working parser tm

This commit is contained in:
Maieul BOYER 2024-06-30 18:32:35 +02:00
parent 8d192a0abc
commit 2d88b6af25
No known key found for this signature in database
51 changed files with 33 additions and 31734 deletions

View file

@ -6,7 +6,7 @@
# By: maiboyer <maiboyer@student.42.fr> +#+ +:+ +#+ # # By: maiboyer <maiboyer@student.42.fr> +#+ +:+ +#+ #
# +#+#+#+#+#+ +#+ # # +#+#+#+#+#+ +#+ #
# Created: 2023/11/03 13:20:01 by maiboyer #+# #+# # # Created: 2023/11/03 13:20:01 by maiboyer #+# #+# #
# Updated: 2024/06/30 17:56:39 by maiboyer ### ########.fr # # Updated: 2024/06/30 18:15:08 by maiboyer ### ########.fr #
# # # #
# **************************************************************************** # # **************************************************************************** #
@ -27,7 +27,7 @@ CFLAGS = -Wall -Wextra -Werror -MMD -I./includes -I../includes -I../output/inc
include ./Filelist.mk include ./Filelist.mk
SRC_FILES += #SRC_FILES = parser
#scanner #scanner
#parser #parser

View file

@ -1,364 +0,0 @@
CaptureListPool capture_list_pool_new(void);
CaptureList *capture_list_pool_get_mut(CaptureListPool *self, uint16_t id);
CaptureQuantifiers capture_quantifiers_new(void);
Iterator iterator_new(TreeCursor *cursor, const Subtree *tree, const TSLanguage *language);
IteratorComparison iterator_compare(const Iterator *old_iter, const Iterator *new_iter);
Length iterator_end_position(Iterator *self);
Length iterator_start_position(Iterator *self);
QueryStep query_step__new(TSSymbol symbol, uint16_t depth, bool is_immediate);
StackNode *stack_node_new(StackNode *previous_node, Subtree subtree, bool is_pending, TSStateId state, StackNodeArray *pool);
StackSliceArray stack__iter(Stack *self, StackVersion version, StackCallback callback, void *payload, int goal_subtree_count);
Stream stream_new(const char *string, uint32_t length);
SymbolTable symbol_table_new(void);
TSQuantifier capture_quantifier_for_id(const CaptureQuantifiers *self, uint16_t id);
TSQuantifier quantifier_add(TSQuantifier left, TSQuantifier right);
TSQuantifier quantifier_join(TSQuantifier left, TSQuantifier right);
TSQuantifier quantifier_mul(TSQuantifier left, TSQuantifier right);
bool capture_list_pool_is_empty(const CaptureListPool *self);
bool iterator_descend(Iterator *self, uint32_t goal_position);
bool iterator_done(Iterator *self);
bool iterator_tree_is_visible(const Iterator *self);
bool stack__subtree_is_equivalent(Subtree left, Subtree right);
bool stream_advance(Stream *self);
bool stream_is_ident_start(Stream *self);
const CaptureList *capture_list_pool_get(const CaptureListPool *self, uint16_t id);
const Length LENGTH_MAX;
const Length LENGTH_UNDEFINED;
const TSQueryError PARENT_DONE;
const TSRange DEFAULT_RANGE;
const TSSymbol WILDCARD_SYMBOL;
const char *symbol_table_name_for_id(const SymbolTable *self, uint16_t id, uint32_t *length);
const char *const ROOT_FIELD;
const int32_t BYTE_ORDER_MARK;
const int32_t TS_DECODE_ERROR;
const uint16_t NONE;
const uint16_t PATTERN_DONE_MARKER;
const unsigned MAX_COST_DIFFERENCE;
const unsigned MAX_SUMMARY_DEPTH;
const unsigned MAX_VERSION_COUNT;
const unsigned MAX_VERSION_COUNT_OVERFLOW;
const unsigned OP_COUNT_PER_TIMEOUT_CHECK;
int symbol_table_id_for_name(const SymbolTable *self, const char *name, uint32_t length);
uint16_t capture_list_pool_acquire(CaptureListPool *self);
uint16_t symbol_table_insert_name(SymbolTable *self, const char *name, uint32_t length);
uint32_t stack__subtree_node_count(Subtree subtree);
uint32_t stream_offset(Stream *self);
unsigned analysis_state__recursion_depth(const AnalysisState *self);
void capture_list_pool_delete(CaptureListPool *self);
void capture_list_pool_release(CaptureListPool *self, uint16_t id);
void capture_list_pool_reset(CaptureListPool *self);
void capture_quantifiers_add_all(CaptureQuantifiers *self, CaptureQuantifiers *quantifiers);
void capture_quantifiers_add_for_id(CaptureQuantifiers *self, uint16_t id, TSQuantifier quantifier);
void capture_quantifiers_clear(CaptureQuantifiers *self);
void capture_quantifiers_delete(CaptureQuantifiers *self);
void capture_quantifiers_join_all(CaptureQuantifiers *self, CaptureQuantifiers *quantifiers);
void capture_quantifiers_mul(CaptureQuantifiers *self, TSQuantifier quantifier);
void capture_quantifiers_replace(CaptureQuantifiers *self, CaptureQuantifiers *quantifiers);
void iterator_advance(Iterator *self);
void iterator_ascend(Iterator *self);
void iterator_get_visible_state(const Iterator *self, Subtree *tree, TSSymbol *alias_symbol, uint32_t *start_byte);
void query_step__add_capture(QueryStep *self, uint16_t capture_id);
void query_step__remove_capture(QueryStep *self, uint16_t capture_id);
void stack_head_delete(StackHead *self, StackNodeArray *pool, SubtreePool *subtree_pool);
void stack_node_add_link(StackNode *self, StackLink link, SubtreePool *subtree_pool);
void stack_node_release(StackNode *self, StackNodeArray *pool, SubtreePool *subtree_pool);
void stack_node_retain(StackNode *self);
void stream_reset(Stream *self, const char *input);
void stream_scan_identifier(Stream *stream);
void stream_skip_whitespace(Stream *self);
void symbol_table_delete(SymbolTable *self);
void *ts_calloc_default(size_t count, size_t size);
uint32_t ts_decode_ascii(const uint8_t *string, uint32_t length, int32_t *code_point);
int _ts_dup(int file_descriptor);
ExternalScannerState ts_external_scanner_state_copy(const ExternalScannerState *self);
const char *ts_external_scanner_state_data(const ExternalScannerState *self);
void ts_external_scanner_state_delete(ExternalScannerState *self);
bool ts_external_scanner_state_eq(const ExternalScannerState *self, const char *buffer, unsigned length);
void ts_external_scanner_state_init(ExternalScannerState *self, const char *data, unsigned length);
const TSLanguage *ts_language_copy(const TSLanguage *self);
void ts_language_delete(const TSLanguage *self);
uint32_t ts_language_field_count(const TSLanguage *self);
TSFieldId ts_language_field_id_for_name(const TSLanguage *self, const char *name, uint32_t name_length);
const char *ts_language_field_name_for_id(const TSLanguage *self, TSFieldId id);
TSStateId ts_language_next_state(const TSLanguage *self, TSStateId state, TSSymbol symbol);
TSSymbol ts_language_public_symbol(const TSLanguage *self, TSSymbol symbol);
uint32_t ts_language_state_count(const TSLanguage *self);
uint32_t ts_language_symbol_count(const TSLanguage *self);
TSSymbol ts_language_symbol_for_name(const TSLanguage *self, const char *string, uint32_t length, bool is_named);
TSSymbolMetadata ts_language_symbol_metadata(const TSLanguage *self, TSSymbol symbol);
const char *ts_language_symbol_name(const TSLanguage *self, TSSymbol symbol);
TSSymbolType ts_language_symbol_type(const TSLanguage *self, TSSymbol symbol);
void ts_language_table_entry(const TSLanguage *self, TSStateId state, TSSymbol symbol, TableEntry *result);
uint32_t ts_language_version(const TSLanguage *self);
void ts_lexer__advance(TSLexer *_self, bool skip);
void ts_lexer__clear_chunk(Lexer *self);
void ts_lexer__do_advance(Lexer *self, bool skip);
bool ts_lexer__eof(const TSLexer *_self);
void ts_lexer__get_chunk(Lexer *self);
uint32_t ts_lexer__get_column(TSLexer *_self);
void ts_lexer__get_lookahead(Lexer *self);
bool ts_lexer__is_at_included_range_start(const TSLexer *_self);
void ts_lexer__mark_end(TSLexer *_self);
void ts_lexer_advance_to_end(Lexer *self);
void ts_lexer_delete(Lexer *self);
void ts_lexer_finish(Lexer *self, uint32_t *lookahead_end_byte);
void ts_lexer_goto(Lexer *self, Length position);
TSRange *ts_lexer_included_ranges(const Lexer *self, uint32_t *count);
void ts_lexer_init(Lexer *self);
void ts_lexer_mark_end(Lexer *self);
void ts_lexer_reset(Lexer *self, Length position);
bool ts_lexer_set_included_ranges(Lexer *self, const TSRange *ranges, uint32_t count);
void ts_lexer_set_input(Lexer *self, TSInput input);
void ts_lexer_start(Lexer *self);
TSSymbol ts_lookahead_iterator_current_symbol(const TSLookaheadIterator *self);
const char *ts_lookahead_iterator_current_symbol_name(const TSLookaheadIterator *self);
void ts_lookahead_iterator_delete(TSLookaheadIterator *self);
const TSLanguage *ts_lookahead_iterator_language(const TSLookaheadIterator *self);
TSLookaheadIterator *ts_lookahead_iterator_new(const TSLanguage *self, TSStateId state);
bool ts_lookahead_iterator_next(TSLookaheadIterator *self);
bool ts_lookahead_iterator_reset(TSLookaheadIterator *self, const TSLanguage *language, TSStateId state);
bool ts_lookahead_iterator_reset_state(TSLookaheadIterator *self, TSStateId state);
void *ts_malloc_default(size_t size);
TSNode ts_node_child(TSNode self, uint32_t child_index);
TSNode ts_node_child_by_field_id(TSNode self, TSFieldId field_id);
TSNode ts_node_child_by_field_name(TSNode self, const char *name, uint32_t name_length);
TSNode ts_node_child_containing_descendant(TSNode self, TSNode subnode);
uint32_t ts_node_child_count(TSNode self);
uint32_t ts_node_descendant_count(TSNode self);
TSNode ts_node_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end);
TSNode ts_node_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end);
void ts_node_edit(TSNode *self, const TSInputEdit *edit);
uint32_t ts_node_end_byte(TSNode self);
TSPoint ts_node_end_point(TSNode self);
bool ts_node_eq(TSNode self, TSNode other);
const char *ts_node_field_name_for_child(TSNode self, uint32_t child_index);
TSNode ts_node_first_child_for_byte(TSNode self, uint32_t byte);
TSNode ts_node_first_named_child_for_byte(TSNode self, uint32_t byte);
TSSymbol ts_node_grammar_symbol(TSNode self);
const char *ts_node_grammar_type(TSNode self);
bool ts_node_has_changes(TSNode self);
bool ts_node_has_error(TSNode self);
bool ts_node_is_error(TSNode self);
bool ts_node_is_extra(TSNode self);
bool ts_node_is_missing(TSNode self);
bool ts_node_is_named(TSNode self);
bool ts_node_is_null(TSNode self);
const TSLanguage *ts_node_language(TSNode self);
TSNode ts_node_named_child(TSNode self, uint32_t child_index);
uint32_t ts_node_named_child_count(TSNode self);
TSNode ts_node_named_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end);
TSNode ts_node_named_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end);
TSNode ts_node_new(const TSTree *tree, const Subtree *subtree, Length position, TSSymbol alias);
TSNode ts_node_next_named_sibling(TSNode self);
TSStateId ts_node_next_parse_state(TSNode self);
TSNode ts_node_next_sibling(TSNode self);
TSNode ts_node_parent(TSNode self);
TSStateId ts_node_parse_state(TSNode self);
TSNode ts_node_prev_named_sibling(TSNode self);
TSNode ts_node_prev_sibling(TSNode self);
uint32_t ts_node_start_byte(TSNode self);
TSPoint ts_node_start_point(TSNode self);
char *ts_node_string(TSNode self);
TSSymbol ts_node_symbol(TSNode self);
const char *ts_node_type(TSNode self);
void ts_parser__accept(TSParser *self, StackVersion version, Subtree lookahead);
bool ts_parser__advance(TSParser *self, StackVersion version, bool allow_node_reuse);
bool ts_parser__better_version_exists(TSParser *self, StackVersion version, bool is_in_error, unsigned cost);
void ts_parser__breakdown_lookahead(TSParser *self, Subtree *lookahead, TSStateId state, ReusableNode *reusable_node);
bool ts_parser__breakdown_top_of_stack(TSParser *self, StackVersion version);
bool ts_parser__call_keyword_lex_fn(TSParser *self, TSLexMode lex_mode);
bool ts_parser__call_main_lex_fn(TSParser *self, TSLexMode lex_mode);
bool ts_parser__can_reuse_first_leaf(TSParser *self, TSStateId state, Subtree tree, TableEntry *table_entry);
ErrorComparison ts_parser__compare_versions(TSParser *self, ErrorStatus a, ErrorStatus b);
unsigned ts_parser__condense_stack(TSParser *self);
bool ts_parser__do_all_potential_reductions(TSParser *self, StackVersion starting_version, TSSymbol lookahead_symbol);
void ts_parser__external_scanner_create(TSParser *self);
void ts_parser__external_scanner_deserialize(TSParser *self, Subtree external_token);
void ts_parser__external_scanner_destroy(TSParser *self);
bool ts_parser__external_scanner_scan(TSParser *self, TSStateId external_lex_state);
unsigned ts_parser__external_scanner_serialize(TSParser *self);
Subtree ts_parser__get_cached_token(TSParser *self, TSStateId state, size_t position, Subtree last_external_token, TableEntry *table_entry);
void ts_parser__handle_error(TSParser *self, StackVersion version, Subtree lookahead);
bool ts_parser__has_included_range_difference(const TSParser *self, uint32_t start_position, uint32_t end_position);
Subtree ts_parser__lex(TSParser *self, StackVersion version, TSStateId parse_state);
void ts_parser__log(TSParser *self);
void ts_parser__recover(TSParser *self, StackVersion version, Subtree lookahead);
bool ts_parser__recover_to_state(TSParser *self, StackVersion version, unsigned depth, TSStateId goal_state);
StackVersion ts_parser__reduce(TSParser *self, StackVersion version, TSSymbol symbol, uint32_t count, int dynamic_precedence, uint16_t production_id, bool is_fragile, bool end_of_non_terminal_extra);
Subtree ts_parser__reuse_node(TSParser *self, StackVersion version, TSStateId *state, uint32_t position, Subtree last_external_token, TableEntry *table_entry);
bool ts_parser__select_children(TSParser *self, Subtree left, const SubtreeArray *children);
bool ts_parser__select_tree(TSParser *self, Subtree left, Subtree right);
void ts_parser__set_cached_token(TSParser *self, uint32_t byte_index, Subtree last_external_token, Subtree token);
void ts_parser__shift(TSParser *self, StackVersion version, TSStateId state, Subtree lookahead, bool extra);
ErrorStatus ts_parser__version_status(TSParser *self, StackVersion version);
const size_t *ts_parser_cancellation_flag(const TSParser *self);
void ts_parser_delete(TSParser *self);
bool ts_parser_has_outstanding_parse(TSParser *self);
const TSRange *ts_parser_included_ranges(const TSParser *self, uint32_t *count);
