s_reusable_node
{
Array(t_stack_entry) stack;
t_subtree last_external_token;
};
struct s_first_tree
{
t_subtree root;
const t_language *language;
t_parse_range *included_ranges;
uint32_t included_range_count;
};
#endif // API_STRUCTS_H

View file

@ -1,283 +0,0 @@
#ifndef ARRAY_H
#define ARRAY_H
#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#if true
# undef malloc
# undef calloc
# undef realloc
# undef free
# define malloc(s) mem_alloc((s))
# define calloc(s, l) mem_alloc_array((s), (l))
# define realloc(p, t) mem_realloc((p), (t))
# define free(p) mem_free((p))
#endif
#define Array(T) \
struct \
{ \
T *contents; \
uint32_t size; \
uint32_t capacity; \
}
#ifndef inline
# define inline __inline__
#endif
/// Initialize an array.
#define array_init(self) ((self)->size = 0, (self)->capacity = 0, (self)->contents = NULL)
/// Create an empty array.
#define array_new() \
{ \
NULL, 0, 0 \
}
/// Get a pointer to the element at a given `index` in the array.
#define array_get(self, _index) (assert((uint32_t)(_index) < (self)->size), &(self)->contents[_index])
/// Get a pointer to the first element in the array.
#define array_front(self) array_get(self, 0)
/// Get a pointer to the last element in the array.
#define array_back(self) array_get(self, (self)->size - 1)
/// Clear the array, setting its size to zero. Note that this does not free any
/// memory allocated for the array's contents.
#define array_clear(self) ((self)->size = 0)
/// Reserve `new_capacity` elements of space in the array. If `new_capacity` is
/// less than the array's current capacity, this function has no effect.
#define array_reserve(self, new_capacity) _array__reserve((Array *)(self), array_elem_size(self), new_capacity)
/// Free any memory allocated for this array. Note that this does not free any
/// memory allocated for the array's contents.
#define array_delete(self) _array__delete((Array *)(self))
/// Push a new `element` onto the end of the array.
#define array_push(self, element) (_array__grow((Array *)(self), 1, array_elem_size(self)), (self)->contents[(self)->size++] = (element))
/// Increase the array's size by `count` elements.
/// New elements are zero-initialized.
#define array_grow_by(self, count) \
do \
{ \
if ((count) == 0) \
break; \
_array__grow((Array *)(self), count, array_elem_size(self)); \
memset((self)->contents + (self)->size, 0, (count) * array_elem_size(self)); \
(self)->size += (count); \
} while (0)
/// Append all elements from one array to the end of another.
#define array_push_all(self, other) array_extend((self), (other)->size, (other)->contents)
/// Append `count` elements to the end of the array, reading their values from
/// the `contents` pointer.
#define array_extend(self, count, contents) _array__splice((Array *)(self), array_elem_size(self), (self)->size, 0, count, contents)
/// Remove `old_count` elements from the array starting at the given `index`. At
/// the same index, insert `new_count` new elements, reading their values from
/// the `new_contents` pointer.
#define array_splice(self, _index, old_count, new_count, new_contents) \
_array__splice((Array *)(self), array_elem_size(self), _index, old_count, new_count, new_contents)
/// Insert one `element` into the array at the given `index`.
#define array_insert(self, _index, element) _array__splice((Array *)(self), array_elem_size(self), _index, 0, 1, &(element))
/// Remove one element from the array at the given `index`.
#define array_erase(self, _index) _array__erase((Array *)(self), array_elem_size(self), _index)
/// Pop the last element off the array, returning the element by value.
#define array_pop(self) ((self)->contents[--(self)->size])
/// Assign the contents of one array to another, reallocating if necessary.
#define array_assign(self, other) _array__assign((Array *)(self), (const Array *)(other), array_elem_size(self))
/// Swap one array with another
#define array_swap(self, other) _array__swap((Array *)(self), (Array *)(other))
/// Get the size of the array contents
#define array_elem_size(self) (sizeof *(self)->contents)
/// Search a sorted array for a given `needle` value, using the given `compare`
/// callback to determine the order.
///
/// If an existing element is found to be equal to `needle`, then the `index`
/// out-parameter is set to the existing value's index, and the `exists`
/// out-parameter is set to true. Otherwise, `index` is set to an index where
/// `needle` should be inserted in order to preserve the sorting, and `exists`
/// is set to false.
#define array_search_sorted_with(self, compare, needle, _index, _exists) _array__search_sorted(self, 0, compare, , needle, _index, _exists)
/// Helper macro for the `_sorted_by` routines below. This takes the left
/// (existing) parameter by reference in order to work with the generic sorting
/// function above.
#define _compare_int(a, b) ((int)*(a) - (int)(b))
/// Search a sorted array for a given `needle` value, using integer comparisons
/// of a given struct field (specified with a leading dot) to determine the
/// order.
///
/// See also `array_search_sorted_with`.
#define array_search_sorted_by(self, field, needle, _index, _exists) _array__search_sorted(self, 0, _compare_int, field, needle, _index, _exists)
/// Insert a given `value` into a sorted array, using the given `compare`
/// callback to determine the order.
#define array_insert_sorted_with(self, compare, value) \
do \
{ \
unsigned _index, _exists; \
array_search_sorted_with(self, compare, &(value), &_index, &_exists); \
if (!_exists) \
array_insert(self, _index, value); \
} while (0)
/// Insert a given `value` into a sorted array, using integer comparisons of
/// a given struct field (specified with a leading dot) to determine the order.
///
/// See also `array_search_sorted_by`.
#define array_insert_sorted_by(self, field, value) \
do \
{ \
unsigned _index, _exists; \
array_search_sorted_by(self, field, (value)field, &_index, &_exists); \
if (!_exists) \
array_insert(self, _index, value); \
} while (0)
typedef Array(void) Array;
/// This is not what you're looking for, see `array_delete`.
static inline void _array__delete(Array *self)
{
if (self->contents)
{
free(self->contents);
self->contents = NULL;
self->size = 0;
self->capacity = 0;
}
}
/// This is not what you're looking for, see `array_erase`.
static inline void _array__erase(Array *self, size_t element_size, uint32_t index)
{
assert(index < self->size);
char *contents = (char *)self->contents;
memmove(contents + index * element_size, contents + (index + 1) * element_size, (self->size - index - 1) * element_size);
self->size--;
}
/// This is not what you're looking for, see `array_reserve`.
static inline void _array__reserve(Array *self, size_t element_size, uint32_t new_capacity)
{
if (new_capacity > self->capacity)
{
if (self->contents)
{
self->contents = realloc(self->contents, new_capacity * element_size);
}
else
{
self->contents = malloc(new_capacity * element_size);
}
self->capacity = new_capacity;
}
}
/// This is not what you're looking for, see `array_assign`.
static inline void _array__assign(Array *self, const Array *other, size_t element_size)
{
_array__reserve(self, element_size, other->size);
self->size = other->size;
memcpy(self->contents, other->contents, self->size * element_size);
}
/// This is not what you're looking for, see `array_swap`.
static inline void _array__swap(Array *self, Array *other)
{
Array swap = *other;
*other = *self;
*self = swap;
}
/// This is not what you're looking for, see `array_push` or `array_grow_by`.
static inline void _array__grow(Array *self, uint32_t count, size_t element_size)
{
uint32_t new_size = self->size + count;
if (new_size > self->capacity)
{
uint32_t new_capacity = self->capacity * 2;
if (new_capacity < 8)
new_capacity = 8;
if (new_capacity < new_size)
new_capacity = new_size;
_array__reserve(self, element_size, new_capacity);
}
}
/// This is not what you're looking for, see `array_splice`.
static inline void _array__splice(Array *self, size_t element_size, uint32_t index, uint32_t old_count, uint32_t new_count, const void *elements)
{
uint32_t new_size = self->size + new_count - old_count;
uint32_t old_end = index + old_count;
uint32_t new_end = index + new_count;
assert(old_end <= self->size);
_array__reserve(self, element_size, new_size);
char *contents = (char *)self->contents;
if (self->size > old_end)
{
memmove(contents + new_end * element_size, contents + old_end * element_size, (self->size - old_end) * element_size);
}
if (new_count > 0)
{
if (elements)
{
memcpy((contents + index * element_size), elements, new_count * element_size);
}
else
{
memset((contents + index * element_size), 0, new_count * element_size);
}
}
self->size += new_count - old_count;
}
/// A binary search routine, based on Rust's `std::slice::binary_search_by`.
/// This is not what you're looking for, see `array_search_sorted_with` or
/// `array_search_sorted_by`.