const TSLanguage *ts_parser_language(const TSParser *self);
TSLogger ts_parser_logger(const TSParser *self);
TSParser *ts_parser_new(void);
TSTree *ts_parser_parse(TSParser *self, const TSTree *old_tree, TSInput input);
TSTree *ts_parser_parse_string(TSParser *self, const TSTree *old_tree, const char *string, uint32_t length);
TSTree *ts_parser_parse_string_encoding(TSParser *self, const TSTree *old_tree, const char *string, uint32_t length, TSInputEncoding encoding);
void ts_parser_print_dot_graphs(TSParser *self, int fd);
void ts_parser_reset(TSParser *self);
void ts_parser_set_cancellation_flag(TSParser *self, const size_t *flag);
bool ts_parser_set_included_ranges(TSParser *self, const TSRange *ranges, uint32_t count);
bool ts_parser_set_language(TSParser *self, const TSLanguage *language);
void ts_parser_set_logger(TSParser *self, TSLogger logger);
void ts_parser_set_timeout_micros(TSParser *self, uint64_t timeout_micros);
void ts_parser_set_wasm_store(TSParser *self, TSWasmStore *store);
TSWasmStore *ts_parser_take_wasm_store(TSParser *self);
uint64_t ts_parser_timeout_micros(const TSParser *self);
void ts_query__add_negated_fields(TSQuery *self, uint16_t step_index, TSFieldId *field_ids, uint16_t field_count);
bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset);
TSQueryError ts_query__parse_pattern(TSQuery *self, Stream *stream, uint32_t depth, bool is_immediate, CaptureQuantifiers *capture_quantifiers);
TSQueryError ts_query__parse_predicate(TSQuery *self, Stream *stream);
TSQueryError ts_query__parse_string_literal(TSQuery *self, Stream *stream);
void ts_query__perform_analysis(TSQuery *self, const AnalysisSubgraphArray *subgraphs, QueryAnalysis *analysis);
bool ts_query__step_is_fallible(const TSQuery *self, uint16_t step_index);
uint32_t ts_query_capture_count(const TSQuery *self);
const char *ts_query_capture_name_for_id(const TSQuery *self, uint32_t index, uint32_t *length);
TSQuantifier ts_query_capture_quantifier_for_id(const TSQuery *self, uint32_t pattern_index, uint32_t capture_index);
void ts_query_cursor__add_state(TSQueryCursor *self, const PatternEntry *pattern);
void ts_query_cursor__capture(TSQueryCursor *self, QueryState *state, QueryStep *step, TSNode node);
void ts_query_cursor__compare_captures(TSQueryCursor *self, QueryState *left_state, QueryState *right_state, bool *left_contains_right, bool *right_contains_left);
int ts_query_cursor__compare_nodes(TSNode left, TSNode right);
QueryState *ts_query_cursor__copy_state(TSQueryCursor *self, QueryState **state_ref);
bool ts_query_cursor__first_in_progress_capture(TSQueryCursor *self, uint32_t *state_index, uint32_t *byte_offset, uint32_t *pattern_index, bool *root_pattern_guaranteed);
CaptureList *ts_query_cursor__prepare_to_capture(TSQueryCursor *self, QueryState *state, unsigned state_index_to_preserve);
void ts_query_cursor_delete(TSQueryCursor *self);
bool ts_query_cursor_did_exceed_match_limit(const TSQueryCursor *self);
void ts_query_cursor_exec(TSQueryCursor *self, const TSQuery *query, TSNode node);
uint32_t ts_query_cursor_match_limit(const TSQueryCursor *self);
TSQueryCursor *ts_query_cursor_new(void);
bool ts_query_cursor_next_capture(TSQueryCursor *self, TSQueryMatch *match, uint32_t *capture_index);
bool ts_query_cursor_next_match(TSQueryCursor *self, TSQueryMatch *match);
void ts_query_cursor_remove_match(TSQueryCursor *self, uint32_t match_id);
void ts_query_cursor_set_byte_range(TSQueryCursor *self, uint32_t start_byte, uint32_t end_byte);
void ts_query_cursor_set_match_limit(TSQueryCursor *self, uint32_t limit);
void ts_query_cursor_set_max_start_depth(TSQueryCursor *self, uint32_t max_start_depth);
void ts_query_cursor_set_point_range(TSQueryCursor *self, TSPoint start_point, TSPoint end_point);
void ts_query_delete(TSQuery *self);
void ts_query_disable_capture(TSQuery *self, const char *name, uint32_t length);
void ts_query_disable_pattern(TSQuery *self, uint32_t pattern_index);
bool ts_query_is_pattern_guaranteed_at_step(const TSQuery *self, uint32_t byte_offset);
bool ts_query_is_pattern_non_local(const TSQuery *self, uint32_t pattern_index);
bool ts_query_is_pattern_rooted(const TSQuery *self, uint32_t pattern_index);
TSQuery *ts_query_new(const TSLanguage *language, const char *source, uint32_t source_len, uint32_t *error_offset, TSQueryError *error_type);
uint32_t ts_query_pattern_count(const TSQuery *self);
const TSQueryPredicateStep *ts_query_predicates_for_pattern(const TSQuery *self, uint32_t pattern_index, uint32_t *step_count);
uint32_t ts_query_start_byte_for_pattern(const TSQuery *self, uint32_t pattern_index);
uint32_t ts_query_string_count(const TSQuery *self);
const char *ts_query_string_value_for_id(const TSQuery *self, uint32_t index, uint32_t *length);
void ts_range_array_add(TSRangeArray *self, Length start, Length end);
void ts_range_array_get_changed_ranges(const TSRange *old_ranges, unsigned old_range_count, const TSRange *new_ranges, unsigned new_range_count, TSRangeArray *differences);
bool ts_range_array_intersects(const TSRangeArray *self, unsigned start_index, uint32_t start_byte, uint32_t end_byte);
void *ts_realloc_default(void *buffer, size_t size);
void ts_set_allocator(void *(*new_malloc)(void), void *(*new_calloc)(void), void *(*new_realloc)(void), void (*new_free)(void));
void ts_stack__add_slice(Stack *self, StackVersion original_version, StackNode *node, SubtreeArray *subtrees);
StackVersion ts_stack__add_version(Stack *self, StackVersion original_version, StackNode *node);
bool ts_stack_can_merge(Stack *self, StackVersion version1, StackVersion version2);
void ts_stack_clear(Stack *self);
StackVersion ts_stack_copy_version(Stack *self, StackVersion version);
void ts_stack_delete(Stack *self);
int ts_stack_dynamic_precedence(Stack *self, StackVersion version);
unsigned ts_stack_error_cost(const Stack *self, StackVersion version);
StackSummary *ts_stack_get_summary(Stack *self, StackVersion version);
void ts_stack_halt(Stack *self, StackVersion version);
bool ts_stack_has_advanced_since_error(const Stack *self, StackVersion version);
bool ts_stack_is_active(const Stack *self, StackVersion version);
bool ts_stack_is_halted(const Stack *self, StackVersion version);
bool ts_stack_is_paused(const Stack *self, StackVersion version);
Subtree ts_stack_last_external_token(const Stack *self, StackVersion version);
bool ts_stack_merge(Stack *self, StackVersion version1, StackVersion version2);
Stack *ts_stack_new(SubtreePool *subtree_pool);
unsigned ts_stack_node_count_since_error(const Stack *self, StackVersion version);
void ts_stack_pause(Stack *self, StackVersion version, Subtree lookahead);
StackSliceArray ts_stack_pop_all(Stack *self, StackVersion version);
StackSliceArray ts_stack_pop_count(Stack *self, StackVersion version, uint32_t count);
SubtreeArray ts_stack_pop_error(Stack *self, StackVersion version);
StackSliceArray ts_stack_pop_pending(Stack *self, StackVersion version);
Length ts_stack_position(const Stack *self, StackVersion version);
bool ts_stack_print_dot_graph(Stack *self, const TSLanguage *language, FILE *f);
void ts_stack_push(Stack *self, StackVersion version, Subtree subtree, bool pending, TSStateId state);
void ts_stack_record_summary(Stack *self, StackVersion version, unsigned max_depth);
void ts_stack_remove_version(Stack *self, StackVersion version);
void ts_stack_renumber_version(Stack *self, StackVersion v1, StackVersion v2);
Subtree ts_stack_resume(Stack *self, StackVersion version);
void ts_stack_set_last_external_token(Stack *self, StackVersion version, Subtree token);
TSStateId ts_stack_state(const Stack *self, StackVersion version);
void ts_stack_swap_versions(Stack *self, StackVersion v1, StackVersion v2);
uint32_t ts_stack_version_count(const Stack *self);
const char *ts_string_input_read(void *_self, uint32_t byte, TSPoint point, uint32_t *length);
void ts_subtree__compress(MutableSubtree self, unsigned count, const TSLanguage *language, MutableSubtreeArray *stack);
void ts_subtree__print_dot_graph(const Subtree *self, uint32_t start_offset, const TSLanguage *language, TSSymbol alias_symbol, FILE *f);
size_t ts_subtree__write_char_to_string(char *str, size_t n, int32_t chr);
size_t ts_subtree__write_to_string(Subtree self, char *string, size_t limit, const TSLanguage *language, bool include_all, TSSymbol alias_symbol, bool alias_is_named, const char *field_name);
void ts_subtree_array_clear(SubtreePool *pool, SubtreeArray *self);
void ts_subtree_array_copy(SubtreeArray self, SubtreeArray *dest);
void ts_subtree_array_delete(SubtreePool *pool, SubtreeArray *self);
void ts_subtree_array_remove_trailing_extras(SubtreeArray *self, SubtreeArray *destination);
void ts_subtree_array_reverse(SubtreeArray *self);
void ts_subtree_balance(Subtree self, SubtreePool *pool, const TSLanguage *language);
MutableSubtree ts_subtree_clone(Subtree self);
int ts_subtree_compare(Subtree left, Subtree right, SubtreePool *pool);
Subtree ts_subtree_edit(Subtree self, const TSInputEdit *input_edit, SubtreePool *pool);
const ExternalScannerState *ts_subtree_external_scanner_state(Subtree self);
bool ts_subtree_external_scanner_state_eq(Subtree self, Subtree other);
unsigned ts_subtree_get_changed_ranges(const Subtree *old_tree, const Subtree *new_tree, TreeCursor *cursor1, TreeCursor *cursor2, const TSLanguage *language, const TSRangeArray *included_range_differences, TSRange **ranges);
bool ts_subtree_has_trailing_empty_descendant(Subtree self, Subtree other);
Subtree ts_subtree_last_external_token(Subtree tree);
MutableSubtree ts_subtree_make_mut(SubtreePool *pool, Subtree self);
Subtree ts_subtree_new_error(SubtreePool *pool, int32_t lookahead_char, Length padding, Length size, uint32_t bytes_scanned, TSStateId parse_state, const TSLanguage *language);
Subtree ts_subtree_new_error_node(SubtreeArray *children, bool extra, const TSLanguage *language);
Subtree ts_subtree_new_leaf(SubtreePool *pool, TSSymbol symbol, Length padding, Length size, uint32_t lookahead_bytes, TSStateId parse_state, bool has_external_tokens, bool depends_on_column, bool is_keyword, const TSLanguage *language);
Subtree ts_subtree_new_missing_leaf(SubtreePool *pool, TSSymbol symbol, Length padding, uint32_t lookahead_bytes, const TSLanguage *language);
MutableSubtree ts_subtree_new_node(TSSymbol symbol, SubtreeArray *children, unsigned production_id, const TSLanguage *language);
SubtreeHeapData *ts_subtree_pool_allocate(SubtreePool *self);
void ts_subtree_pool_delete(SubtreePool *self);
void ts_subtree_pool_free(SubtreePool *self, SubtreeHeapData *tree);
SubtreePool ts_subtree_pool_new(uint32_t capacity);
void ts_subtree_print_dot_graph(Subtree self, const TSLanguage *language, FILE *f);
void ts_subtree_release(SubtreePool *pool, Subtree self);
void ts_subtree_retain(Subtree self);
void ts_subtree_set_symbol(MutableSubtree *self, TSSymbol symbol, const TSLanguage *language);
char *ts_subtree_string(Subtree self, TSSymbol alias_symbol, bool alias_is_named, const TSLanguage *language, bool include_all);
void ts_subtree_summarize_children(MutableSubtree self, const TSLanguage *language);
TSTree *ts_tree_copy(const TSTree *self);
TSTreeCursor ts_tree_cursor_copy(const TSTreeCursor *_cursor);
uint32_t ts_tree_cursor_current_depth(const TSTreeCursor *_self);
uint32_t ts_tree_cursor_current_descendant_index(const TSTreeCursor *_self);
TSFieldId ts_tree_cursor_current_field_id(const TSTreeCursor *_self);
const char *ts_tree_cursor_current_field_name(const TSTreeCursor *_self);
TSNode ts_tree_cursor_current_node(const TSTreeCursor *_self);
void ts_tree_cursor_current_status(const TSTreeCursor *_self, TSFieldId *field_id, bool *has_later_siblings, bool *has_later_named_siblings, bool *can_have_later_siblings_with_this_field, TSSymbol *supertypes, unsigned *supertype_count);
void ts_tree_cursor_delete(TSTreeCursor *_self);
void ts_tree_cursor_goto_descendant(TSTreeCursor *_self, uint32_t goal_descendant_index);
bool ts_tree_cursor_goto_first_child(TSTreeCursor *self);
int64_t ts_tree_cursor_goto_first_child_for_byte(TSTreeCursor *self, uint32_t goal_byte);
int64_t ts_tree_cursor_goto_first_child_for_point(TSTreeCursor *self, TSPoint goal_point);
TreeCursorStep ts_tree_cursor_goto_first_child_internal(TSTreeCursor *_self);
bool ts_tree_cursor_goto_last_child(TSTreeCursor *self);
TreeCursorStep ts_tree_cursor_goto_last_child_internal(TSTreeCursor *_self);
bool ts_tree_cursor_goto_next_sibling(TSTreeCursor *self);
TreeCursorStep ts_tree_cursor_goto_next_sibling_internal(TSTreeCursor *_self);
bool ts_tree_cursor_goto_parent(TSTreeCursor *_self);
bool ts_tree_cursor_goto_previous_sibling(TSTreeCursor *self);
TreeCursorStep ts_tree_cursor_goto_previous_sibling_internal(TSTreeCursor *_self);
TreeCursorStep ts_tree_cursor_goto_sibling_internal(TSTreeCursor *_self, bool (*advance)(CursorChildIterator *, TreeCursorEntry *, bool *));
void ts_tree_cursor_init(TreeCursor *self, TSNode node);
TSTreeCursor ts_tree_cursor_new(TSNode node);
TSNode ts_tree_cursor_parent_node(const TSTreeCursor *_self);
void ts_tree_cursor_reset(TSTreeCursor *_self, TSNode node);
void ts_tree_cursor_reset_to(TSTreeCursor *_dst, const TSTreeCursor *_src);
void ts_tree_delete(TSTree *self);
void ts_tree_edit(TSTree *self, const TSInputEdit *edit);
TSRange *ts_tree_get_changed_ranges(const TSTree *old_tree, const TSTree *new_tree, uint32_t *length);
TSRange *ts_tree_included_ranges(const TSTree *self, uint32_t *length);
const TSLanguage *ts_tree_language(const TSTree *self);
TSTree *ts_tree_new(Subtree root, const TSLanguage *language, const TSRange *included_ranges, unsigned included_range_count);
void ts_tree_print_dot_graph(const TSTree *self, int file_descriptor);
TSNode ts_tree_root_node(const TSTree *self);
TSNode ts_tree_root_node_with_offset(const TSTree *self, uint32_t offset_bytes, TSPoint offset_extent);