#define _array__search_sorted(self, start, compare, suffix, needle, _index, _exists) \
do \
{ \
*(_index) = start; \
*(_exists) = false; \
uint32_t size = (self)->size - *(_index); \
if (size == 0) \
break; \
int comparison; \
while (size > 1) \
{ \
uint32_t half_size = size / 2; \
uint32_t mid_index = *(_index) + half_size; \
comparison = compare(&((self)->contents[mid_index] suffix), (needle)); \
if (comparison <= 0) \
*(_index) = mid_index; \
size -= half_size; \
} \
comparison = compare(&((self)->contents[*(_index)] suffix), (needle)); \
if (comparison == 0) \
*(_exists) = true; \
else if (comparison < 0) \
*(_index) += 1; \
} while (0)
#endif // ARRAY_H

File diff suppressed because it is too large Load diff

View file

@ -1,272 +0,0 @@
/* ************************************************************************** */
/* */
/* ::: :::::::: */
/* combined.h :+: :+: :+: */
/* +:+ +:+ +:+ */
/* By: maiboyer <maiboyer@student.42.fr> +#+ +:+ +#+ */
/* +#+#+#+#+#+ +#+ */
/* Created: 2024/06/18 17:01:23 by maiboyer #+# #+# */
/* Updated: 2024/06/18 17:12:45 by maiboyer ### ########.fr */
/* */
/* ************************************************************************** */
#ifndef COMBINED_H
#define COMBINED_H
#include "./api.h"
#include "./structs.h"
t_u32 ascii_decode(const t_u8 *chunk, t_u32 size, t_i32 *codepoint);
int _ts_dup(int file_descriptor);
t_external_scanner_state ts_external_scanner_state_copy(const t_external_scanner_state *self);
const char *ts_external_scanner_state_data(const t_external_scanner_state *self);
void ts_external_scanner_state_delete(t_external_scanner_state *self);
bool ts_external_scanner_state_eq(const t_external_scanner_state *self, const char *buffer, unsigned length);
void ts_external_scanner_state_init(t_external_scanner_state *self, const char *data, unsigned length);
const t_language *ts_language_copy(const t_language *self);
void ts_language_delete(const t_language *self);
t_u32 ts_language_field_count(const t_language *self);
t_field_id ts_language_field_id_for_name(const t_language *self, const char *name, t_u32 name_length);
const char *ts_language_field_name_for_id(const t_language *self, t_field_id id);
t_state_id ts_language_next_state(const t_language *self, t_state_id state, t_symbol symbol);
t_symbol ts_language_public_symbol(const t_language *self, t_symbol symbol);
t_u32 ts_language_state_count(const t_language *self);
t_u32 ts_language_symbol_count(const t_language *self);
t_symbol ts_language_symbol_for_name(const t_language *self, const char *string, t_u32 length, bool is_named);
t_symbol_metadata ts_language_symbol_metadata(const t_language *self, t_symbol symbol);
const char *ts_language_symbol_name(const t_language *self, t_symbol symbol);
t_symbol_type ts_language_symbol_type(const t_language *self, t_symbol symbol);
void ts_language_table_entry(const t_language *self, t_state_id state, t_symbol symbol, t_table_entry *result);
t_u32 ts_language_version(const t_language *self);
void ts_lexer_advance_to_end(t_lexer *self);
void ts_lexer_delete(t_lexer *self);
void ts_lexer_finish(t_lexer *self, t_u32 *lookahead_end_byte);
t_parse_range *ts_lexer_included_ranges(const t_lexer *self, t_u32 *count);
void ts_lexer_init(t_lexer *self);
void ts_lexer_mark_end(t_lexer *self);
void ts_lexer_reset(t_lexer *self, t_length position);
bool ts_lexer_set_included_ranges(t_lexer *self, const t_parse_range *ranges, t_u32 count);
void ts_lexer_set_input(t_lexer *self, t_parse_input input);
void ts_lexer_start(t_lexer *self);
// START PROBABLY DELETE WORTHY
t_symbol ts_lookahead_iterator_current_symbol(const t_lookahead_iterator *self);
const char *ts_lookahead_iterator_current_symbol_name(const t_lookahead_iterator *self);
void ts_lookahead_iterator_delete(t_lookahead_iterator *self);
const t_language *ts_lookahead_iterator_language(const t_lookahead_iterator *self);
t_lookahead_iterator *ts_lookahead_iterator_new(const t_language *self, t_state_id state);
bool ts_lookahead_iterator_next(t_lookahead_iterator *self);
bool ts_lookahead_iterator_reset(t_lookahead_iterator *self, const t_language *language, t_state_id state);
bool ts_lookahead_iterator_reset_state(t_lookahead_iterator *self, t_state_id state);
// END PROBABLY DELETE WORTHY
t_parse_node ts_node_child(t_parse_node self, t_u32 child_index);
t_parse_node ts_node_child_by_field_id(t_parse_node self, t_field_id field_id);
t_parse_node ts_node_child_by_field_name(t_parse_node self, const char *name, t_u32 name_length);
t_parse_node ts_node_child_containing_descendant(t_parse_node self, t_parse_node subnode);
t_u32 ts_node_child_count(t_parse_node self);
t_u32 ts_node_descendant_count(t_parse_node self);
t_parse_node ts_node_descendant_for_byte_range(t_parse_node self, t_u32 start, t_u32 end);
t_parse_node ts_node_descendant_for_point_range(t_parse_node self, t_point start, t_point end);
void ts_node_edit(t_parse_node *self, const t_input_edit *edit);
t_u32 ts_node_end_byte(t_parse_node self);
t_point ts_node_end_point(t_parse_node self);
bool ts_node_eq(t_parse_node self, t_parse_node other);
t_field_id ts_node_field_id_for_child(t_parse_node self, t_u32 child_index);
const char *ts_node_field_name_for_child(t_parse_node self, t_u32 child_index);
t_parse_node ts_node_first_child_for_byte(t_parse_node self, t_u32 byte);
t_parse_node ts_node_first_named_child_for_byte(t_parse_node self, t_u32 byte);
t_symbol ts_node_grammar_symbol(t_parse_node self);
const char *ts_node_grammar_type(t_parse_node self);
bool ts_node_has_changes(t_parse_node self);
bool ts_node_has_error(t_parse_node self);
bool ts_node_is_error(t_parse_node self);
bool ts_node_is_extra(t_parse_node self);
bool ts_node_is_missing(t_parse_node self);
bool ts_node_is_named(t_parse_node self);
bool ts_node_is_null(t_parse_node self);
const t_language *ts_node_language(t_parse_node self);
t_parse_node ts_node_named_child(t_parse_node self, t_u32 child_index);
t_u32 ts_node_named_child_count(t_parse_node self);
t_parse_node ts_node_named_descendant_for_byte_range(t_parse_node self, t_u32 start, t_u32 end);
t_parse_node ts_node_named_descendant_for_point_range(t_parse_node self, t_point start, t_point end);
t_parse_node ts_node_new(const t_first_tree *tree, const t_subtree *subtree, t_length position, t_symbol alias);
t_parse_node ts_node_next_named_sibling(t_parse_node self);
t_state_id ts_node_next_parse_state(t_parse_node self);
t_parse_node ts_node_next_sibling(t_parse_node self);
t_parse_node ts_node_parent(t_parse_node self);
t_state_id ts_node_parse_state(t_parse_node self);
t_parse_node ts_node_prev_named_sibling(t_parse_node self);
t_parse_node ts_node_prev_sibling(t_parse_node self);
t_u32 ts_node_start_byte(t_parse_node self);
t_point ts_node_start_point(t_parse_node self);
char *ts_node_string(t_parse_node self);
t_symbol ts_node_symbol(t_parse_node self);
const char *ts_node_type(t_parse_node self);
const size_t *ts_parser_cancellation_flag(const t_first_parser *self);
void ts_parser_delete(t_first_parser *self);
const t_parse_range *ts_parser_included_ranges(const t_first_parser *self, t_u32 *count);
const t_language *ts_parser_language(const t_first_parser *self);
t_parse_logger ts_parser_logger(const t_first_parser *self);
t_first_parser *ts_parser_new(void);
t_first_tree *ts_parser_parse(t_first_parser *self, const t_first_tree *old_tree, t_parse_input input);
t_first_tree *ts_parser_parse_string(t_first_parser *self, const t_first_tree *old_tree, const char *string, t_u32 length);
t_first_tree *ts_parser_parse_string_encoding(t_first_parser *self, const t_first_tree *old_tree, const char *string, t_u32 length, t_input_encoding encoding);
void ts_parser_print_dot_graphs(t_first_parser *self, int fd);
void ts_parser_reset(t_first_parser *self);
void ts_parser_set_cancellation_flag(t_first_parser *self, const size_t *flag);
bool ts_parser_set_included_ranges(t_first_parser *self, const t_parse_range *ranges, t_u32 count);
bool ts_parser_set_language(t_first_parser *self, const t_language *language);
void ts_parser_set_logger(t_first_parser *self, t_parse_logger logger);
void ts_parser_set_timeout_micros(t_first_parser *self, t_u64 timeout_micros);
t_u64 ts_parser_timeout_micros(const t_first_parser *self);
// START PROBABLY DELETE WORTHY
bool ts_query__step_is_fallible(const t_parse_query *self, t_u16 step_index);
t_u32 ts_query_capture_count(const t_parse_query *self);
const char *ts_query_capture_name_for_id(const t_parse_query *self, t_u32 index, t_u32 *length);
t_quantifier ts_query_capture_quantifier_for_id(const t_parse_query *self, t_u32 pattern_index, t_u32 capture_index);
void ts_query_cursor__compare_captures(t_query_cursor *self, t_query_state *left_state, t_query_state *right_state, bool *left_contains_right, bool *right_contains_left);
int ts_query_cursor__compare_nodes(t_parse_node left, t_parse_node right);
void ts_query_cursor_delete(t_query_cursor *self);
bool ts_query_cursor_did_exceed_match_limit(const t_query_cursor *self);
void ts_query_cursor_exec(t_query_cursor *self, const t_parse_query *query, t_parse_node node);
t_u32 ts_query_cursor_match_limit(const t_query_cursor *self);
t_query_cursor *ts_query_cursor_new(void);
bool ts_query_cursor_next_capture(t_query_cursor *self, t_query_match *match, t_u32 *capture_index);
bool ts_query_cursor_next_match(t_query_cursor *self, t_query_match *match);
void ts_query_cursor_remove_match(t_query_cursor *self, t_u32 match_id);
void ts_query_cursor_set_byte_range(t_query_cursor *self, t_u32 start_byte, t_u32 end_byte);
void ts_query_cursor_set_match_limit(t_query_cursor *self, t_u32 limit);
void ts_query_cursor_set_max_start_depth(t_query_cursor *self, t_u32 max_start_depth);
void ts_query_cursor_set_point_range(t_query_cursor *self, t_point start_point, t_point end_point);
void ts_query_delete(t_parse_query *self);
void ts_query_disable_capture(t_parse_query *self, const char *name, t_u32 length);
void ts_query_disable_pattern(t_parse_query *self, t_u32 pattern_index);
bool ts_query_is_pattern_guaranteed_at_step(const t_parse_query *self, t_u32 byte_offset);
bool ts_query_is_pattern_non_local(const t_parse_query *self, t_u32 pattern_index);
bool ts_query_is_pattern_rooted(const t_parse_query *self, t_u32 pattern_index);
t_parse_query *ts_query_new(const t_language *language, const char *source, t_u32 source_len, t_u32 *error_offset, t_query_error *error_type);
t_u32 ts_query_pattern_count(const t_parse_query *self);
const t_query_predicate_step *ts_query_predicates_for_pattern(const t_parse_query *self, t_u32 pattern_index, t_u32 *step_count);
t_u32 ts_query_start_byte_for_pattern(const t_parse_query *self, t_u32 pattern_index);
t_u32 ts_query_string_count(const t_parse_query *self);
const char *ts_query_string_value_for_id(const t_parse_query *self, t_u32 index, t_u32 *length);
// END PROBABLY DELETE WORTHY
void ts_range_array_get_changed_ranges(const t_parse_range *old_ranges, unsigned old_range_count, const t_parse_range *new_ranges, unsigned new_range_count, t_range_array *differences);
bool ts_range_array_intersects(const t_range_array *self, unsigned start_index, t_u32 start_byte, t_u32 end_byte);
bool ts_stack_can_merge(t_stack *self, t_stack_version version1, t_stack_version version2);
void ts_stack_clear(t_stack *self);
t_stack_version ts_stack_copy_version(t_stack *self, t_stack_version version);
void ts_stack_delete(t_stack *self);
int ts_stack_dynamic_precedence(t_stack *self, t_stack_version version);
unsigned ts_stack_error_cost(const t_stack *self, t_stack_version version);
t_stack_summary *ts_stack_get_summary(t_stack *self, t_stack_version version);
void ts_stack_halt(t_stack *self, t_stack_version version);
bool ts_stack_has_advanced_since_error(const t_stack *self, t_stack_version version);
bool ts_stack_is_active(const t_stack *self, t_stack_version version);
bool ts_stack_is_halted(const t_stack *self, t_stack_version version);
bool ts_stack_is_paused(const t_stack *self, t_stack_version version);
t_subtree ts_stack_last_external_token(const t_stack *self, t_stack_version version);
bool ts_stack_merge(t_stack *self, t_stack_version version1, t_stack_version version2);
t_stack *ts_stack_new(t_subtree_pool *subtree_pool);
unsigned ts_stack_node_count_since_error(const t_stack *self, t_stack_version version);
void ts_stack_pause(t_stack *self, t_stack_version version, t_subtree lookahead);
t_stack_slice_array ts_stack_pop_all(t_stack *self, t_stack_version version);
t_stack_slice_array ts_stack_pop_count(t_stack *self, t_stack_version version, t_u32 count);
t_subtree_array ts_stack_pop_error(t_stack *self, t_stack_version version);
t_stack_slice_array ts_stack_pop_pending(t_stack *self, t_stack_version version);
t_length ts_stack_position(const t_stack *self, t_stack_version version);
bool ts_stack_print_dot_graph(t_stack *self, const t_language *language, void *f);
void ts_stack_push(t_stack *self, t_stack_version version, t_subtree subtree, bool pending, t_state_id state);
void ts_stack_record_summary(t_stack *self, t_stack_version version, unsigned max_depth);
void ts_stack_remove_version(t_stack *self, t_stack_version version);
void ts_stack_renumber_version(t_stack *self, t_stack_version v1, t_stack_version v2);
t_subtree ts_stack_resume(t_stack *self, t_stack_version version);
void ts_stack_set_last_external_token(t_stack *self, t_stack_version version, t_subtree token);
t_state_id ts_stack_state(const t_stack *self, t_stack_version version);
void ts_stack_swap_versions(t_stack *self, t_stack_version v1, t_stack_version v2);
t_u32 ts_stack_version_count(const t_stack *self);
void ts_subtree__print_dot_graph(const t_subtree *self, t_u32 start_offset, const t_language *language, t_symbol alias_symbol, void *f);
void ts_subtree_array_clear(t_subtree_pool *pool, t_subtree_array *self);
void ts_subtree_array_copy(t_subtree_array self, t_subtree_array *dest);
void ts_subtree_array_delete(t_subtree_pool *pool, t_subtree_array *self);
void ts_subtree_array_remove_trailing_extras(t_subtree_array *self, t_subtree_array *destination);
void ts_subtree_array_reverse(t_subtree_array *self);
void ts_subtree_balance(t_subtree self, t_subtree_pool *pool, const t_language *language);
t_mutable_subtree ts_subtree_clone(t_subtree self);
int ts_subtree_compare(t_subtree left, t_subtree right, t_subtree_pool *pool);
t_subtree ts_subtree_edit(t_subtree self, const t_input_edit *input_edit, t_subtree_pool *pool);
const t_external_scanner_state *ts_subtree_external_scanner_state(t_subtree self);
bool ts_subtree_external_scanner_state_eq(t_subtree self, t_subtree other);
unsigned ts_subtree_get_changed_ranges(const t_subtree *old_tree, const t_subtree *new_tree, t_tree_cursor *cursor1, t_tree_cursor *cursor2, const t_language *language, const t_range_array *included_range_differences, t_parse_range **ranges);
t_subtree ts_subtree_last_external_token(t_subtree tree);
t_mutable_subtree ts_subtree_make_mut(t_subtree_pool *pool, t_subtree self);
t_subtree ts_subtree_new_error(t_subtree_pool *pool, t_i32 lookahead_char, t_length padding, t_length size, t_u32 bytes_scanned, t_state_id parse_state, const t_language *language);
t_subtree ts_subtree_new_error_node(t_subtree_array *children, bool extra, const t_language *language);
t_subtree ts_subtree_new_leaf(t_subtree_pool *pool, t_symbol symbol, t_length padding, t_length size, t_u32 lookahead_bytes, t_state_id parse_state, bool has_external_tokens, bool depends_on_column, bool is_keyword, const t_language *language);
t_subtree ts_subtree_new_missing_leaf(t_subtree_pool *pool, t_symbol symbol, t_length padding, t_u32 lookahead_bytes, const t_language *language);
t_mutable_subtree ts_subtree_new_node(t_symbol symbol, t_subtree_array *children, unsigned production_id, const t_language *language);
void ts_subtree_pool_delete(t_subtree_pool *self);
t_subtree_pool ts_subtree_pool_new(t_u32 capacity);
void ts_subtree_release(t_subtree_pool *pool, t_subtree self);
void ts_subtree_retain(t_subtree self);
void ts_subtree_set_symbol(t_mutable_subtree *self, t_symbol symbol, const t_language *language);
char *ts_subtree_string(t_subtree self, t_symbol alias_symbol, bool alias_is_named, const t_language *language, bool include_all);
void ts_subtree_summarize_children(t_mutable_subtree self, const t_language *language);
t_first_tree *ts_tree_copy(const t_first_tree *self);
// START PROBABLY DELETE WORTHY
t_tree_cursor ts_tree_cursor_copy(const t_tree_cursor *_cursor);
t_u32 ts_tree_cursor_current_depth(const t_tree_cursor *_self);
t_u32 ts_tree_cursor_current_descendant_index(const t_tree_cursor *_self);
t_field_id ts_tree_cursor_current_field_id(const t_tree_cursor *_self);
const char *ts_tree_cursor_current_field_name(const t_tree_cursor *_self);
t_parse_node ts_tree_cursor_current_node(const t_tree_cursor *_self);
void ts_tree_cursor_current_status(const t_tree_cursor *_self, t_field_id *field_id, bool *has_later_siblings, bool *has_later_named_siblings, bool *can_have_later_siblings_with_this_field, t_symbol *supertypes, unsigned *supertype_count);
void ts_tree_cursor_delete(t_tree_cursor *_self);
void ts_tree_cursor_goto_descendant(t_tree_cursor *_self, t_u32 goal_descendant_index);
bool ts_tree_cursor_goto_first_child(t_tree_cursor *self);
t_i64 ts_tree_cursor_goto_first_child_for_byte(t_tree_cursor *self, t_u32 goal_byte);
t_i64 ts_tree_cursor_goto_first_child_for_point(t_tree_cursor *self, t_point goal_point);
t_tree_cursor_step ts_tree_cursor_goto_first_child_internal(t_tree_cursor *_self);
bool ts_tree_cursor_goto_last_child(t_tree_cursor *self);
t_tree_cursor_step ts_tree_cursor_goto_last_child_internal(t_tree_cursor *_self);
bool ts_tree_cursor_goto_next_sibling(t_tree_cursor *self);
t_tree_cursor_step ts_tree_cursor_goto_next_sibling_internal(t_tree_cursor *_self);
bool ts_tree_cursor_goto_parent(t_tree_cursor *_self);