View file

@ -1,935 +0,0 @@
#include <stdint.h>
#include <stdio.h>
typedef uint16_t TSStateId;
typedef uint16_t TSSymbol;
typedef uint16_t TSFieldId;
typedef struct TSLanguage TSLanguage;
typedef struct TSParser TSParser;
typedef struct TSTree TSTree;
typedef struct TSQuery TSQuery;
typedef struct TSQueryCursor TSQueryCursor;
typedef struct TSLookaheadIterator TSLookaheadIterator;
typedef enum TSInputEncoding
{
TSInputEncodingUTF8,
TSInputEncodingUTF16,
} TSInputEncoding;
typedef enum TSSymbolType
{
TSSymbolTypeRegular,
TSSymbolTypeAnonymous,
TSSymbolTypeAuxiliary,
} TSSymbolType;
typedef struct TSPoint
{
uint32_t row;
uint32_t column;
} TSPoint;
typedef struct TSRange
{
TSPoint start_point;
TSPoint end_point;
uint32_t start_byte;
uint32_t end_byte;
} TSRange;
typedef struct TSInput
{
void *payload;
const char *(*read)(void *payload, uint32_t byte_index, TSPoint position, uint32_t *bytes_read);
TSInputEncoding encoding;
} TSInput;
typedef enum TSLogType
{
TSLogTypeParse,
TSLogTypeLex,
} TSLogType;
typedef struct TSLogger
{
void *payload;
void (*log)(void *payload, TSLogType log_type, const char *buffer);
} TSLogger;
typedef struct TSInputEdit
{
uint32_t start_byte;
uint32_t old_end_byte;
uint32_t new_end_byte;
TSPoint start_point;
TSPoint old_end_point;
TSPoint new_end_point;
} TSInputEdit;
typedef struct TSNode
{
uint32_t context[4];
const void *id;
const TSTree *tree;
} TSNode;
typedef struct TSTreeCursor
{
const void *tree;
const void *id;
uint32_t context[3];
} TSTreeCursor;
typedef struct TSQueryCapture
{
TSNode node;
uint32_t index;
} TSQueryCapture;
typedef enum TSQuantifier
{
TSQuantifierZero = 0,
TSQuantifierZeroOrOne,
TSQuantifierZeroOrMore,
TSQuantifierOne,
TSQuantifierOneOrMore,
} TSQuantifier;
typedef struct TSQueryMatch
{
uint32_t id;
uint16_t pattern_index;
uint16_t capture_count;
const TSQueryCapture *captures;
} TSQueryMatch;
typedef enum TSQueryPredicateStepType
{
TSQueryPredicateStepTypeDone,
TSQueryPredicateStepTypeCapture,
TSQueryPredicateStepTypeString,
} TSQueryPredicateStepType;
typedef struct TSQueryPredicateStep
{
TSQueryPredicateStepType type;
uint32_t value_id;
} TSQueryPredicateStep;
typedef enum TSQueryError
{
TSQueryErrorNone = 0,
TSQueryErrorSyntax,
TSQueryErrorNodeType,
TSQueryErrorField,
TSQueryErrorCapture,
TSQueryErrorStructure,
TSQueryErrorLanguage,
} TSQueryError;
typedef struct wasm_engine_t TSWasmEngine;
typedef struct TSWasmStore TSWasmStore;
typedef enum
{
TSWasmErrorKindNone = 0,
TSWasmErrorKindParse,
TSWasmErrorKindCompile,
TSWasmErrorKindInstantiate,
TSWasmErrorKindAllocate,
} TSWasmErrorKind;
typedef struct
{
TSWasmErrorKind kind;
char *message;
} TSWasmError;
typedef struct
{
void *contents;
uint32_t size;
uint32_t capacity;
} Array;
typedef struct
{
uint32_t bytes;
TSPoint extent;
} Length;
typedef struct
{
TSFieldId field_id;
uint8_t child_index;
_Bool inherited;
} TSFieldMapEntry;
typedef struct
{
uint16_t index;
uint16_t length;
} TSFieldMapSlice;
typedef struct
{
_Bool visible;
_Bool named;
_Bool supertype;
} TSSymbolMetadata;
typedef struct TSLexer TSLexer;
struct TSLexer
{
int32_t lookahead;
TSSymbol result_symbol;
void (*advance)(TSLexer *, _Bool);
void (*mark_end)(TSLexer *);
uint32_t (*get_column)(TSLexer *);
_Bool (*is_at_included_range_start)(const TSLexer *);
_Bool (*eof)(const TSLexer *);
};
typedef enum
{
TSParseActionTypeShift,
TSParseActionTypeReduce,
TSParseActionTypeAccept,
TSParseActionTypeRecover,
} TSParseActionType;
typedef union {
struct
{
uint8_t type;
TSStateId state;
_Bool extra;
_Bool repetition;
} shift;
struct
{
uint8_t type;
uint8_t child_count;
TSSymbol symbol;
int16_t dynamic_precedence;
uint16_t production_id;
} reduce;
uint8_t type;
} TSParseAction;
typedef struct
{
uint16_t lex_state;
uint16_t external_lex_state;
} TSLexMode;
typedef union {
TSParseAction action;
struct
{
uint8_t count;
_Bool reusable;
} entry;
} TSParseActionEntry;
typedef struct
{
int32_t start;
int32_t end;
} TSCharacterRange;
struct TSLanguage
{
uint32_t version;
uint32_t symbol_count;
uint32_t alias_count;
uint32_t token_count;
uint32_t external_token_count;
uint32_t state_count;
uint32_t large_state_count;
uint32_t production_id_count;
uint32_t field_count;
uint16_t max_alias_sequence_length;
const uint16_t *parse_table;
const uint16_t *small_parse_table;
const uint32_t *small_parse_table_map;
const TSParseActionEntry *parse_actions;
const char *const *symbol_names;
const char *const *field_names;
const TSFieldMapSlice *field_map_slices;
const TSFieldMapEntry *field_map_entries;
const TSSymbolMetadata *symbol_metadata;
const TSSymbol *public_symbol_map;
const uint16_t *alias_map;
const TSSymbol *alias_sequences;
const TSLexMode *lex_modes;
_Bool (*lex_fn)(TSLexer *, TSStateId);
_Bool (*keyword_lex_fn)(TSLexer *, TSStateId);
TSSymbol keyword_capture_token;
struct
{
const _Bool *states;
const TSSymbol *symbol_map;
void *(*create)(void);
void (*destroy)(void *);
_Bool (*scan)(void *, TSLexer *, const _Bool *symbol_whitelist);
unsigned (*serialize)(void *, char *);
void (*deserialize)(void *, const char *, unsigned);
} external_scanner;
const TSStateId *primary_state_ids;
};
typedef struct
{
union {
char *long_data;
char short_data[24];
};
uint32_t length;
} ExternalScannerState;
typedef struct SubtreeInlineData SubtreeInlineData;
struct SubtreeInlineData
{
_Bool is_inline : 1;
_Bool visible : 1;
_Bool named : 1;
_Bool extra : 1;
_Bool has_changes : 1;
_Bool is_missing : 1;
_Bool is_keyword : 1;
uint8_t symbol;
uint16_t parse_state;
uint8_t padding_columns;
uint8_t padding_rows : 4;
uint8_t lookahead_bytes : 4;
uint8_t padding_bytes;
uint8_t size_bytes;
};
typedef struct
{
volatile uint32_t ref_count;
Length padding;
Length size;
uint32_t lookahead_bytes;
uint32_t error_cost;
uint32_t child_count;
TSSymbol symbol;
TSStateId parse_state;
_Bool visible : 1;
_Bool named : 1;
_Bool extra : 1;
_Bool fragile_left : 1;
_Bool fragile_right : 1;
_Bool has_changes : 1;
_Bool has_external_tokens : 1;
_Bool has_external_scanner_state_change : 1;
_Bool depends_on_column : 1;
_Bool is_missing : 1;
_Bool is_keyword : 1;
union {
struct
{
uint32_t visible_child_count;
uint32_t named_child_count;
uint32_t visible_descendant_count;
int32_t dynamic_precedence;
uint16_t repeat_depth;
uint16_t production_id;
struct
{
TSSymbol symbol;
TSStateId parse_state;
} first_leaf;
};
ExternalScannerState external_scanner_state;
int32_t lookahead_char;
};
} SubtreeHeapData;
typedef union {
SubtreeInlineData data;
const SubtreeHeapData *ptr;
} Subtree;
typedef union {
SubtreeInlineData data;
SubtreeHeapData *ptr;
} MutableSubtree;
typedef struct
{
Subtree *contents;
uint32_t size;
uint32_t capacity;
} SubtreeArray;
typedef struct
{
MutableSubtree *contents;
uint32_t size;
uint32_t capacity;
} MutableSubtreeArray;
typedef struct
{
MutableSubtreeArray free_trees;
MutableSubtreeArray tree_stack;
} SubtreePool;
typedef struct
{
const Subtree *subtree;
Length position;
uint32_t child_index;
uint32_t structural_child_index;
uint32_t descendant_index;
} TreeCursorEntry;
typedef struct
{
const TSTree *tree;
struct
{
TreeCursorEntry *contents;
uint32_t size;
uint32_t capacity;
} stack;
TSSymbol root_alias_symbol;
} TreeCursor;
typedef enum
{
TreeCursorStepNone,
TreeCursorStepHidden,
TreeCursorStepVisible,
} TreeCursorStep;
typedef struct
{
TSRange *contents;
uint32_t size;
uint32_t capacity;
} TSRangeArray;
typedef struct
{
const TSParseAction *actions;
uint32_t action_count;
_Bool is_reusable;
} TableEntry;
typedef struct
{
const TSLanguage *language;
const uint16_t *data;
const uint16_t *group_end;
TSStateId state;
uint16_t table_value;
uint16_t section_index;
uint16_t group_count;
_Bool is_small_state;
const TSParseAction *actions;
TSSymbol symbol;
TSStateId next_state;
uint16_t action_count;
} LookaheadIterator;
typedef struct
{
TreeCursor cursor;
const TSLanguage *language;
unsigned visible_depth;
_Bool in_padding;
} Iterator;
typedef enum
{
IteratorDiffers,
IteratorMayDiffer,
IteratorMatches,
} IteratorComparison;
typedef struct
{
TSLexer data;
Length current_position;
Length token_start_position;
Length token_end_position;
TSRange *included_ranges;
const char *chunk;
TSInput input;
TSLogger logger;
uint32_t included_range_count;
uint32_t current_included_range_index;
uint32_t chunk_start;
uint32_t chunk_size;
uint32_t lookahead_size;
_Bool did_get_column;
char debug_buffer[1024];
} Lexer;
typedef struct
{
const Subtree *child;
const Subtree *parent;
Length position;
TSSymbol alias_symbol;
} ParentCacheEntry;
struct TSTree
{
Subtree root;
const TSLanguage *language;
TSRange *included_ranges;
unsigned included_range_count;
};
typedef struct
{
Subtree parent;
const TSTree *tree;
Length position;
uint32_t child_index;
uint32_t structural_child_index;
const TSSymbol *alias_sequence;
} NodeChildIterator;
typedef uint64_t TSDuration;
typedef uint64_t TSClock;
typedef struct
{
uint32_t count;
TSSymbol symbol;
int dynamic_precedence;
unsigned short production_id;
} ReduceAction;
typedef struct
{
ReduceAction *contents;
uint32_t size;
uint32_t capacity;
} ReduceActionSet;
typedef struct
{
Subtree tree;
uint32_t child_index;
uint32_t byte_offset;
} StackEntry;
typedef struct
{
struct
{
StackEntry *contents;
uint32_t size;
uint32_t capacity;
} stack;
Subtree last_external_token;
} ReusableNode;
typedef struct Stack Stack;
typedef unsigned StackVersion;
typedef struct
{
SubtreeArray subtrees;
StackVersion version;
} StackSlice;
typedef struct
{
StackSlice *contents;
uint32_t size;
uint32_t capacity;
} StackSliceArray;
typedef struct
{
Length position;
unsigned depth;
TSStateId state;
} StackSummaryEntry;
typedef struct
{
StackSummaryEntry *contents;
uint32_t size;
uint32_t capacity;
} StackSummary;
typedef void (*StackIterateCallback)(void *, TSStateId, uint32_t);
typedef int __gwchar_t;
typedef struct
{
long int quot;
long int rem;
} imaxdiv_t;
struct tm
{
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;
long int tm_gmtoff;
const char *tm_zone;
};
typedef struct
{
Subtree token;
Subtree last_external_token;
uint32_t byte_index;
} TokenCache;
struct TSParser
{
Lexer lexer;
Stack *stack;
SubtreePool tree_pool;
const TSLanguage *language;
ReduceActionSet reduce_actions;
Subtree finished_tree;
SubtreeArray trailing_extras;
SubtreeArray trailing_extras2;
SubtreeArray scratch_trees;
TokenCache token_cache;
ReusableNode reusable_node;
void *external_scanner_payload;
FILE *dot_graph_file;
TSClock end_clock;
TSDuration timeout_duration;
unsigned accept_count;
unsigned operation_count;
const volatile size_t *cancellation_flag;
Subtree old_tree;
TSRangeArray included_range_differences;
unsigned included_range_difference_index;
_Bool has_scanner_error;
};
typedef struct
{
unsigned cost;
unsigned node_count;
int dynamic_precedence;
_Bool is_in_error;
} ErrorStatus;
typedef enum
{
ErrorComparisonTakeLeft,
ErrorComparisonPreferLeft,
ErrorComparisonNone,
ErrorComparisonPreferRight,
ErrorComparisonTakeRight,
} ErrorComparison;
typedef struct
{
const char *string;
uint32_t length;
} TSStringInput;
typedef struct
{
const char *input;
const char *start;
const char *end;
int32_t next;
uint8_t next_size;
} Stream;
typedef struct
{
TSSymbol symbol;
TSSymbol supertype_symbol;
TSFieldId field;
uint16_t capture_ids[3];
uint16_t depth;
uint16_t alternative_index;
uint16_t negated_field_list_id;
_Bool is_named : 1;
_Bool is_immediate : 1;
_Bool is_last_child : 1;
_Bool is_pass_through : 1;
_Bool is_dead_end : 1;
_Bool alternative_is_immediate : 1;
_Bool contains_captures : 1;
_Bool root_pattern_guaranteed : 1;
_Bool parent_pattern_guaranteed : 1;
} QueryStep;
typedef struct
{
uint32_t offset;
uint32_t length;
} Slice;
typedef struct
{
struct
{
char *contents;
uint32_t size;
uint32_t capacity;
} characters;
struct
{
Slice *contents;
uint32_t size;
uint32_t capacity;
} slices;
} SymbolTable;
typedef struct
{
uint8_t *contents;
uint32_t size;
uint32_t capacity;
} CaptureQuantifiers;
typedef struct
{
uint16_t step_index;
uint16_t pattern_index;
_Bool is_rooted;
} PatternEntry;
typedef struct
{
Slice steps;
Slice predicate_steps;
uint32_t start_byte;
_Bool is_non_local;
} QueryPattern;
typedef struct
{
uint32_t byte_offset;
uint16_t step_index;
} StepOffset;
typedef struct
{
uint32_t id;
uint32_t capture_list_id;
uint16_t start_depth;
uint16_t step_index;
uint16_t pattern_index;
uint16_t consumed_capture_count : 12;
_Bool seeking_immediate_match : 1;
_Bool has_in_progress_alternatives : 1;
_Bool dead : 1;
_Bool needs_parent : 1;
} QueryState;
typedef struct
{
TSQueryCapture *contents;
uint32_t size;
uint32_t capacity;
} CaptureList;
typedef struct
{
struct
{
CaptureList *contents;
uint32_t size;
uint32_t capacity;
} list;
CaptureList empty_list;
uint32_t max_capture_list_count;
uint32_t free_capture_list_count;
} CaptureListPool;
typedef struct
{
TSStateId parse_state;
TSSymbol parent_symbol;
uint16_t child_index;
TSFieldId field_id : 15;
_Bool done : 1;
} AnalysisStateEntry;
typedef struct
{
AnalysisStateEntry stack[8];
uint16_t depth;
uint16_t step_index;
TSSymbol root_symbol;
} AnalysisState;
typedef struct
{
AnalysisState **contents;
uint32_t size;
uint32_t capacity;
} AnalysisStateSet;
typedef struct
{
AnalysisStateSet states;
AnalysisStateSet next_states;
AnalysisStateSet deeper_states;
AnalysisStateSet state_pool;
struct
{
uint16_t *contents;
uint32_t size;
uint32_t capacity;
} final_step_indices;
struct
{
TSSymbol *contents;
uint32_t size;
uint32_t capacity;
} finished_parent_symbols;
_Bool did_abort;
} QueryAnalysis;
typedef struct
{
TSStateId state;
uint16_t production_id;
uint8_t child_index : 7;
_Bool done : 1;
} AnalysisSubgraphNode;
typedef struct
{
TSSymbol symbol;
struct
{
TSStateId *contents;
uint32_t size;
uint32_t capacity;
} start_states;
struct
{
AnalysisSubgraphNode *contents;
uint32_t size;
uint32_t capacity;
} nodes;
} AnalysisSubgraph;
typedef struct
{
AnalysisSubgraph *contents;
uint32_t size;
uint32_t capacity;
} AnalysisSubgraphArray;
typedef struct
{
TSStateId *contents;
} StatePredecessorMap;
struct TSQuery
{
SymbolTable captures;
SymbolTable predicate_values;
struct
{
CaptureQuantifiers *contents;
uint32_t size;
uint32_t capacity;
} capture_quantifiers;
struct
{
QueryStep *contents;
uint32_t size;
uint32_t capacity;
} steps;
struct
{
PatternEntry *contents;
uint32_t size;
uint32_t capacity;
} pattern_map;
struct
{
TSQueryPredicateStep *contents;
uint32_t size;
uint32_t capacity;
} predicate_steps;
struct
{
QueryPattern *contents;
uint32_t size;
uint32_t capacity;
} patterns;
struct
{
StepOffset *contents;
uint32_t size;
uint32_t capacity;
} step_offsets;
struct
{
TSFieldId *contents;
uint32_t size;
uint32_t capacity;
} negated_fields;
struct
{
char *contents;
uint32_t size;
uint32_t capacity;
} string_buffer;
struct
{
TSSymbol *contents;
uint32_t size;
uint32_t capacity;
} repeat_symbols_with_rootless_patterns;
const TSLanguage *language;
uint16_t wildcard_root_pattern_count;
};
struct TSQueryCursor
{
const TSQuery *query;
TSTreeCursor cursor;
struct
{
QueryState *contents;
uint32_t size;
uint32_t capacity;
} states;
struct
{
QueryState *contents;
uint32_t size;
uint32_t capacity;
} finished_states;
CaptureListPool capture_list_pool;
uint32_t depth;
uint32_t max_start_depth;
uint32_t start_byte;
uint32_t end_byte;
TSPoint start_point;
TSPoint end_point;
uint32_t next_state_id;
_Bool on_visible_node;
_Bool ascending;
_Bool halted;
_Bool did_exceed_match_limit;
};
typedef struct StackNode StackNode;
typedef struct
{
StackNode *node;
Subtree subtree;
_Bool is_pending;
} StackLink;
struct StackNode
{
TSStateId state;
Length position;
StackLink links[8];
short unsigned int link_count;
uint32_t ref_count;
unsigned error_cost;
unsigned node_count;
int dynamic_precedence;
};
typedef struct
{
StackNode *node;
SubtreeArray subtrees;
uint32_t subtree_count;
_Bool is_pending;
} StackIterator;
typedef struct
{
StackNode **contents;
uint32_t size;
uint32_t capacity;
} StackNodeArray;
typedef enum
{
StackStatusActive,
StackStatusPaused,
StackStatusHalted,
} StackStatus;
typedef struct
{
StackNode *node;
StackSummary *summary;
unsigned node_count_at_last_error;
Subtree last_external_token;
Subtree lookahead_when_paused;
StackStatus status;
} StackHead;
struct Stack
{
struct
{
StackHead *contents;
uint32_t size;
uint32_t capacity;
} heads;
StackSliceArray slices;
struct
{
StackIterator *contents;
uint32_t size;
uint32_t capacity;
} iterators;
StackNodeArray node_pool;
StackNode *base_node;
SubtreePool *subtree_pool;
};
typedef unsigned StackAction;
enum
{
StackActionNone,
StackActionStop = 1,
StackActionPop = 2,
};
typedef StackAction (*StackCallback)(void *, const StackIterator *);
typedef struct
{
StackSummary *summary;
unsigned max_depth;
} SummarizeStackSession;
typedef struct
{
Length start;
Length old_end;
Length new_end;
} Edit;
typedef struct
{
Subtree parent;
const TSTree *tree;
Length position;
uint32_t child_index;
uint32_t structural_child_index;
uint32_t descendant_index;
const TSSymbol *alias_sequence;
} CursorChildIterator;