bool ts_tree_cursor_goto_previous_sibling(t_tree_cursor *self);
t_tree_cursor_step ts_tree_cursor_goto_previous_sibling_internal(t_tree_cursor *_self);
t_tree_cursor_step ts_tree_cursor_goto_sibling_internal(t_tree_cursor *_self, bool (*advance)(t_cursor_child_iterator *, t_tree_cursor_entry *, bool *));
void ts_tree_cursor_init(t_tree_cursor *self, t_parse_node node);
t_tree_cursor ts_tree_cursor_new(t_parse_node node);
t_parse_node ts_tree_cursor_parent_node(const t_tree_cursor *_self);
void ts_tree_cursor_reset(t_tree_cursor *_self, t_parse_node node);
void ts_tree_cursor_reset_to(t_tree_cursor *_dst, const t_tree_cursor *_src);
// END PROBABLY DELETE WORTHY
void ts_tree_delete(t_first_tree *self);
void ts_tree_edit(t_first_tree *self, const t_input_edit *edit);
t_parse_range *ts_tree_get_changed_ranges(const t_first_tree *old_tree, const t_first_tree *new_tree, t_u32 *length);
t_parse_range *ts_tree_included_ranges(const t_first_tree *self, t_u32 *length);
const t_language *ts_tree_language(const t_first_tree *self);
t_first_tree *ts_tree_new(t_subtree root, const t_language *language, const t_parse_range *included_ranges, unsigned included_range_count);
void ts_tree_print_dot_graph(const t_first_tree *self, int file_descriptor);
t_parse_node ts_tree_root_node(const t_first_tree *self);
t_parse_node ts_tree_root_node_with_offset(const t_first_tree *self, t_u32 offset_bytes, t_point offset_extent);
#endif /* COMBINED_H */

View file

@ -1,98 +0,0 @@
/* ************************************************************************** */
/* */
/* ::: :::::::: */
/* create_language.c :+: :+: :+: */
/* +:+ +:+ +:+ */
/* By: maiboyer <maiboyer@student.42.fr> +#+ +:+ +#+ */
/* +#+#+#+#+#+ +#+ */
/* Created: 2024/04/25 16:13:52 by maiboyer #+# #+# */
/* Updated: 2024/06/09 21:46:14 by maiboyer ### ########.fr */
/* */
/* ************************************************************************** */
#include "../parse_types.h"
#include "../static/headers/constants.h"
#include "../static/headers/symbols.h"
bool lex_keywords_main(t_lexer *lexer, t_state_id state);
bool lex_normal_main(t_lexer *lexer, t_state_id state);
bool tree_sitter_sh_external_scanner_scan(void *ctx, t_lexer *lexer, const bool *ret);
const bool *create_external_scanner_states(void);
const char *const *create_field_names(void);
const char *const *create_symbols_names(void);
const t_field_map_entry *create_field_map_entries(void);
const t_field_map_slice *create_field_map_slices(void);
const t_lex_modes *create_lex_modes(void);
const t_parse_action_entry *create_parse_actions_entries(void);
const t_state_id *create_primary_state_ids(void);
const t_symbol *create_alias_sequences(void);
const t_symbol *create_external_scanner_symbol_map(void);
const t_symbol *create_non_terminal_alias_map(void);
const t_symbol *create_unique_symbols_map(void);
const t_symbol_metadata *create_symbols_metadata(void);
const uint16_t *create_parse_table(void);
const uint16_t *create_small_parse_table(void);
const uint32_t *create_small_parse_table_map(void);
uint32_t tree_sitter_sh_external_scanner_serialize(void *ctx, char *s);
void tree_sitter_sh_external_scanner_deserialize(void *ctx, const char *s, uint32_t val);
void tree_sitter_sh_external_scanner_destroy(void *ctx);
void *tree_sitter_sh_external_scanner_create(void);
static t_scanner init_scanner(void)
{
return ((t_scanner){
create_external_scanner_states(),
create_external_scanner_symbol_map(),
tree_sitter_sh_external_scanner_create,
tree_sitter_sh_external_scanner_destroy,
tree_sitter_sh_external_scanner_scan,
tree_sitter_sh_external_scanner_serialize,
tree_sitter_sh_external_scanner_deserialize,
});
}
static void init_language(t_language *language)
{
language->parse_table = create_parse_table();
language->small_parse_table = create_small_parse_table();
language->small_parse_table_map = create_small_parse_table_map();
language->parse_actions = create_parse_actions_entries();
language->symbol_names = create_symbols_names();
language->field_names = create_field_names();
language->field_map_slices = create_field_map_slices();
language->field_map_entries = create_field_map_entries();
language->symbol_metadata = create_symbols_metadata();
language->public_symbol_map = create_unique_symbols_map();
language->alias_map = create_non_terminal_alias_map();
language->alias_sequences = create_alias_sequences();
language->lex_modes = create_lex_modes();
language->primary_state_ids = create_primary_state_ids();
language->lex_fn = lex_normal_main;
language->keyword_lex_fn = lex_keywords_main;
language->keyword_capture_token = sym_word;
language->external_scanner = init_scanner();
}
const t_language *tree_sitter_bash(void)
{
static bool init = false;
static t_language language = {
.version = LANGUAGE_VERSION,
.symbol_count = SYMBOL_COUNT,
.alias_count = ALIAS_COUNT,
.token_count = TOKEN_COUNT,
.external_token_count = EXTERNAL_TOKEN_COUNT,
.state_count = STATE_COUNT,
.large_state_count = LARGE_STATE_COUNT,
.production_id_count = PRODUCTION_ID_COUNT,
.field_count = FIELD_COUNT,
.max_alias_sequence_length = MAX_ALIAS_SEQUENCE_LENGTH,
};
if (!init)
{
init_language(&language);
init = true;
}
return ((t_language *)&language);
}

View file

@ -1,711 +0,0 @@
/* ************************************************************************** */
/* */
/* ::: :::::::: */
/* funcs.c :+: :+: :+: */
/* +:+ +:+ +:+ */
/* By: maiboyer <maiboyer@student.42.fr> +#+ +:+ +#+ */
/* +#+#+#+#+#+ +#+ */
/* Created: 2024/05/30 19:21:01 by maiboyer #+# #+# */
/* Updated: 2024/05/30 19:22:53 by maiboyer ### ########.fr */
/* */
/* ************************************************************************** */
#include "./api.h"
size_t atomic_load(const volatile size_t *p)
{
return (*p);
}
uint32_t atomic_inc(volatile uint32_t *p)
{
return (++(*p));
}
uint32_t atomic_dec(volatile uint32_t *p)
{
return (--(*p));
}
bool ts_language_is_symbol_external(const t_language *self, t_symbol symbol)
{
return 0 < symbol && symbol < self->external_token_count + 1;
}
const t_parse_action *ts_language_actions(const t_language *self, t_state_id state, t_symbol symbol, uint32_t *count)
{
t_table_entry entry;
ts_language_table_entry(self, state, symbol, &entry);
*count = entry.action_count;
return entry.actions;
}
bool ts_language_has_reduce_action(const t_language *self, t_state_id state, t_symbol symbol)
{
t_table_entry entry;
ts_language_table_entry(self, state, symbol, &entry);
return entry.action_count > 0 && entry.actions[0].type == TSParseActionTypeReduce;
}
uint16_t ts_language_lookup(const t_language *self, t_state_id state, t_symbol symbol)
{
if (state >= self->large_state_count)
{
uint32_t index = self->small_parse_table_map[state - self->large_state_count];
const uint16_t *data = &self->small_parse_table[index];
uint16_t group_count = *(data++);
for (unsigned i = 0; i < group_count; i++)
{
uint16_t section_value = *(data++);
uint16_t symbol_count = *(data++);
for (unsigned j = 0; j < symbol_count; j++)
{
if (*(data++) == symbol)
return section_value;
}
}
return 0;
}
else
{
return self->parse_table[state * self->symbol_count + symbol];
}
}
bool ts_language_has_actions(const t_language *self, t_state_id state, t_symbol symbol)
{
return ts_language_lookup(self, state, symbol) != 0;
}
t_lookahead_iterator ts_language_lookaheads(const t_language *self, t_state_id state)
{
bool is_small_state = state >= self->large_state_count;
const uint16_t *data;
const uint16_t *group_end = NULL;
uint16_t group_count = 0;
if (is_small_state)
{
uint32_t index = self->small_parse_table_map[state - self->large_state_count];
data = &self->small_parse_table[index];
group_end = data + 1;
group_count = *data;
}
else
{
data = &self->parse_table[state * self->symbol_count] - 1;
}
return (t_lookahead_iterator){
.language = self,
.data = data,
.group_end = group_end,
.group_count = group_count,
.is_small_state = is_small_state,
.symbol = UINT16_MAX,
.next_state = 0,
};
}
bool ts_lookahead_iterator__next(t_lookahead_iterator *self)
{
// For small parse states, valid symbols are listed explicitly,
// grouped by their value. There's no need to look up the actions
// again until moving to the next group.
if (self->is_small_state)
{
self->data++;
if (self->data == self->group_end)
{
if (self->group_count == 0)
return false;
self->group_count--;
self->table_value = *(self->data++);
unsigned symbol_count = *(self->data++);
self->group_end = self->data + symbol_count;
self->symbol = *self->data;
}
else
{
self->symbol = *self->data;
return true;
}
}
// For large parse states, iterate through every symbol until one
// is found that has valid actions.
else
{
do
{
self->data++;
self->symbol++;
if (self->symbol >= self->language->symbol_count)
return false;
self->table_value = *self->data;
} while (!self->table_value);
}
// Depending on if the symbols is terminal or non-terminal, the table value
// either represents a list of actions or a successor state.