View file

@ -13,5 +13,5 @@
#include "./tree_cursor.c" #include "./tree_cursor.c"
#include "./wasm_store.c" #include "./wasm_store.c"
#include "./create_language.c" //#include "./create_language.c"
#include "./scanner.c" #include "./scanner.c"

View file

@ -250,6 +250,7 @@ static inline bool scan_bare_dollar(TSLexer *lexer)
while (iswspace(lexer->lookahead) && lexer->lookahead != '\n' && !lexer->eof(lexer)) while (iswspace(lexer->lookahead) && lexer->lookahead != '\n' && !lexer->eof(lexer))
skip(lexer); skip(lexer);
if (lexer->lookahead == '$') if (lexer->lookahead == '$')
{ {
advance(lexer); advance(lexer);

View file

@ -1,50 +1,46 @@
#ifndef TREE_SITTER_UNICODE_H_ #ifndef TREE_SITTER_UNICODE_H_
#define TREE_SITTER_UNICODE_H_ #define TREE_SITTER_UNICODE_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <limits.h> #include <limits.h>
#include <stdint.h> #include <stdint.h>
#include <stdio.h>
#define U_EXPORT #define U_EXPORT
#define U_EXPORT2 #define U_EXPORT2
#include "unicode/utf8.h"
#include "unicode/utf16.h" #include "unicode/utf16.h"
#include "unicode/utf8.h"
static const int32_t TS_DECODE_ERROR = U_SENTINEL; static const int32_t TS_DECODE_ERROR = U_SENTINEL;
// These functions read one unicode code point from the given string, // These functions read one unicode code point from the given string,
// returning the number of bytes consumed. // returning the number of bytes consumed.
typedef uint32_t (*UnicodeDecodeFunction)( typedef uint32_t (*UnicodeDecodeFunction)(const uint8_t *string, uint32_t length, int32_t *code_point);
const uint8_t *string,
uint32_t length,
int32_t *code_point
);
static inline uint32_t ts_decode_utf8( static inline uint32_t ts_decode_ascii(const uint8_t *string, uint32_t length, int32_t *code_point)
const uint8_t *string, {
uint32_t length, (void)(length);
int32_t *code_point *code_point = 0;
) { *(uint8_t *)code_point = *string;
uint32_t i = 0; return (1);
U8_NEXT(string, i, length, *code_point);
return i;
} }
static inline uint32_t ts_decode_utf16( static inline uint32_t ts_decode_utf8(const uint8_t *string, uint32_t length, int32_t *code_point)
const uint8_t *string, {
uint32_t length, return (ts_decode_ascii(string, length, code_point));
int32_t *code_point /*
) { uint32_t i = 0;
uint32_t i = 0; U8_NEXT(string, i, length, *code_point);
U16_NEXT(((uint16_t *)string), i, length, *code_point); printf("[UTF8]read %i bytes\n", i);
return i * 2; return i;
*/
} }
#ifdef __cplusplus static inline uint32_t ts_decode_utf16(const uint8_t *string, uint32_t length, int32_t *code_point)
{
uint32_t i = 0;
U16_NEXT(((uint16_t *)string), i, length, *code_point);
printf("[UTF16]read %i bytes\n", i);
return i * 2;
} }
#endif
#endif // TREE_SITTER_UNICODE_H_ #endif // TREE_SITTER_UNICODE_H_

View file

@ -1,48 +0,0 @@
#include "alloc.h"
#include "./api.h"
#include <stdlib.h>
static void *ts_malloc_default(size_t size) {
void *result = malloc(size);
if (size > 0 && !result) {
fprintf(stderr, "tree-sitter failed to allocate %zu bytes", size);
abort();
}
return result;
}
static void *ts_calloc_default(size_t count, size_t size) {
void *result = calloc(count, size);
if (count > 0 && !result) {
fprintf(stderr, "tree-sitter failed to allocate %zu bytes", count * size);
abort();
}
return result;
}
static void *ts_realloc_default(void *buffer, size_t size) {
void *result = realloc(buffer, size);
if (size > 0 && !result) {
fprintf(stderr, "tree-sitter failed to reallocate %zu bytes", size);
abort();
}
return result;
}
// Allow clients to override allocation functions dynamically
TS_PUBLIC void *(*ts_current_malloc)(size_t) = ts_malloc_default;
TS_PUBLIC void *(*ts_current_calloc)(size_t, size_t) = ts_calloc_default;
TS_PUBLIC void *(*ts_current_realloc)(void *, size_t) = ts_realloc_default;
TS_PUBLIC void (*ts_current_free)(void *) = free;
void ts_set_allocator(
void *(*new_malloc)(size_t size),
void *(*new_calloc)(size_t count, size_t size),
void *(*new_realloc)(void *ptr, size_t size),
void (*new_free)(void *ptr)
) {
ts_current_malloc = new_malloc ? new_malloc : ts_malloc_default;
ts_current_calloc = new_calloc ? new_calloc : ts_calloc_default;
ts_current_realloc = new_realloc ? new_realloc : ts_realloc_default;
ts_current_free = new_free ? new_free : free;
}

View file

@ -1,41 +0,0 @@
#ifndef TREE_SITTER_ALLOC_H_
#define TREE_SITTER_ALLOC_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#if defined(TREE_SITTER_HIDDEN_SYMBOLS) || defined(_WIN32)
#define TS_PUBLIC
#else
#define TS_PUBLIC __attribute__((visibility("default")))
#endif
TS_PUBLIC extern void *(*ts_current_malloc)(size_t);
TS_PUBLIC extern void *(*ts_current_calloc)(size_t, size_t);
TS_PUBLIC extern void *(*ts_current_realloc)(void *, size_t);
TS_PUBLIC extern void (*ts_current_free)(void *);
// Allow clients to override allocation functions
#ifndef ts_malloc
#define ts_malloc ts_current_malloc
#endif
#ifndef ts_calloc
#define ts_calloc ts_current_calloc
#endif
#ifndef ts_realloc
#define ts_realloc ts_current_realloc
#endif
#ifndef ts_free
#define ts_free ts_current_free
#endif
#ifdef __cplusplus
}
#endif
#endif // TREE_SITTER_ALLOC_H_

File diff suppressed because it is too large Load diff

View file

@ -1,293 +0,0 @@
#ifndef TREE_SITTER_ARRAY_H_
#define TREE_SITTER_ARRAY_H_
#ifdef __cplusplus
extern "C"
{
#endif
#include "./alloc.h"
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#ifdef _MSC_VER
# pragma warning(disable : 4101)
#elif defined(__GNUC__) || defined(__clang__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wunused-variable"
#endif
#define Array(T) \
struct \
{ \
T *contents; \
uint32_t size; \
uint32_t capacity; \
}
/// Initialize an array.
#define array_init(self) ((self)->size = 0, (self)->capacity = 0, (self)->contents = NULL)
/// Create an empty array.
#define array_new() \
{ \
NULL, 0, 0 \
}
/// Get a pointer to the element at a given `index` in the array.
#define array_get(self, _index) (assert((uint32_t)(_index) < (self)->size), &(self)->contents[_index])
/// Get a pointer to the first element in the array.
#define array_front(self) array_get(self, 0)
/// Get a pointer to the last element in the array.
#define array_back(self) array_get(self, (self)->size - 1)
/// Clear the array, setting its size to zero. Note that this does not free any
/// memory allocated for the array's contents.
#define array_clear(self) ((self)->size = 0)
/// Reserve `new_capacity` elements of space in the array. If `new_capacity` is
/// less than the array's current capacity, this function has no effect.
#define array_reserve(self, new_capacity) _array__reserve((Array *)(self), array_elem_size(self), new_capacity)
/// Free any memory allocated for this array. Note that this does not free any
/// memory allocated for the array's contents.
#define array_delete(self) _array__delete((Array *)(self))
/// Push a new `element` onto the end of the array.
#define array_push(self, element) (_array__grow((Array *)(self), 1, array_elem_size(self)), (self)->contents[(self)->size++] = (element))
/// Increase the array's size by `count` elements.
/// New elements are zero-initialized.
#define array_grow_by(self, count) \
do \
{ \
if ((count) == 0) \
break; \
_array__grow((Array *)(self), count, array_elem_size(self)); \
memset((self)->contents + (self)->size, 0, (count) * array_elem_size(self)); \
(self)->size += (count); \
} while (0)
/// Append all elements from one array to the end of another.
#define array_push_all(self, other) array_extend((self), (other)->size, (other)->contents)
/// Append `count` elements to the end of the array, reading their values from the
/// `contents` pointer.
#define array_extend(self, count, contents) _array__splice((Array *)(self), array_elem_size(self), (self)->size, 0, count, contents)
/// Remove `old_count` elements from the array starting at the given `index`. At
/// the same index, insert `new_count` new elements, reading their values from the
/// `new_contents` pointer.
#define array_splice(self, _index, old_count, new_count, new_contents) \
_array__splice((Array *)(self), array_elem_size(self), _index, old_count, new_count, new_contents)
/// Insert one `element` into the array at the given `index`.
#define array_insert(self, _index, element) _array__splice((Array *)(self), array_elem_size(self), _index, 0, 1, &(element))
/// Remove one element from the array at the given `index`.
#define array_erase(self, _index) _array__erase((Array *)(self), array_elem_size(self), _index)
/// Pop the last element off the array, returning the element by value.
#define array_pop(self) ((self)->contents[--(self)->size])
/// Assign the contents of one array to another, reallocating if necessary.
#define array_assign(self, other) _array__assign((Array *)(self), (const Array *)(other), array_elem_size(self))
/// Swap one array with another
#define array_swap(self, other) _array__swap((Array *)(self), (Array *)(other))
/// Get the size of the array contents
#define array_elem_size(self) (sizeof *(self)->contents)
/// Search a sorted array for a given `needle` value, using the given `compare`
/// callback to determine the order.
///
/// If an existing element is found to be equal to `needle`, then the `index`
/// out-parameter is set to the existing value's index, and the `exists`
/// out-parameter is set to true. Otherwise, `index` is set to an index where
/// `needle` should be inserted in order to preserve the sorting, and `exists`
/// is set to false.
#define array_search_sorted_with(self, compare, needle, _index, _exists) _array__search_sorted(self, 0, compare, , needle, _index, _exists)
/// Search a sorted array for a given `needle` value, using integer comparisons
/// of a given struct field (specified with a leading dot) to determine the order.
///
/// See also `array_search_sorted_with`.
#define array_search_sorted_by(self, field, needle, _index, _exists) \
_array__search_sorted(self, 0, _compare_int, field, needle, _index, _exists)
/// Insert a given `value` into a sorted array, using the given `compare`
/// callback to determine the order.
#define array_insert_sorted_with(self, compare, value) \
do \
{ \
unsigned _index, _exists; \
array_search_sorted_with(self, compare, &(value), &_index, &_exists); \
if (!_exists) \
array_insert(self, _index, value); \
} while (0)
/// Insert a given `value` into a sorted array, using integer comparisons of
/// a given struct field (specified with a leading dot) to determine the order.
///
/// See also `array_search_sorted_by`.
#define array_insert_sorted_by(self, field, value) \
do \
{ \
unsigned _index, _exists; \
array_search_sorted_by(self, field, (value)field, &_index, &_exists); \
if (!_exists) \
array_insert(self, _index, value); \
} while (0)
// Private
typedef Array(void) Array;
/// This is not what you're looking for, see `array_delete`.
static inline void _array__delete(Array *self)
{
if (self->contents)
{
ts_free(self->contents);
self->contents = NULL;
self->size = 0;
self->capacity = 0;
}
}
/// This is not what you're looking for, see `array_erase`.
static inline void _array__erase(Array *self, size_t element_size, uint32_t index)
{
assert(index < self->size);
char *contents = (char *)self->contents;
memmove(contents + index * element_size, contents + (index + 1) * element_size, (self->size - index - 1) * element_size);
self->size--;
}
/// This is not what you're looking for, see `array_reserve`.
static inline void _array__reserve(Array *self, size_t element_size, uint32_t new_capacity)
{
if (new_capacity > self->capacity)
{
if (self->contents)
{
self->contents = ts_realloc(self->contents, new_capacity * element_size);
}
else
{
self->contents = ts_malloc(new_capacity * element_size);
}
self->capacity = new_capacity;
}
}
/// This is not what you're looking for, see `array_assign`.
static inline void _array__assign(Array *self, const Array *other, size_t element_size)
{
_array__reserve(self, element_size, other->size);
self->size = other->size;
memcpy(self->contents, other->contents, self->size * element_size);
}
/// This is not what you're looking for, see `array_swap`.
static inline void _array__swap(Array *self, Array *other)
{
Array swap = *other;
*other = *self;
*self = swap;
}
/// This is not what you're looking for, see `array_push` or `array_grow_by`.
static inline void _array__grow(Array *self, uint32_t count, size_t element_size)
{
uint32_t new_size = self->size + count;
if (new_size > self->capacity)
{
uint32_t new_capacity = self->capacity * 2;
if (new_capacity < 8)
new_capacity = 8;
if (new_capacity < new_size)
new_capacity = new_size;
_array__reserve(self, element_size, new_capacity);
}
}
/// This is not what you're looking for, see `array_splice`.
static inline void _array__splice(Array *self, size_t element_size, uint32_t index, uint32_t old_count, uint32_t new_count,
const void *elements)
{
uint32_t new_size = self->size + new_count - old_count;
uint32_t old_end = index + old_count;
uint32_t new_end = index + new_count;
assert(old_end <= self->size);
_array__reserve(self, element_size, new_size);
char *contents = (char *)self->contents;
if (self->size > old_end)
{
memmove(contents + new_end * element_size, contents + old_end * element_size, (self->size - old_end) * element_size);
}
if (new_count > 0)
{
if (elements)
{
memcpy((contents + index * element_size), elements, new_count * element_size);
}
else
{
memset((contents + index * element_size), 0, new_count * element_size);
}
}
self->size += new_count - old_count;
}
/// A binary search routine, based on Rust's `std::slice::binary_search_by`.
/// This is not what you're looking for, see `array_search_sorted_with` or `array_search_sorted_by`.
#define _array__search_sorted(self, start, compare, suffix, needle, _index, _exists) \
do \
{ \
*(_index) = start; \
*(_exists) = false; \
uint32_t size = (self)->size - *(_index); \
if (size == 0) \
break; \
int comparison; \
while (size > 1) \
{ \
uint32_t half_size = size / 2; \
uint32_t mid_index = *(_index) + half_size; \
comparison = compare(&((self)->contents[mid_index] suffix), (needle)); \
if (comparison <= 0) \
*(_index) = mid_index; \
size -= half_size; \
} \
comparison = compare(&((self)->contents[*(_index)] suffix), (needle)); \
if (comparison == 0) \
*(_exists) = true; \
else if (comparison < 0) \
*(_index) += 1; \
} while (0)
/// Helper macro for the `_sorted_by` routines below. This takes the left (existing)
/// parameter by reference in order to work with the generic sorting function above.
#define _compare_int(a, b) ((int)*(a) - (int)(b))
#ifdef _MSC_VER
# pragma warning(default : 4101)
#elif defined(__GNUC__) || defined(__clang__)
# pragma GCC diagnostic pop
#endif
#ifdef __cplusplus
}
#endif
#endif // TREE_SITTER_ARRAY_H_