if (self->symbol < self->language->token_count)
{
const t_parse_action_entry *entry = &self->language->parse_actions[self->table_value];
self->action_count = entry->entry.count;
self->actions = (const t_parse_action *)(entry + 1);
self->next_state = 0;
}
else
{
self->action_count = 0;
self->next_state = self->table_value;
}
return true;
}
bool ts_language_state_is_primary(const t_language *self, t_state_id state)
{
if (self->version >= LANGUAGE_VERSION_WITH_PRIMARY_STATES)
{
return state == self->primary_state_ids[state];
}
else
{
return true;
}
}
const bool *ts_language_enabled_external_tokens(const t_language *self, unsigned external_scanner_state)
{
if (external_scanner_state == 0)
{
return NULL;
}
else
{
return self->external_scanner.states + self->external_token_count * external_scanner_state;
}
}
const t_symbol *ts_language_alias_sequence(const t_language *self, uint32_t production_id)
{
return production_id ? &self->alias_sequences[production_id * self->max_alias_sequence_length] : NULL;
}
t_symbol ts_language_alias_at(const t_language *self, uint32_t production_id, uint32_t child_index)
{
return production_id ? self->alias_sequences[production_id * self->max_alias_sequence_length + child_index] : 0;
}
void ts_language_field_map(const t_language *self, uint32_t production_id, const t_field_map_entry **start, const t_field_map_entry **end)
{
if (self->field_count == 0)
{
*start = NULL;
*end = NULL;
return;
}
t_field_map_slice slice = self->field_map_slices[production_id];
*start = &self->field_map_entries[slice.index];
*end = &self->field_map_entries[slice.index] + slice.length;
}
void ts_language_aliases_for_symbol(const t_language *self, t_symbol original_symbol, const t_symbol **start, const t_symbol **end)
{
*start = &self->public_symbol_map[original_symbol];
*end = *start + 1;
unsigned idx = 0;
for (;;)
{
t_symbol symbol = self->alias_map[idx++];
if (symbol == 0 || symbol > original_symbol)
break;
uint16_t count = self->alias_map[idx++];
if (symbol == original_symbol)
{
*start = &self->alias_map[idx];
*end = &self->alias_map[idx + count];
break;
}
idx += count;
}
}
bool length_is_undefined(t_length length)
{
return length.bytes == 0 && length.extent.column != 0;
}
t_length length_min(t_length len1, t_length len2)
{
return (len1.bytes < len2.bytes) ? len1 : len2;
}
t_length length_add(t_length len1, t_length len2)
{
t_length result;
result.bytes = len1.bytes + len2.bytes;
result.extent = point_add(len1.extent, len2.extent);
return result;
}
t_length length_sub(t_length len1, t_length len2)
{
t_length result;
result.bytes = len1.bytes - len2.bytes;
result.extent = point_sub(len1.extent, len2.extent);
return result;
}
t_length length_zero(void)
{
t_length result = {0, {0, 0}};
return result;
}
t_length length_saturating_sub(t_length len1, t_length len2)
{
if (len1.bytes > len2.bytes)
{
return length_sub(len1, len2);
}
else
{
return length_zero();
}
}
bool set_contains(t_char_range *ranges, uint32_t len, int32_t lookahead)
{
uint32_t index = 0;
uint32_t size = len - index;
while (size > 1)
{
uint32_t half_size = size / 2;
uint32_t mid_index = index + half_size;
t_char_range *range = &ranges[mid_index];
if (lookahead >= range->start && lookahead <= range->end)
{
return true;
}
else if (lookahead > range->end)
{
index = mid_index;
}
size -= half_size;
}
t_char_range *range = &ranges[index];
return (lookahead >= range->start && lookahead <= range->end);
}
t_point point__new(unsigned row, unsigned column)
{
t_point result = {row, column};
return result;
}
t_point point_add(t_point a, t_point b)
{
if (b.row > 0)
return point__new(a.row + b.row, b.column);
else
return point__new(a.row, a.column + b.column);
}
t_point point_sub(t_point a, t_point b)
{
if (a.row > b.row)
return point__new(a.row - b.row, a.column);
else
return point__new(0, a.column - b.column);
}
bool point_lte(t_point a, t_point b)
{
return (a.row < b.row) || (a.row == b.row && a.column <= b.column);
}
bool point_lt(t_point a, t_point b)
{
return (a.row < b.row) || (a.row == b.row && a.column < b.column);
}
bool point_gt(t_point a, t_point b)
{
return (a.row > b.row) || (a.row == b.row && a.column > b.column);
}
bool point_gte(t_point a, t_point b)
{
return (a.row > b.row) || (a.row == b.row && a.column >= b.column);
}
bool point_eq(t_point a, t_point b)
{
return a.row == b.row && a.column == b.column;
}
t_point point_min(t_point a, t_point b)
{
if (a.row < b.row || (a.row == b.row && a.column < b.column))
return a;
else
return b;
}
t_point point_max(t_point a, t_point b)
{
if (a.row > b.row || (a.row == b.row && a.column > b.column))
return a;
else
return b;
}
void ts_reduce_action_set_add(t_reduce_action_set *self, t_reduce_action new_action)
{
for (uint32_t i = 0; i < self->size; i++)
{
t_reduce_action action = self->contents[i];
if (action.symbol == new_action.symbol && action.count == new_action.count)
return;
}
array_push(self, new_action);
}
t_reusable_node reusable_node_new(void)
{
return (t_reusable_node){array_new(), NULL_SUBTREE};
}
void reusable_node_clear(t_reusable_node *self)
{
array_clear(&self->stack);
self->last_external_token = NULL_SUBTREE;
}
t_subtree reusable_node_tree(t_reusable_node *self)
{
return self->stack.size > 0 ? self->stack.contents[self->stack.size - 1].tree : NULL_SUBTREE;
}
uint32_t reusable_node_byte_offset(t_reusable_node *self)
{
return self->stack.size > 0 ? self->stack.contents[self->stack.size - 1].byte_offset : UINT32_MAX;
}
void reusable_node_delete(t_reusable_node *self)
{
array_delete(&self->stack);
}
void reusable_node_advance(t_reusable_node *self)
{
t_stack_entry last_entry = *array_back(&self->stack);
uint32_t byte_offset = last_entry.byte_offset + ts_subtree_total_bytes(last_entry.tree);
if (ts_subtree_has_external_tokens(last_entry.tree))
{
self->last_external_token = ts_subtree_last_external_token(last_entry.tree);
}
t_subtree tree;
uint32_t next_index;
do
{
t_stack_entry popped_entry = array_pop(&self->stack);
next_index = popped_entry.child_index + 1;
if (self->stack.size == 0)
return;
tree = array_back(&self->stack)->tree;
} while (ts_subtree_child_count(tree) <= next_index);
array_push(&self->stack, ((t_stack_entry){
.tree = ts_subtree_children(tree)[next_index],
.child_index = next_index,
.byte_offset = byte_offset,
}));
}
bool reusable_node_descend(t_reusable_node *self)
{
t_stack_entry last_entry = *array_back(&self->stack);
if (ts_subtree_child_count(last_entry.tree) > 0)
{
array_push(&self->stack, ((t_stack_entry){
.tree = ts_subtree_children(last_entry.tree)[0],
.child_index = 0,
.byte_offset = last_entry.byte_offset,
}));
return true;
}
else
{
return false;
}
}
void reusable_node_advance_past_leaf(t_reusable_node *self)
{
while (reusable_node_descend(self))
{
}
reusable_node_advance(self);
}
void reusable_node_reset(t_reusable_node *self, t_subtree tree)
{
reusable_node_clear(self);
array_push(&self->stack, ((t_stack_entry){
.tree = tree,
.child_index = 0,
.byte_offset = 0,
}));
// Never reuse the root node, because it has a non-standard internal
// structure due to transformations that are applied when it is accepted:
// adding the EOF child and any extra children.
if (!reusable_node_descend(self))
{
reusable_node_clear(self);
}
}
#define SUBTREE_GET(self, name) ((self).data.is_inline ? (self).data.name : (self).ptr->name)
t_symbol ts_subtree_symbol(t_subtree self)
{
return SUBTREE_GET(self, symbol);
}
bool ts_subtree_visible(t_subtree self)
{
return SUBTREE_GET(self, visible);
}
bool ts_subtree_named(t_subtree self)
{
return SUBTREE_GET(self, named);
}
bool ts_subtree_extra(t_subtree self)
{
return SUBTREE_GET(self, extra);
}
bool ts_subtree_has_changes(t_subtree self)
{
return SUBTREE_GET(self, has_changes);
}
bool ts_subtree_missing(t_subtree self)
{
return SUBTREE_GET(self, is_missing);
}
bool ts_subtree_is_keyword(t_subtree self)
{
return SUBTREE_GET(self, is_keyword);
}
t_state_id ts_subtree_parse_state(t_subtree self)
{
return SUBTREE_GET(self, parse_state);
}
uint32_t ts_subtree_lookahead_bytes(t_subtree self)
{
return SUBTREE_GET(self, lookahead_bytes);
}
size_t ts_subtree_alloc_size(uint32_t child_count)
{
return child_count * sizeof(t_subtree) + sizeof(t_subtree_heap_data);
}
void ts_subtree_set_extra(t_mutable_subtree *self, bool is_extra)
{
if (self->data.is_inline)
{
self->data.extra = is_extra;
}
else
{
self->ptr->extra = is_extra;
}
}
t_symbol ts_subtree_leaf_symbol(t_subtree self)
{
if (self.data.is_inline)
return self.data.symbol;
if (self.ptr->child_count == 0)
return self.ptr->symbol;
return self.ptr->first_leaf.symbol;
}
t_state_id ts_subtree_leaf_parse_state(t_subtree self)
{
if (self.data.is_inline)
return self.data.parse_state;
if (self.ptr->child_count == 0)
return self.ptr->parse_state;
return self.ptr->first_leaf.parse_state;
}
t_length ts_subtree_padding(t_subtree self)
{
if (self.data.is_inline)
{
t_length result = {self.data.padding_bytes, {self.data.padding_rows, self.data.padding_columns}};
return result;
}
else
{
return self.ptr->padding;
}
}
t_length ts_subtree_size(t_subtree self)
{
if (self.data.is_inline)
{
t_length result = {self.data.size_bytes, {0, self.data.size_bytes}};
return result;
}
else
{
return self.ptr->size;
}
}
t_length ts_subtree_total_size(t_subtree self)
{
return length_add(ts_subtree_padding(self), ts_subtree_size(self));
}
uint32_t ts_subtree_total_bytes(t_subtree self)
{
return ts_subtree_total_size(self).bytes;
}
uint32_t ts_subtree_child_count(t_subtree self)
{
return self.data.is_inline ? 0 : self.ptr->child_count;
}
uint32_t ts_subtree_repeat_depth(t_subtree self)
{