View file

@ -1,35 +0,0 @@
#ifndef TREE_SITTER_ATOMIC_H_
#define TREE_SITTER_ATOMIC_H_
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
static inline size_t atomic_load(const volatile size_t *p)
{
#ifdef __ATOMIC_RELAXED
return __atomic_load_n(p, __ATOMIC_RELAXED);
#else
return __sync_fetch_and_add((volatile size_t *)p, 0);
#endif
}
static inline uint32_t atomic_inc(volatile uint32_t *p)
{
#ifdef __ATOMIC_RELAXED
return __atomic_add_fetch(p, 1U, __ATOMIC_SEQ_CST);
#else
return __sync_add_and_fetch(p, 1U);
#endif
}
static inline uint32_t atomic_dec(volatile uint32_t *p)
{
#ifdef __ATOMIC_RELAXED
return __atomic_sub_fetch(p, 1U, __ATOMIC_SEQ_CST);
#else
return __sync_sub_and_fetch(p, 1U);
#endif
}
#endif // TREE_SITTER_ATOMIC_H_

View file

@ -1,41 +0,0 @@
#ifndef TREE_SITTER_CLOCK_H_
#define TREE_SITTER_CLOCK_H_
#include <stdbool.h>
#include <stdint.h>
typedef uint64_t TSDuration;
#include <time.h>
typedef uint64_t TSClock;
static inline TSDuration duration_from_micros(uint64_t micros) {
return micros * (uint64_t)CLOCKS_PER_SEC / 1000000;
}
static inline uint64_t duration_to_micros(TSDuration self) {
return self * 1000000 / (uint64_t)CLOCKS_PER_SEC;
}
static inline TSClock clock_null(void) {
return 0;
}
static inline TSClock clock_now(void) {
return (uint64_t)clock();
}
static inline TSClock clock_after(TSClock base, TSDuration duration) {
return base + duration;
}
static inline bool clock_is_null(TSClock self) {
return !self;
}
static inline bool clock_is_gt(TSClock self, TSClock other) {
return self > other;
}
#endif // TREE_SITTER_CLOCK_H_

View file

@ -1,99 +0,0 @@
/* ************************************************************************** */
/* */
/* ::: :::::::: */
/* create_language.c :+: :+: :+: */
/* +:+ +:+ +:+ */
/* By: maiboyer <maiboyer@student.42.fr> +#+ +:+ +#+ */
/* +#+#+#+#+#+ +#+ */
/* Created: 2024/04/25 16:13:52 by maiboyer #+# #+# */
/* Updated: 2024/06/24 00:35:41 by maiboyer ### ########.fr */
/* */
/* ************************************************************************** */
#include "../static/headers/constants.h"
#include "../static/headers/symbols.h"
#include "./parser.h"
bool lex_keywords_main(TSLexer *lexer, TSStateId state);
bool lex_normal_main(TSLexer *lexer, TSStateId state);
bool tree_sitter_sh_external_scanner_scan(void *ctx, TSLexer *lexer, const bool *ret);
void *create_external_scanner_states(void);
void *create_field_names(void);
void *create_symbols_names(void);
void *create_field_map_entries(void);
void *create_field_map_slices(void);
void *create_lex_modes(void);
void *create_parse_actions_entries(void);
void *create_primary_state_ids(void);
void *create_alias_sequences(void);
void *create_external_scanner_symbol_map(void);
void *create_non_terminal_alias_map(void);
void *create_unique_symbols_map(void);
void *create_symbols_metadata(void);
void *create_parse_table(void);
void *create_small_parse_table(void);
void *create_small_parse_table_map(void);
uint32_t tree_sitter_sh_external_scanner_serialize(void *ctx, char *s);
void tree_sitter_sh_external_scanner_deserialize(void *ctx, const char *s, uint32_t val);
void tree_sitter_sh_external_scanner_destroy(void *ctx);
void *tree_sitter_sh_external_scanner_create(void);
static struct ExternalScannerDefinition init_scanner(void)
{
return ((struct ExternalScannerDefinition){
create_external_scanner_states(),
create_external_scanner_symbol_map(),
tree_sitter_sh_external_scanner_create,
tree_sitter_sh_external_scanner_destroy,
tree_sitter_sh_external_scanner_scan,
tree_sitter_sh_external_scanner_serialize,
tree_sitter_sh_external_scanner_deserialize,
});
}
static void init_language(TSLanguage *language)
{
language->parse_table = create_parse_table();
language->small_parse_table = create_small_parse_table();
language->small_parse_table_map = create_small_parse_table_map();
language->parse_actions = create_parse_actions_entries();
language->symbol_names = create_symbols_names();
language->field_names = create_field_names();
language->field_map_slices = create_field_map_slices();
language->field_map_entries = create_field_map_entries();
language->symbol_metadata = create_symbols_metadata();
language->public_symbol_map = create_unique_symbols_map();
language->alias_map = create_non_terminal_alias_map();
language->alias_sequences = create_alias_sequences();
language->lex_modes = create_lex_modes();
language->primary_state_ids = create_primary_state_ids();
language->lex_fn = lex_normal_main;
language->keyword_lex_fn = lex_keywords_main;
language->keyword_capture_token = sym_word;
language->external_scanner = init_scanner();
}
const TSLanguage *tree_sitter_bash(void)
{
static bool init = false;
static TSLanguage language = {
.version = LANGUAGE_VERSION,
.symbol_count = SYMBOL_COUNT,
.alias_count = ALIAS_COUNT,
.token_count = TOKEN_COUNT,
.external_token_count = EXTERNAL_TOKEN_COUNT,
.state_count = STATE_COUNT,
.large_state_count = LARGE_STATE_COUNT,
.production_id_count = PRODUCTION_ID_COUNT,
.field_count = FIELD_COUNT,
.max_alias_sequence_length = MAX_ALIAS_SEQUENCE_LENGTH,
};
if (!init)
{
init_language(&language);
init = true;
}
return ((TSLanguage *)&language);
}

View file

@ -1,11 +0,0 @@
#ifndef TREE_SITTER_ERROR_COSTS_H_
#define TREE_SITTER_ERROR_COSTS_H_
#define ERROR_STATE 0
#define ERROR_COST_PER_RECOVERY 500
#define ERROR_COST_PER_MISSING_TREE 110
#define ERROR_COST_PER_SKIPPED_TREE 100
#define ERROR_COST_PER_SKIPPED_LINE 30
#define ERROR_COST_PER_SKIPPED_CHAR 1
#endif