return self.data.is_inline ? 0 : self.ptr->repeat_depth;
}
uint32_t ts_subtree_is_repetition(t_subtree self)
{
return self.data.is_inline ? 0 : !self.ptr->named && !self.ptr->visible && self.ptr->child_count != 0;
}
uint32_t ts_subtree_visible_descendant_count(t_subtree self)
{
return (self.data.is_inline || self.ptr->child_count == 0) ? 0 : self.ptr->visible_descendant_count;
}
uint32_t ts_subtree_visible_child_count(t_subtree self)
{
if (ts_subtree_child_count(self) > 0)
{
return self.ptr->visible_child_count;
}
else
{
return 0;
}
}
uint32_t ts_subtree_error_cost(t_subtree self)
{
if (ts_subtree_missing(self))
{
return ERROR_COST_PER_MISSING_TREE + ERROR_COST_PER_RECOVERY;
}
else
{
return self.data.is_inline ? 0 : self.ptr->error_cost;
}
}
int32_t ts_subtree_dynamic_precedence(t_subtree self)
{
return (self.data.is_inline || self.ptr->child_count == 0) ? 0 : self.ptr->dynamic_precedence;
}
uint16_t ts_subtree_production_id(t_subtree self)
{
if (ts_subtree_child_count(self) > 0)
{
return self.ptr->production_id;
}
else
{
return 0;
}
}
bool ts_subtree_fragile_left(t_subtree self)
{
return self.data.is_inline ? false : self.ptr->fragile_left;
}
bool ts_subtree_fragile_right(t_subtree self)
{
return self.data.is_inline ? false : self.ptr->fragile_right;
}
bool ts_subtree_has_external_tokens(t_subtree self)
{
return self.data.is_inline ? false : self.ptr->has_external_tokens;
}
bool ts_subtree_has_external_scanner_state_change(t_subtree self)
{
return self.data.is_inline ? false : self.ptr->has_external_scanner_state_change;
}
bool ts_subtree_depends_on_column(t_subtree self)
{
return self.data.is_inline ? false : self.ptr->depends_on_column;
}
bool ts_subtree_is_fragile(t_subtree self)
{
return self.data.is_inline ? false : (self.ptr->fragile_left || self.ptr->fragile_right);
}
bool ts_subtree_is_error(t_subtree self)
{
return ts_subtree_symbol(self) == ts_builtin_sym_error;
}
bool ts_subtree_is_eof(t_subtree self)
{
return ts_subtree_symbol(self) == ts_builtin_sym_end;
}
t_subtree ts_subtree_from_mut(t_mutable_subtree self)
{
t_subtree result;
result.data = self.data;
return result;
}
t_mutable_subtree ts_subtree_to_mut_unsafe(t_subtree self)
{
t_mutable_subtree result;
result.data = self.data;
return result;
}
t_subtree ts_tree_cursor_current_subtree(const t_tree_cursor *_self)
{
const t_tree_cursor *self = (const t_tree_cursor *)_self;
t_tree_cursor_entry *last_entry = array_back(&self->stack);
return *last_entry->subtree;
}

View file

@ -1,173 +0,0 @@
#ifndef FUNCS_H
#define FUNCS_H
#include "./api_structs.h"
bool length_is_undefined(t_length length);
bool point_eq(t_point a, t_point b);
bool point_gt(t_point a, t_point b);
bool point_gte(t_point a, t_point b);
bool point_lt(t_point a, t_point b);
bool point_lte(t_point a, t_point b);
bool reusable_node_descend(t_reusable_node *self);
bool set_contains(t_char_range *ranges, uint32_t len, int32_t lookahead);
bool ts_external_scanner_state_eq(const t_external_scanner_state *self, const char *, uint32_t);
bool ts_language_has_actions(const t_language *self, t_state_id state, t_symbol symbol);
bool ts_language_has_reduce_action(const t_language *self, t_state_id state, t_symbol symbol);
bool ts_language_is_symbol_external(const t_language *self, t_symbol symbol);
bool ts_language_state_is_primary(const t_language *self, t_state_id state);
bool ts_lexer_set_included_ranges(t_lexer *self, const t_parse_range *ranges, uint32_t count);
bool ts_lookahead_iterator__next(t_lookahead_iterator *self);
bool ts_range_array_intersects(const t_range_array *self, uint32_t start_index, uint32_t start_byte, uint32_t end_byte);
bool ts_stack_can_merge(t_stack *, t_stack_version, t_stack_version);
bool ts_stack_has_advanced_since_error(const t_stack *, t_stack_version);
bool ts_stack_is_active(const t_stack *, t_stack_version);
bool ts_stack_is_halted(const t_stack *, t_stack_version);
bool ts_stack_is_paused(const t_stack *, t_stack_version);
bool ts_stack_merge(t_stack *, t_stack_version, t_stack_version);
bool ts_subtree_depends_on_column(t_subtree self);
bool ts_subtree_external_scanner_state_eq(t_subtree, t_subtree);
bool ts_subtree_extra(t_subtree self);
bool ts_subtree_fragile_left(t_subtree self);
bool ts_subtree_fragile_right(t_subtree self);
bool ts_subtree_has_changes(t_subtree self);
bool ts_subtree_has_external_scanner_state_change(t_subtree self);
bool ts_subtree_has_external_tokens(t_subtree self);
bool ts_subtree_has_external_tokens(t_subtree self);
bool ts_subtree_is_eof(t_subtree self);
bool ts_subtree_is_error(t_subtree self);
bool ts_subtree_is_fragile(t_subtree self);
bool ts_subtree_is_keyword(t_subtree self);
bool ts_subtree_missing(t_subtree self);
bool ts_subtree_named(t_subtree self);
bool ts_subtree_visible(t_subtree self);
char *ts_subtree_string(t_subtree, t_symbol, bool, const t_language *, bool include_all);
const bool *ts_language_enabled_external_tokens(const t_language *self, uint32_t external_scanner_state);
const char *ts_external_scanner_state_data(const t_external_scanner_state *);
const t_external_scanner_state *ts_subtree_external_scanner_state(t_subtree self);
const t_parse_action *ts_language_actions(const t_language *self, t_state_id state, t_symbol symbol, uint32_t *count);
const t_symbol *ts_language_alias_sequence(const t_language *self, uint32_t production_id);
int ts_stack_dynamic_precedence(t_stack *, t_stack_version);
int ts_subtree_compare(t_subtree, t_subtree, t_subtree_pool *);
int32_t ts_subtree_dynamic_precedence(t_subtree self);
size_t atomic_load(const volatile size_t *p);
size_t ts_subtree_alloc_size(uint32_t child_count);
t_first_tree *ts_tree_new(t_subtree root, const t_language *language, const t_parse_range *, uint32_t);
t_length length_add(t_length len1, t_length len2);
t_length length_min(t_length len1, t_length len2);
t_length length_saturating_sub(t_length len1, t_length len2);
t_length length_sub(t_length len1, t_length len2);
t_length length_zero(void);
t_length ts_stack_position(const t_stack *, t_stack_version);
t_length ts_subtree_padding(t_subtree self);
t_length ts_subtree_size(t_subtree self);
t_length ts_subtree_total_size(t_subtree self);
t_lookahead_iterator ts_language_lookaheads(const t_language *self, t_state_id state);
t_mutable_subtree ts_subtree_make_mut(t_subtree_pool *, t_subtree);
t_mutable_subtree ts_subtree_new_node(t_symbol, t_subtree_array *, uint32_t, const t_language *);
t_mutable_subtree ts_subtree_to_mut_unsafe(t_subtree self);
t_parse_node ts_node_new(const t_first_tree *, const t_subtree *, t_length, t_symbol);
t_parse_node ts_tree_cursor_parent_node(const t_tree_cursor *);
t_parse_range *ts_lexer_included_ranges(const t_lexer *self, uint32_t *count);
t_point point__new(uint32_t row, uint32_t column);
t_point point_add(t_point a, t_point b);
t_point point_max(t_point a, t_point b);
t_point point_min(t_point a, t_point b);
t_point point_sub(t_point a, t_point b);
t_reusable_node reusable_node_new(void);
t_stack *ts_stack_new(t_subtree_pool *);
t_stack_slice_array ts_stack_pop_all(t_stack *, t_stack_version);
t_stack_slice_array ts_stack_pop_count(t_stack *, t_stack_version, uint32_t count);
t_stack_slice_array ts_stack_pop_pending(t_stack *, t_stack_version);
t_stack_summary *ts_stack_get_summary(t_stack *, t_stack_version);
t_stack_version ts_stack_copy_version(t_stack *, t_stack_version);
t_state_id ts_language_next_state(const t_language *self, t_state_id state, t_symbol symbol);
t_state_id ts_stack_state(const t_stack *, t_stack_version);
t_state_id ts_subtree_leaf_parse_state(t_subtree self);
t_state_id ts_subtree_parse_state(t_subtree self);
t_subtree reusable_node_tree(t_reusable_node *self);
t_subtree ts_stack_last_external_token(const t_stack *, t_stack_version);
t_subtree ts_stack_resume(t_stack *, t_stack_version);
t_subtree ts_subtree_edit(t_subtree, const t_input_edit *edit, t_subtree_pool *);
t_subtree ts_subtree_from_mut(t_mutable_subtree self);
t_subtree ts_subtree_last_external_token(t_subtree);
t_subtree ts_subtree_new_error(t_subtree_pool *, int32_t, t_length, t_length, uint32_t, t_state_id, const t_language *);
t_subtree ts_subtree_new_error_node(t_subtree_array *, bool, const t_language *);
t_subtree ts_subtree_new_leaf(t_subtree_pool *, t_symbol, t_length, t_length, uint32_t, t_state_id, bool, bool, bool, const t_language *);
t_subtree ts_subtree_new_missing_leaf(t_subtree_pool *, t_symbol, t_length, uint32_t, const t_language *);
t_subtree ts_tree_cursor_current_subtree(const t_tree_cursor *_self);
t_subtree_array ts_stack_pop_error(t_stack *, t_stack_version);
t_subtree_pool ts_subtree_pool_new(uint32_t capacity);
t_symbol ts_language_alias_at(const t_language *self, uint32_t production_id, uint32_t child_index);
t_symbol ts_language_public_symbol(const t_language *, t_symbol);
t_symbol ts_subtree_leaf_symbol(t_subtree self);
t_symbol ts_subtree_symbol(t_subtree self);
t_symbol_metadata ts_language_symbol_metadata(const t_language *, t_symbol);
t_tree_cursor_step ts_tree_cursor_goto_first_child_internal(t_tree_cursor *);
t_tree_cursor_step ts_tree_cursor_goto_next_sibling_internal(t_tree_cursor *);
uint16_t ts_language_lookup(const t_language *self, t_state_id state, t_symbol symbol);
uint16_t ts_subtree_production_id(t_subtree self);
uint32_t atomic_dec(volatile uint32_t *p);
uint32_t atomic_inc(volatile uint32_t *p);
uint32_t reusable_node_byte_offset(t_reusable_node *self);
uint32_t ts_stack_version_count(const t_stack *);
uint32_t ts_subtree_child_count(t_subtree self);
uint32_t ts_subtree_child_count(t_subtree self);