View file

@ -1,547 +0,0 @@
#include "./get_changed_ranges.h"
#include "./error_costs.h"
#include "./language.h"
#include "./subtree.h"
#include "./tree_cursor.h"
#include <assert.h>
// #define DEBUG_GET_CHANGED_RANGES
static void ts_range_array_add(TSRangeArray *self, Length start, Length end)
{
if (self->size > 0)
{
TSRange *last_range = array_back(self);
if (start.bytes <= last_range->end_byte)
{
last_range->end_byte = end.bytes;
last_range->end_point = end.extent;
return;
}
}
if (start.bytes < end.bytes)
{
TSRange range = {start.extent, end.extent, start.bytes, end.bytes};
array_push(self, range);
}
}
bool ts_range_array_intersects(const TSRangeArray *self, unsigned start_index, uint32_t start_byte, uint32_t end_byte)
{
for (unsigned i = start_index; i < self->size; i++)
{
TSRange *range = &self->contents[i];
if (range->end_byte > start_byte)
{
if (range->start_byte >= end_byte)
break;
return true;
}
}
return false;
}
void ts_range_array_get_changed_ranges(const TSRange *old_ranges, unsigned old_range_count, const TSRange *new_ranges,
unsigned new_range_count, TSRangeArray *differences)
{
unsigned new_index = 0;
unsigned old_index = 0;
Length current_position = length_zero();
bool in_old_range = false;
bool in_new_range = false;
while (old_index < old_range_count || new_index < new_range_count)
{
const TSRange *old_range = &old_ranges[old_index];
const TSRange *new_range = &new_ranges[new_index];
Length next_old_position;
if (in_old_range)
{
next_old_position = (Length){old_range->end_byte, old_range->end_point};
}
else if (old_index < old_range_count)
{
next_old_position = (Length){old_range->start_byte, old_range->start_point};
}
else
{
next_old_position = LENGTH_MAX;
}
Length next_new_position;
if (in_new_range)
{
next_new_position = (Length){new_range->end_byte, new_range->end_point};
}
else if (new_index < new_range_count)
{
next_new_position = (Length){new_range->start_byte, new_range->start_point};
}
else
{
next_new_position = LENGTH_MAX;
}
if (next_old_position.bytes < next_new_position.bytes)
{
if (in_old_range != in_new_range)
{
ts_range_array_add(differences, current_position, next_old_position);
}
if (in_old_range)
old_index++;
current_position = next_old_position;
in_old_range = !in_old_range;
}
else if (next_new_position.bytes < next_old_position.bytes)
{
if (in_old_range != in_new_range)
{
ts_range_array_add(differences, current_position, next_new_position);
}
if (in_new_range)
new_index++;
current_position = next_new_position;
in_new_range = !in_new_range;
}
else
{
if (in_old_range != in_new_range)
{
ts_range_array_add(differences, current_position, next_new_position);
}
if (in_old_range)
old_index++;
if (in_new_range)
new_index++;
in_old_range = !in_old_range;
in_new_range = !in_new_range;
current_position = next_new_position;
}
}
}
typedef struct Iterator
{
TreeCursor cursor;
const TSLanguage *language;
unsigned visible_depth;
bool in_padding;
} Iterator;
static Iterator iterator_new(TreeCursor *cursor, const Subtree *tree, const TSLanguage *language)
{
array_clear(&cursor->stack);
array_push(&cursor->stack, ((TreeCursorEntry){
.subtree = tree,
.position = length_zero(),
.child_index = 0,
.structural_child_index = 0,
}));
return (Iterator){
.cursor = *cursor,
.language = language,
.visible_depth = 1,
.in_padding = false,
};
}
static bool iterator_done(Iterator *self)
{
return self->cursor.stack.size == 0;
}
static Length iterator_start_position(Iterator *self)
{
TreeCursorEntry entry = *array_back(&self->cursor.stack);
if (self->in_padding)
{
return entry.position;
}
else
{
return length_add(entry.position, ts_subtree_padding(*entry.subtree));
}
}
static Length iterator_end_position(Iterator *self)
{
TreeCursorEntry entry = *array_back(&self->cursor.stack);
Length result = length_add(entry.position, ts_subtree_padding(*entry.subtree));
if (self->in_padding)
{
return result;
}
else
{
return length_add(result, ts_subtree_size(*entry.subtree));
}
}
static bool iterator_tree_is_visible(const Iterator *self)
{
TreeCursorEntry entry = *array_back(&self->cursor.stack);
if (ts_subtree_visible(*entry.subtree))
return true;
if (self->cursor.stack.size > 1)
{
Subtree parent = *self->cursor.stack.contents[self->cursor.stack.size - 2].subtree;
return ts_language_alias_at(self->language, parent.ptr->inner.non_terminal.production_id, entry.structural_child_index) != 0;
}
return false;
}
static void iterator_get_visible_state(const Iterator *self, Subtree *tree, TSSymbol *alias_symbol, uint32_t *start_byte)
{
uint32_t i = self->cursor.stack.size - 1;
if (self->in_padding)
{
if (i == 0)
return;
i--;
}
for (; i + 1 > 0; i--)
{
TreeCursorEntry entry = self->cursor.stack.contents[i];
if (i > 0)
{
const Subtree *parent = self->cursor.stack.contents[i - 1].subtree;
*alias_symbol = ts_language_alias_at(self->language, parent->ptr->inner.non_terminal.production_id, entry.structural_child_index);
}
if (ts_subtree_visible(*entry.subtree) || *alias_symbol)
{
*tree = *entry.subtree;
*start_byte = entry.position.bytes;
break;
}
}
}
static void iterator_ascend(Iterator *self)
{
if (iterator_done(self))
return;
if (iterator_tree_is_visible(self) && !self->in_padding)
self->visible_depth--;
if (array_back(&self->cursor.stack)->child_index > 0)
self->in_padding = false;
self->cursor.stack.size--;
}
static bool iterator_descend(Iterator *self, uint32_t goal_position)
{
if (self->in_padding)
return false;
bool did_descend = false;
do
{
did_descend = false;
TreeCursorEntry entry = *array_back(&self->cursor.stack);
Length position = entry.position;
uint32_t structural_child_index = 0;
for (uint32_t i = 0, n = ts_subtree_child_count(*entry.subtree); i < n; i++)
{
const Subtree *child = &ts_subtree_children(*entry.subtree)[i];
Length child_left = length_add(position, ts_subtree_padding(*child));
Length child_right = length_add(child_left, ts_subtree_size(*child));
if (child_right.bytes > goal_position)
{
array_push(&self->cursor.stack, ((TreeCursorEntry){
.subtree = child,
.position = position,
.child_index = i,
.structural_child_index = structural_child_index,
}));
if (iterator_tree_is_visible(self))
{
if (child_left.bytes > goal_position)
{
self->in_padding = true;
}
else
{
self->visible_depth++;
}
return true;
}
did_descend = true;
break;
}
position = child_right;
if (!ts_subtree_extra(*child))
structural_child_index++;
}
} while (did_descend);
return false;
}
static void iterator_advance(Iterator *self)
{
if (self->in_padding)
{
self->in_padding = false;
if (iterator_tree_is_visible(self))
{
self->visible_depth++;
}
else
{
iterator_descend(self, 0);
}
return;
}
for (;;)
{
if (iterator_tree_is_visible(self))
self->visible_depth--;
TreeCursorEntry entry = array_pop(&self->cursor.stack);
if (iterator_done(self))
return;
const Subtree *parent = array_back(&self->cursor.stack)->subtree;
uint32_t child_index = entry.child_index + 1;
if (ts_subtree_child_count(*parent) > child_index)
{
Length position = length_add(entry.position, ts_subtree_total_size(*entry.subtree));
uint32_t structural_child_index = entry.structural_child_index;
if (!ts_subtree_extra(*entry.subtree))
structural_child_index++;
const Subtree *next_child = &ts_subtree_children(*parent)[child_index];
array_push(&self->cursor.stack, ((TreeCursorEntry){
.subtree = next_child,
.position = position,
.child_index = child_index,
.structural_child_index = structural_child_index,
}));
if (iterator_tree_is_visible(self))
{
if (ts_subtree_padding(*next_child).bytes > 0)
{
self->in_padding = true;
}
else
{
self->visible_depth++;
}
}
else
{
iterator_descend(self, 0);
}
break;
}
}
}
typedef enum IteratorComparison
{
IteratorDiffers,
IteratorMayDiffer,
IteratorMatches,
} IteratorComparison;
static IteratorComparison iterator_compare(const Iterator *old_iter, const Iterator *new_iter)
{
Subtree old_tree = NULL_SUBTREE;
Subtree new_tree = NULL_SUBTREE;
uint32_t old_start = 0;
uint32_t new_start = 0;
TSSymbol old_alias_symbol = 0;
TSSymbol new_alias_symbol = 0;
iterator_get_visible_state(old_iter, &old_tree, &old_alias_symbol, &old_start);
iterator_get_visible_state(new_iter, &new_tree, &new_alias_symbol, &new_start);
if (!old_tree.ptr && !new_tree.ptr)
return IteratorMatches;
if (!old_tree.ptr || !new_tree.ptr)
return IteratorDiffers;
if (old_alias_symbol == new_alias_symbol && ts_subtree_symbol(old_tree) == ts_subtree_symbol(new_tree))
{
if (old_start == new_start && !ts_subtree_has_changes(old_tree) && ts_subtree_symbol(old_tree) != ts_builtin_sym_error &&
ts_subtree_size(old_tree).bytes == ts_subtree_size(new_tree).bytes && ts_subtree_parse_state(old_tree) != TS_TREE_STATE_NONE &&
ts_subtree_parse_state(new_tree) != TS_TREE_STATE_NONE &&
(ts_subtree_parse_state(old_tree) == ERROR_STATE) == (ts_subtree_parse_state(new_tree) == ERROR_STATE))
{
return IteratorMatches;
}
else
{
return IteratorMayDiffer;
}
}
return IteratorDiffers;
}
#ifdef DEBUG_GET_CHANGED_RANGES
static inline void iterator_print_state(Iterator *self)
{
TreeCursorEntry entry = *array_back(&self->cursor.stack);
TSPoint start = iterator_start_position(self).extent;
TSPoint end = iterator_end_position(self).extent;
const char *name = ts_language_symbol_name(self->language, ts_subtree_symbol(*entry.subtree));
printf("(%-25s %s\t depth:%u [%u, %u] - [%u, %u])", name, self->in_padding ? "(p)" : " ", self->visible_depth, start.row + 1,
start.column, end.row + 1, end.column);
}
#endif
unsigned ts_subtree_get_changed_ranges(const Subtree *old_tree, const Subtree *new_tree, TreeCursor *cursor1, TreeCursor *cursor2,
const TSLanguage *language, const TSRangeArray *included_range_differences, TSRange **ranges)
{
TSRangeArray results = array_new();
Iterator old_iter = iterator_new(cursor1, old_tree, language);
Iterator new_iter = iterator_new(cursor2, new_tree, language);
unsigned included_range_difference_index = 0;
Length position = iterator_start_position(&old_iter);
Length next_position = iterator_start_position(&new_iter);
if (position.bytes < next_position.bytes)
{
ts_range_array_add(&results, position, next_position);
position = next_position;
}
else if (position.bytes > next_position.bytes)
{
ts_range_array_add(&results, next_position, position);
next_position = position;
}
do
{
#ifdef DEBUG_GET_CHANGED_RANGES
printf("At [%-2u, %-2u] Compare ", position.extent.row + 1, position.extent.column);
iterator_print_state(&old_iter);
printf("\tvs\t");
iterator_print_state(&new_iter);
puts("");
#endif
// Compare the old and new subtrees.
IteratorComparison comparison = iterator_compare(&old_iter, &new_iter);
// Even if the two subtrees appear to be identical, they could differ
// internally if they contain a range of text that was previously
// excluded from the parse, and is now included, or vice-versa.
if (comparison == IteratorMatches && ts_range_array_intersects(included_range_differences, included_range_difference_index,
position.bytes, iterator_end_position(&old_iter).bytes))
{
comparison = IteratorMayDiffer;
}
bool is_changed = false;
switch (comparison)
{
// If the subtrees are definitely identical, move to the end
// of both subtrees.
case IteratorMatches:
next_position = iterator_end_position(&old_iter);
break;
// If the subtrees might differ internally, descend into both
// subtrees, finding the first child that spans the current position.
case IteratorMayDiffer:
if (iterator_descend(&old_iter, position.bytes))
{
if (!iterator_descend(&new_iter, position.bytes))
{
is_changed = true;
next_position = iterator_end_position(&old_iter);
}
}
else if (iterator_descend(&new_iter, position.bytes))
{
is_changed = true;
next_position = iterator_end_position(&new_iter);
}
else
{
next_position = length_min(iterator_end_position(&old_iter), iterator_end_position(&new_iter));
}
break;
// If the subtrees are different, record a change and then move
// to the end of both subtrees.
case IteratorDiffers:
is_changed = true;
next_position = length_min(iterator_end_position(&old_iter), iterator_end_position(&new_iter));
break;
}
// Ensure that both iterators are caught up to the current position.
while (!iterator_done(&old_iter) && iterator_end_position(&old_iter).bytes <= next_position.bytes)
iterator_advance(&old_iter);
while (!iterator_done(&new_iter) && iterator_end_position(&new_iter).bytes <= next_position.bytes)
iterator_advance(&new_iter);
// Ensure that both iterators are at the same depth in the tree.
while (old_iter.visible_depth > new_iter.visible_depth)
{
iterator_ascend(&old_iter);
}
while (new_iter.visible_depth > old_iter.visible_depth)
{
iterator_ascend(&new_iter);
}
if (is_changed)
{
#ifdef DEBUG_GET_CHANGED_RANGES
printf(" change: [[%u, %u] - [%u, %u]]\n", position.extent.row + 1, position.extent.column, next_position.extent.row + 1,
next_position.extent.column);
#endif
ts_range_array_add(&results, position, next_position);
}
position = next_position;
// Keep track of the current position in the included range differences
// array in order to avoid scanning the entire array on each iteration.
while (included_range_difference_index < included_range_differences->size)
{
const TSRange *range = &included_range_differences->contents[included_range_difference_index];
if (range->end_byte <= position.bytes)
{
included_range_difference_index++;
}
else
{
break;
}
}
} while (!iterator_done(&old_iter) && !iterator_done(&new_iter));
Length old_size = ts_subtree_total_size(*old_tree);
Length new_size = ts_subtree_total_size(*new_tree);
if (old_size.bytes < new_size.bytes)
{
ts_range_array_add(&results, old_size, new_size);
}
else if (new_size.bytes < old_size.bytes)
{
ts_range_array_add(&results, new_size, old_size);
}
*cursor1 = old_iter.cursor;
*cursor2 = new_iter.cursor;
*ranges = results.contents;
return results.size;
}

View file

@ -1,24 +0,0 @@
#ifndef TREE_SITTER_GET_CHANGED_RANGES_H_
#define TREE_SITTER_GET_CHANGED_RANGES_H_
#ifdef __cplusplus
extern "C"
{
#endif
#include "./subtree.h"
#include "./tree_cursor.h"
typedef Array(TSRange) TSRangeArray;
void ts_range_array_get_changed_ranges(const TSRange *old_ranges, unsigned old_range_count, const TSRange *new_ranges, unsigned new_range_count, TSRangeArray *differences);
bool ts_range_array_intersects(const TSRangeArray *self, unsigned start_index, uint32_t start_byte, uint32_t end_byte);
unsigned ts_subtree_get_changed_ranges(const Subtree *old_tree, const Subtree *new_tree, TreeCursor *cursor1, TreeCursor *cursor2, const TSLanguage *language, const TSRangeArray *included_range_differences, TSRange **ranges);
#ifdef __cplusplus
}
#endif
#endif // TREE_SITTER_GET_CHANGED_RANGES_H_

View file

@ -1,20 +0,0 @@
// Determine endian and pointer size based on known defines.
// TS_BIG_ENDIAN and TS_PTR_SIZE can be set as -D compiler arguments
// to override this.
#if !defined(TS_BIG_ENDIAN)
# if (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) || (defined(__APPLE_CC__) && (defined(__ppc__) || defined(__ppc64__)))
# define TS_BIG_ENDIAN 1
# else
# define TS_BIG_ENDIAN 0
# endif
#endif
#if !defined(TS_PTR_SIZE)
# if UINTPTR_MAX == 0xFFFFFFFF
# define TS_PTR_SIZE 32
# else
# define TS_PTR_SIZE 64
# endif
#endif