uint32_t ts_subtree_error_cost(t_subtree self);
uint32_t ts_subtree_is_repetition(t_subtree self);
uint32_t ts_subtree_lookahead_bytes(t_subtree self);
uint32_t ts_subtree_repeat_depth(t_subtree self);
uint32_t ts_subtree_total_bytes(t_subtree self);
uint32_t ts_subtree_total_bytes(t_subtree self);
uint32_t ts_subtree_visible_child_count(t_subtree self);
uint32_t ts_subtree_visible_descendant_count(t_subtree self);
uint32_t ts_stack_error_cost(const t_stack *, t_stack_version version);
uint32_t ts_stack_node_count_since_error(const t_stack *, t_stack_version);
uint32_t ts_subtree_get_changed_ranges(const t_subtree *old_tree, const t_subtree *new_tree, t_tree_cursor *cursor1, t_tree_cursor *cursor2, const t_language *language, const t_range_array *included_range_differences, t_parse_range **ranges);
void reusable_node_advance(t_reusable_node *self);
void reusable_node_advance_past_leaf(t_reusable_node *self);
void reusable_node_clear(t_reusable_node *self);
void reusable_node_delete(t_reusable_node *self);
void reusable_node_reset(t_reusable_node *self, t_subtree tree);
void ts_external_scanner_state_delete(t_external_scanner_state *self);
void ts_external_scanner_state_init(t_external_scanner_state *, const char *, uint32_t);
void ts_language_aliases_for_symbol(const t_language *self, t_symbol original_symbol, const t_symbol **start, const t_symbol **end);
void ts_language_field_map(const t_language *self, uint32_t production_id, const t_field_map_entry **start, const t_field_map_entry **end);
void ts_language_table_entry(const t_language *, t_state_id, t_symbol, t_table_entry *);
void ts_lexer_advance_to_end(t_lexer *lexer);
void ts_lexer_delete(t_lexer *lexer);
void ts_lexer_finish(t_lexer *lexer, uint32_t *);
void ts_lexer_init(t_lexer *lexer);
void ts_lexer_mark_end(t_lexer *lexer);
void ts_lexer_reset(t_lexer *lexer, t_length);
void ts_lexer_set_input(t_lexer *lexer, t_parse_input);
void ts_lexer_start(t_lexer *lexer);
void ts_range_array_get_changed_ranges(const t_parse_range *old_ranges, uint32_t old_range_count, const t_parse_range *new_ranges, uint32_t new_range_count, t_range_array *differences);
void ts_reduce_action_set_add(t_reduce_action_set *self, t_reduce_action new_action);
void ts_stack_clear(t_stack *);
void ts_stack_delete(t_stack *);
void ts_stack_halt(t_stack *, t_stack_version);
void ts_stack_pause(t_stack *, t_stack_version, t_subtree);
void ts_stack_push(t_stack *, t_stack_version, t_subtree, bool, t_state_id);
void ts_stack_record_summary(t_stack *, t_stack_version, uint32_t max_depth);
void ts_stack_remove_version(t_stack *, t_stack_version);
void ts_stack_renumber_version(t_stack *, t_stack_version, t_stack_version);
void ts_stack_set_last_external_token(t_stack *, t_stack_version, t_subtree);
void ts_stack_swap_versions(t_stack *, t_stack_version, t_stack_version);
void ts_subtree_array_clear(t_subtree_pool *, t_subtree_array *);
void ts_subtree_array_copy(t_subtree_array, t_subtree_array *);
void ts_subtree_array_delete(t_subtree_pool *, t_subtree_array *);
void ts_subtree_array_remove_trailing_extras(t_subtree_array *, t_subtree_array *);
void ts_subtree_array_reverse(t_subtree_array *);
void ts_subtree_balance(t_subtree, t_subtree_pool *, const t_language *);
void ts_subtree_pool_delete(t_subtree_pool *);
void ts_subtree_release(t_subtree_pool *, t_subtree);
void ts_subtree_retain(t_subtree);
void ts_subtree_set_extra(t_mutable_subtree *self, bool is_extra);
void ts_subtree_set_symbol(t_mutable_subtree *, t_symbol, const t_language *);
void ts_subtree_summarize(t_mutable_subtree, const t_subtree *, uint32_t, const t_language *);
void ts_subtree_summarize_children(t_mutable_subtree, const t_language *);
void ts_tree_cursor_current_status(const t_tree_cursor *, t_field_id *, bool *, bool *, bool *, t_symbol *, uint32_t *);
void ts_tree_cursor_init(t_tree_cursor *, t_parse_node);
#endif // FUNCS_H

File diff suppressed because it is too large Load diff

View file

@ -1,543 +0,0 @@
#ifndef STRUCTS_H
#define STRUCTS_H
#include "./api.h"
typedef unsigned t_stack_action;
typedef struct s_analysis_state t_analysis_state;
typedef struct s_analysis_state_entry t_analysis_state_entry;
typedef struct s_analysis_subgraph t_analysis_subgraph;
typedef struct s_analysis_subgraph_node t_analysis_subgraph_node;
typedef struct s_capture_list_pool t_capture_list_pool;
typedef struct s_cursor_child_iterator t_cursor_child_iterator;
typedef struct s_edit t_edit;
typedef struct s_edit_entry t_edit_entry;
typedef struct s_error_status t_error_status;
typedef struct s_first_parser t_first_parser;
typedef struct s_iterator t_iterator;
typedef struct s_node_child_iterator t_node_child_iterator;
typedef struct s_parse_query t_parse_query;
typedef struct s_pattern_entry t_pattern_entry;
typedef struct s_query_analysis t_query_analysis;
typedef struct s_query_cursor t_query_cursor;
typedef struct s_query_pattern t_query_pattern;
typedef struct s_query_state t_query_state;
typedef struct s_query_step t_query_step;
typedef struct s_slice t_slice;
typedef struct s_stack t_stack;
typedef struct s_stack_head t_stack_head;
typedef struct s_stack_iterator t_stack_iterator;
typedef struct s_stack_link t_stack_link;
typedef struct s_stack_node t_stack_node;
typedef struct s_state_predecessor_map t_state_predecessor_map;
typedef struct s_step_offset t_step_offset;
typedef struct s_stream t_stream;
typedef struct s_string_input t_string_input;
typedef struct s_summarize_stack_session t_summarize_stack_session;
typedef struct s_symbol_table t_symbol_table;
typedef struct s_token_cache t_token_cache;
typedef t_stack_action (*t_stack_callback)(void *, const t_stack_iterator *);
typedef uint32_t (*t_unicode_decode_function)(const uint8_t *chunk,
uint32_t size,
int32_t *codepoint);
typedef Array(t_analysis_state *) t_analysis_state_set;
typedef Array(t_analysis_subgraph) t_analysis_subgraph_array;
typedef Array(t_query_capture) t_capture_list;
typedef Array(t_stack_node *) t_stack_node_array;
typedef Array(uint8_t) t_capture_quantifiers;
typedef enum e_stack_status t_stack_status;
typedef enum e_error_comparaison t_error_comparaison;
typedef enum e_iterator_comparison t_iterator_comparison;
struct s_iterator
{
t_tree_cursor cursor;
const t_language *language;
unsigned visible_depth;
bool in_padding;
};
enum e_iterator_comparison
{
IteratorDiffers,
IteratorMayDiffer,
IteratorMatches,
};
struct s_node_child_iterator
{
t_subtree parent;
const t_first_tree *tree;
t_length position;
uint32_t child_index;
uint32_t structural_child_index;
const t_symbol *alias_sequence;
};
struct s_token_cache
{
t_subtree token;
t_subtree last_external_token;
uint32_t byte_index;
};
struct s_first_parser
{
t_lexer lexer;
t_stack *stack;
t_subtree_pool tree_pool;
const t_language *language;
t_reduce_action_set reduce_actions;
t_subtree finished_tree;
t_subtree_array trailing_extras;
t_subtree_array trailing_extras2;
t_subtree_array scratch_trees;
t_token_cache token_cache;
t_reusable_node reusable_node;
void *external_scanner_payload;
t_parser_clock end_clock;
t_parser_duration timeout_duration;
unsigned accept_count;
unsigned operation_count;
const volatile size_t *cancellation_flag;
t_subtree old_tree;
t_range_array included_range_differences;
unsigned included_range_difference_index;
bool has_scanner_error;
};
struct s_error_status
{
unsigned cost;
unsigned node_count;
int dynamic_precedence;
bool is_in_error;
};
enum e_error_comparaison
{
ErrorComparisonTakeLeft,
ErrorComparisonPreferLeft,
ErrorComparisonNone,
ErrorComparisonPreferRight,
ErrorComparisonTakeRight,
};
struct s_string_input
{
const char *string;
uint32_t length;
};
/*
* t_stream - A sequence of unicode characters derived from a UTF8 string.
* This struct is used in parsing queries from S-expressions.
*/
struct s_stream
{
const char *input;
const char *start;
const char *end;
int32_t next;
uint8_t next_size;
};
/*
* t_query_step - A step in the process of matching a query. Each node within
* a query S-expression corresponds to one of these steps. An entire pattern
* is represented as a sequence of these steps. The basic properties of a
* node are represented by these fields:
* - `symbol` - The grammar symbol to match. A zero value represents the
* wildcard symbol, '_'.
* - `field` - The field name to match. A zero value means that a field name
* was not specified.
* - `capture_ids` - An array of integers representing the names of captures
* associated with this node in the pattern, terminated by a `NONE` value.
* - `depth` - The depth where this node occurs in the pattern. The root node
* of the pattern has depth zero.
* - `negated_field_list_id` - An id representing a set of fields that must
* not be present on a node matching this step.
*
* Steps have some additional fields in order to handle the `.` (or "anchor")
* operator, which forbids additional child nodes:
* - `is_immediate` - Indicates that the node matching this step cannot be
* preceded by other sibling nodes that weren't specified in the pattern.
* - `is_last_child` - Indicates that the node matching this step cannot have
* any subsequent named siblings.
*
* For simple patterns, steps are matched in sequential order. But in order to
* handle alternative/repeated/optional sub-patterns, query steps are not always
* structured as a linear sequence; they sometimes need to split and merge. This
* is done using the following fields:
* - `alternative_index` - The index of a different query step that serves as
* an alternative to this step. A `NONE` value represents no alternative.
* When a query state reaches a step with an alternative index, the state
* is duplicated, with one copy remaining at the original step, and one copy
* moving to the alternative step. The alternative may have its own
* alternative step, so this splitting is an iterative process.
* - `is_dead_end` - Indicates that this state cannot be passed directly, and
* exists only in order to redirect to an alternative index, with no
* splitting.
* - `is_pass_through` - Indicates that state has no matching logic of its own,
* and exists only to split a state. One copy of the state advances
* immediately to the next step, and one moves to the alternative step.
* - `alternative_is_immediate` - Indicates that this step's alternative step
* should be treated as if `is_immediate` is true.
*
* Steps also store some derived state that summarizes how they relate to other
* steps within the same pattern. This is used to optimize the matching process:
* - `contains_captures` - Indicates that this step or one of its child steps
* has a non-empty `capture_ids` list.
* - `parent_pattern_guaranteed` - Indicates that if this step is reached, then
* it and all of its subsequent sibling steps within the same parent pattern
* are guaranteed to match.
* - `root_pattern_guaranteed` - Similar to `parent_pattern_guaranteed`, but
* for the entire top-level pattern. When iterating through a query's
* captures using `ts_query_cursor_next_capture`, this field is used to
* detect that a capture can safely be returned from a match that has not
* even completed yet.
*/
struct s_query_step
{
t_symbol symbol;
t_symbol supertype_symbol;
t_field_id field;
uint16_t capture_ids[MAX_STEP_CAPTURE_COUNT];
uint16_t depth;
uint16_t alternative_index;
uint16_t negated_field_list_id;
bool is_named : 1;
bool is_immediate : 1;
bool is_last_child : 1;
bool is_pass_through : 1;
bool is_dead_end : 1;
bool alternative_is_immediate : 1;
bool contains_captures : 1;
bool root_pattern_guaranteed : 1;
bool parent_pattern_guaranteed : 1;
};
/*
* t_slice - A slice of an external array. Within a query, capture names,
* literal string values, and predicate step information are stored in three
* contiguous arrays. Individual captures, string values, and predicates are
* represented as slices of these three arrays.
*/
struct s_slice
{
uint32_t offset;
uint32_t length;
};
/*
* t_symbol_table - a two-way mapping of strings to ids.
*/
struct s_symbol_table
{
Array(char) characters;
Array(t_slice) slices;
};
/**
* CaptureQuantififers - a data structure holding the quantifiers of pattern
* captures.
*/
/*
* t_pattern_entry - Information about the starting point for matching a
* particular pattern. These entries are stored in a 'pattern map' - a sorted
* array that makes it possible to efficiently lookup patterns based on the
* symbol for their first step. The entry consists of the following fields:
* - `pattern_index` - the index of the pattern within the query
* - `step_index` - the index of the pattern's first step in the shared `steps`
* array
* - `is_rooted` - whether or not the pattern has a single root node. This
* property affects decisions about whether or not to start the pattern for
* nodes outside of a QueryCursor's range restriction.
*/
struct s_pattern_entry
{
uint16_t step_index;
uint16_t pattern_index;
bool is_rooted;
};
struct s_query_pattern
{
t_slice steps;
t_slice predicate_steps;
uint32_t start_byte;
bool is_non_local;
};
struct s_step_offset
{
uint32_t byte_offset;
uint16_t step_index;
};
/*
* t_query_state - The state of an in-progress match of a particular pattern
* in a query. While executing, a `t_query_cursor` must keep track of a number
* of possible in-progress matches. Each of those possible matches is
* represented as one of these states. Fields:
* - `id` - A numeric id that is exposed to the public API. This allows the
* caller to remove a given match, preventing any more of its captures
* from being returned.
* - `start_depth` - The depth in the tree where the first step of the state's
* pattern was matched.
* - `pattern_index` - The pattern that the state is matching.
* - `consumed_capture_count` - The number of captures from this match that
* have already been returned.
* - `capture_list_id` - A numeric id that can be used to retrieve the state's
* list of captures from the `t_capture_list_pool`.
* - `seeking_immediate_match` - A flag that indicates that the state's next
* step must be matched by the very next sibling. This is used when
* processing repetitions.
* - `has_in_progress_alternatives` - A flag that indicates that there is are
* other states that have the same captures as this state, but are at
* different steps in their pattern. This means that in order to obey the
* 'longest-match' rule, this state should not be returned as a match until
* it is clear that there can be no other alternative match with more
* captures.
*/
struct s_query_state
{
uint32_t id;
uint32_t capture_list_id;
uint16_t start_depth;
uint16_t step_index;
uint16_t pattern_index;
uint16_t consumed_capture_count : 12;
bool seeking_immediate_match : 1;
bool has_in_progress_alternatives : 1;
bool dead : 1;
bool needs_parent : 1;
};
/*
* t_capture_list_pool - A collection of *lists* of captures. Each query state
* needs to maintain its own list of captures. To avoid repeated allocations,
* this struct maintains a fixed set of capture lists, and keeps track of which
* ones are currently in use by a query state.
*/
struct s_capture_list_pool
{
Array(t_capture_list) list;
t_capture_list empty_list;
// The maximum number of capture lists that we are allowed to allocate. We
// never allow `list` to allocate more entries than this, dropping pending
// matches if needed to stay under the limit.
uint32_t max_capture_list_count;
// The number of capture lists allocated in `list` that are not currently in
// use. We reuse those existing-but-unused capture lists before trying to
// allocate any new ones. We use an invalid value (UINT32_MAX) for a capture
// list's length to indicate that it's not in use.
uint32_t free_capture_list_count;
};
/*
* t_analysis_state - The state needed for walking the parse table when
* analyzing a query pattern, to determine at which steps the pattern might fail
* to match.
*/
struct s_analysis_state_entry
{
t_state_id parse_state;
t_symbol parent_symbol;
uint16_t child_index;
t_field_id field_id : 15;
bool done : 1;
};
struct s_analysis_state
{
t_analysis_state_entry stack[MAX_ANALYSIS_STATE_DEPTH];
uint16_t depth;
uint16_t step_index;
t_symbol root_symbol;
};
struct s_query_analysis
{
t_analysis_state_set states;
t_analysis_state_set next_states;
t_analysis_state_set deeper_states;
t_analysis_state_set state_pool;
Array(uint16_t) final_step_indices;
Array(t_symbol) finished_parent_symbols;
bool did_abort;
};
/*
* t_analysis_subgraph - A subset of the states in the parse table that are used
* in constructing nodes with a certain symbol. Each state is accompanied by
* some information about the possible node that could be produced in
* downstream states.
*/
struct s_analysis_subgraph_node
{
t_state_id state;
uint16_t production_id;
uint8_t child_index : 7;
bool done : 1;
};
struct s_analysis_subgraph
{
t_symbol symbol;
Array(t_state_id) start_states;
Array(t_analysis_subgraph_node) nodes;
};
/*
* t_state_predecessor_map - A map that stores the predecessors of each parse
* state. This is used during query analysis to determine which parse states can
* lead to which reduce actions.
*/
struct s_state_predecessor_map
{
t_state_id *contents;
};
/*
* t_parse_query - A tree query, compiled from a string of S-expressions. The
* query itself is immutable. The mutable state used in the process of executing
* the query is stored in a `t_query_cursor`.
*/
struct s_parse_query
{
t_symbol_table captures;
t_symbol_table predicate_values;
Array(t_capture_quantifiers) capture_quantifiers;
Array(t_query_step) steps;
Array(t_pattern_entry) pattern_map;
Array(t_query_predicate_step) predicate_steps;
Array(t_query_pattern) patterns;
Array(t_step_offset) step_offsets;
Array(t_field_id) negated_fields;
Array(char) string_buffer;
Array(t_symbol) repeat_symbols_with_rootless_patterns;
const t_language *language;
uint16_t wildcard_root_pattern_count;
};
/*
* t_query_cursor - A stateful struct used to execute a query on a tree.
*/
struct s_query_cursor
{
const t_parse_query *query;
t_tree_cursor cursor;
Array(t_query_state) states;
Array(t_query_state) finished_states;
t_capture_list_pool capture_list_pool;
uint32_t depth;
uint32_t max_start_depth;
uint32_t start_byte;
uint32_t end_byte;
t_point start_point;
t_point end_point;
uint32_t next_state_id;
bool on_visible_node;
bool ascending;
bool halted;
bool did_exceed_match_limit;
};
struct s_stack_link
{
t_stack_node *node;
t_subtree subtree;
bool is_pending;
};
struct s_stack_node
{
t_state_id state;
t_length position;
t_stack_link links[MAX_LINK_COUNT];
short unsigned int link_count;
uint32_t ref_count;
unsigned error_cost;
unsigned node_count;
int dynamic_precedence;
};
struct s_stack_iterator
{
t_stack_node *node;
t_subtree_array subtrees;
uint32_t subtree_count;
bool is_pending;
};
enum e_stack_status
{
StackStatusActive,
StackStatusPaused,
StackStatusHalted,
};
struct s_stack_head
{
t_stack_node *node;
t_stack_summary *summary;
unsigned node_count_at_last_error;
t_subtree last_external_token;
t_subtree lookahead_when_paused;
t_stack_status status;
};
struct s_stack
{
Array(t_stack_head) heads;
t_stack_slice_array slices;
Array(t_stack_iterator) iterators;
t_stack_node_array node_pool;
t_stack_node *base_node;
t_subtree_pool *subtree_pool;
};
enum e_stack_action
{
StackActionNone,
StackActionStop = 1,
StackActionPop = 2,
};
struct s_summarize_stack_session
{
t_stack_summary *summary;
unsigned max_depth;
};
struct s_edit
{
t_length start;
t_length old_end;
t_length new_end;
};
struct s_edit_entry
{
t_subtree *tree;
t_edit edit;
};
struct s_cursor_child_iterator
{
t_subtree parent;
const t_first_tree *tree;
t_length position;
uint32_t child_index;
uint32_t structural_child_index;
uint32_t descendant_index;
const t_symbol *alias_sequence;
};
#endif // STRUCTS_H