View file

@ -1,215 +0,0 @@
#include "./language.h"
#include "./api.h"
#include <string.h>
const TSLanguage *ts_language_copy(const TSLanguage *self) {
return self;
}
void ts_language_delete(const TSLanguage *self) {
(void)(self);
}
uint32_t ts_language_symbol_count(const TSLanguage *self) {
return self->symbol_count + self->alias_count;
}
uint32_t ts_language_state_count(const TSLanguage *self) {
return self->state_count;
}
uint32_t ts_language_version(const TSLanguage *self) {
return self->version;
}
uint32_t ts_language_field_count(const TSLanguage *self) {
return self->field_count;
}
void ts_language_table_entry(
const TSLanguage *self,
TSStateId state,
TSSymbol symbol,
TableEntry *result
) {
if (symbol == ts_builtin_sym_error || symbol == ts_builtin_sym_error_repeat) {
result->action_count = 0;
result->is_reusable = false;
result->actions = NULL;
} else {
assert(symbol < self->token_count);
uint32_t action_index = ts_language_lookup(self, state, symbol);
const TSParseActionEntry *entry = &self->parse_actions[action_index];
result->action_count = entry->entry.count;
result->is_reusable = entry->entry.reusable;
result->actions = (const TSParseAction *)(entry + 1);
}
}
TSSymbolMetadata ts_language_symbol_metadata(
const TSLanguage *self,
TSSymbol symbol
) {
if (symbol == ts_builtin_sym_error) {
return (TSSymbolMetadata) {.visible = true, .named = true};
} else if (symbol == ts_builtin_sym_error_repeat) {
return (TSSymbolMetadata) {.visible = false, .named = false};
} else {
return self->symbol_metadata[symbol];
}
}
TSSymbol ts_language_public_symbol(
const TSLanguage *self,
TSSymbol symbol
) {
if (symbol == ts_builtin_sym_error) return symbol;
return self->public_symbol_map[symbol];
}
TSStateId ts_language_next_state(
const TSLanguage *self,
TSStateId state,
TSSymbol symbol
) {
if (symbol == ts_builtin_sym_error || symbol == ts_builtin_sym_error_repeat) {
return 0;
} else if (symbol < self->token_count) {
uint32_t count;
const TSParseAction *actions = ts_language_actions(self, state, symbol, &count);
if (count > 0) {
TSParseAction action = actions[count - 1];
if (action.type == TSParseActionTypeShift) {
return action.shift.extra ? state : action.shift.state;
}
}
return 0;
} else {
return ts_language_lookup(self, state, symbol);
}
}
const char *ts_language_symbol_name(
const TSLanguage *self,
TSSymbol symbol
) {
if (symbol == ts_builtin_sym_error) {
return "ERROR";
} else if (symbol == ts_builtin_sym_error_repeat) {
return "_ERROR";
} else if (symbol < ts_language_symbol_count(self)) {
return self->symbol_names[symbol];
} else {
return NULL;
}
}
TSSymbol ts_language_symbol_for_name(
const TSLanguage *self,
const char *string,
uint32_t length,
bool is_named
) {
if (!strncmp(string, "ERROR", length)) return ts_builtin_sym_error;
uint16_t count = (uint16_t)ts_language_symbol_count(self);
for (TSSymbol i = 0; i < count; i++) {
TSSymbolMetadata metadata = ts_language_symbol_metadata(self, i);
if ((!metadata.visible && !metadata.supertype) || metadata.named != is_named) continue;
const char *symbol_name = self->symbol_names[i];
if (!strncmp(symbol_name, string, length) && !symbol_name[length]) {
return self->public_symbol_map[i];
}
}
return 0;
}
TSSymbolType ts_language_symbol_type(
const TSLanguage *self,
TSSymbol symbol
) {
TSSymbolMetadata metadata = ts_language_symbol_metadata(self, symbol);
if (metadata.named && metadata.visible) {
return TSSymbolTypeRegular;
} else if (metadata.visible) {
return TSSymbolTypeAnonymous;
} else {
return TSSymbolTypeAuxiliary;
}
}
const char *ts_language_field_name_for_id(
const TSLanguage *self,
TSFieldId id
) {
uint32_t count = ts_language_field_count(self);
if (count && id <= count) {
return self->field_names[id];
} else {
return NULL;
}
}
TSFieldId ts_language_field_id_for_name(
const TSLanguage *self,
const char *name,
uint32_t name_length
) {
uint16_t count = (uint16_t)ts_language_field_count(self);
for (TSSymbol i = 1; i < count + 1; i++) {
switch (strncmp(name, self->field_names[i], name_length)) {
case 0:
if (self->field_names[i][name_length] == 0) return i;
break;
case -1:
return 0;
default:
break;
}
}
return 0;
}
TSLookaheadIterator *ts_lookahead_iterator_new(const TSLanguage *self, TSStateId state) {
if (state >= self->state_count) return NULL;
LookaheadIterator *iterator = ts_malloc(sizeof(LookaheadIterator));
*iterator = ts_language_lookaheads(self, state);
return (TSLookaheadIterator *)iterator;
}
void ts_lookahead_iterator_delete(TSLookaheadIterator *self) {
ts_free(self);
}
bool ts_lookahead_iterator_reset_state(TSLookaheadIterator * self, TSStateId state) {
LookaheadIterator *iterator = (LookaheadIterator *)self;
if (state >= iterator->language->state_count) return false;
*iterator = ts_language_lookaheads(iterator->language, state);
return true;
}
const TSLanguage *ts_lookahead_iterator_language(const TSLookaheadIterator *self) {
const LookaheadIterator *iterator = (const LookaheadIterator *)self;
return iterator->language;
}
bool ts_lookahead_iterator_reset(TSLookaheadIterator *self, const TSLanguage *language, TSStateId state) {
if (state >= language->state_count) return false;
LookaheadIterator *iterator = (LookaheadIterator *)self;
*iterator = ts_language_lookaheads(language, state);
return true;
}
bool ts_lookahead_iterator_next(TSLookaheadIterator *self) {
LookaheadIterator *iterator = (LookaheadIterator *)self;
return ts_lookahead_iterator__next(iterator);
}
TSSymbol ts_lookahead_iterator_current_symbol(const TSLookaheadIterator *self) {
const LookaheadIterator *iterator = (const LookaheadIterator *)self;
return iterator->symbol;
}
const char *ts_lookahead_iterator_current_symbol_name(const TSLookaheadIterator *self) {
const LookaheadIterator *iterator = (const LookaheadIterator *)self;
return ts_language_symbol_name(iterator->language, iterator->symbol);
}

View file

@ -1,299 +0,0 @@
#ifndef TREE_SITTER_LANGUAGE_H_
#define TREE_SITTER_LANGUAGE_H_
#ifdef __cplusplus
extern "C"
{
#endif
#include "./parser.h"
#include "./subtree.h"
#define ts_builtin_sym_error_repeat (ts_builtin_sym_error - 1)
#define LANGUAGE_VERSION_WITH_PRIMARY_STATES 14
#define LANGUAGE_VERSION_USABLE_VIA_WASM 13
typedef struct TableEntry
{
const TSParseAction *actions;
uint32_t action_count;
bool is_reusable;
} TableEntry;
typedef struct LookaheadIterator
{
const TSLanguage *language;
const uint16_t *data;
const uint16_t *group_end;
TSStateId state;
uint16_t table_value;
uint16_t section_index;
uint16_t group_count;
bool is_small_state;
const TSParseAction *actions;
TSSymbol symbol;
TSStateId next_state;
uint16_t action_count;
} LookaheadIterator;
void ts_language_table_entry(const TSLanguage *, TSStateId, TSSymbol, TableEntry *);
TSSymbolMetadata ts_language_symbol_metadata(const TSLanguage *, TSSymbol);
TSSymbol ts_language_public_symbol(const TSLanguage *, TSSymbol);
TSStateId ts_language_next_state(const TSLanguage *self, TSStateId state, TSSymbol symbol);
static inline bool ts_language_is_symbol_external(const TSLanguage *self, TSSymbol symbol)
{
return 0 < symbol && symbol < self->external_token_count + 1;
}
static inline const TSParseAction *ts_language_actions(const TSLanguage *self, TSStateId state, TSSymbol symbol, uint32_t *count)
{
TableEntry entry;
ts_language_table_entry(self, state, symbol, &entry);
*count = entry.action_count;
return entry.actions;
}
static inline bool ts_language_has_reduce_action(const TSLanguage *self, TSStateId state, TSSymbol symbol)
{
TableEntry entry;
ts_language_table_entry(self, state, symbol, &entry);
return entry.action_count > 0 && entry.actions[0].type == TSParseActionTypeReduce;
}
// Lookup the table value for a given symbol and state.
//
// For non-terminal symbols, the table value represents a successor state.
// For terminal symbols, it represents an index in the actions table.
// For 'large' parse states, this is a direct lookup. For 'small' parse
// states, this requires searching through the symbol groups to find
// the given symbol.
static inline uint16_t ts_language_lookup(const TSLanguage *self, TSStateId state, TSSymbol symbol)
{
if (state >= self->large_state_count)
{
uint32_t index = self->small_parse_table_map[state - self->large_state_count];
const uint16_t *data = &self->small_parse_table[index];
uint16_t group_count = *(data++);
for (unsigned i = 0; i < group_count; i++)
{
uint16_t section_value = *(data++);
uint16_t symbol_count = *(data++);
for (unsigned j = 0; j < symbol_count; j++)
{
if (*(data++) == symbol)
return section_value;
}
}
return 0;
}
else
{
return self->parse_table[state * self->symbol_count + symbol];
}
}
static inline bool ts_language_has_actions(const TSLanguage *self, TSStateId state, TSSymbol symbol)
{
return ts_language_lookup(self, state, symbol) != 0;
}
// Iterate over all of the symbols that are valid in the given state.
//
// For 'large' parse states, this just requires iterating through
// all possible symbols and checking the parse table for each one.
// For 'small' parse states, this exploits the structure of the
// table to only visit the valid symbols.
static inline LookaheadIterator ts_language_lookaheads(const TSLanguage *self, TSStateId state)
{
bool is_small_state = state >= self->large_state_count;
const uint16_t *data;
const uint16_t *group_end = NULL;
uint16_t group_count = 0;
if (is_small_state)
{
uint32_t index = self->small_parse_table_map[state - self->large_state_count];
data = &self->small_parse_table[index];
group_end = data + 1;
group_count = *data;
}
else
{
data = &self->parse_table[state * self->symbol_count] - 1;
}
return (LookaheadIterator){
.language = self,
.data = data,
.group_end = group_end,
.group_count = group_count,
.is_small_state = is_small_state,
.symbol = UINT16_MAX,
.next_state = 0,
};
}
static inline bool ts_lookahead_iterator__next(LookaheadIterator *self)
{
// For small parse states, valid symbols are listed explicitly,
// grouped by their value. There's no need to look up the actions
// again until moving to the next group.
if (self->is_small_state)
{
self->data++;
if (self->data == self->group_end)
{
if (self->group_count == 0)
return false;
self->group_count--;
self->table_value = *(self->data++);
unsigned symbol_count = *(self->data++);
self->group_end = self->data + symbol_count;
self->symbol = *self->data;
}
else
{
self->symbol = *self->data;
return true;
}
}
// For large parse states, iterate through every symbol until one
// is found that has valid actions.
else
{
do
{
self->data++;
self->symbol++;
if (self->symbol >= self->language->symbol_count)
return false;
self->table_value = *self->data;
} while (!self->table_value);
}
// Depending on if the symbols is terminal or non-terminal, the table value either
// represents a list of actions or a successor state.
if (self->symbol < self->language->token_count)
{
const TSParseActionEntry *entry = &self->language->parse_actions[self->table_value];
self->action_count = entry->entry.count;
self->actions = (const TSParseAction *)(entry + 1);
self->next_state = 0;
}
else
{
self->action_count = 0;
self->next_state = self->table_value;
}
return true;
}
// Whether the state is a "primary state". If this returns false, it indicates that there exists
// another state that behaves identically to this one with respect to query analysis.
static inline bool ts_language_state_is_primary(const TSLanguage *self, TSStateId state)
{
if (self->version >= LANGUAGE_VERSION_WITH_PRIMARY_STATES)
{
return state == self->primary_state_ids[state];
}
else
{
return true;
}
}
static inline const bool *ts_language_enabled_external_tokens(const TSLanguage *self, unsigned external_scanner_state)
{
if (external_scanner_state == 0)
{
return NULL;
}
else
{
return self->external_scanner.states + self->external_token_count * external_scanner_state;
}
}
static inline const TSSymbol *ts_language_alias_sequence(const TSLanguage *self, uint32_t production_id)
{
return production_id ? &self->alias_sequences[production_id * self->max_alias_sequence_length] : NULL;
}
static inline TSSymbol ts_language_alias_at(const TSLanguage *self, uint32_t production_id, uint32_t child_index)
{
return production_id ? self->alias_sequences[production_id * self->max_alias_sequence_length + child_index] : 0;
}
static inline void ts_language_field_map(const TSLanguage *self, uint32_t production_id, const TSFieldMapEntry **start,
const TSFieldMapEntry **end)
{
if (self->field_count == 0)
{
*start = NULL;
*end = NULL;
return;
}
TSFieldMapSlice slice = self->field_map_slices[production_id];
*start = &self->field_map_entries[slice.index];
*end = &self->field_map_entries[slice.index] + slice.length;
}
static inline void ts_language_aliases_for_symbol(const TSLanguage *self, TSSymbol original_symbol, const TSSymbol **start,
const TSSymbol **end)
{
*start = &self->public_symbol_map[original_symbol];
*end = *start + 1;
unsigned idx = 0;
for (;;)
{
TSSymbol symbol = self->alias_map[idx++];
if (symbol == 0 || symbol > original_symbol)
break;
uint16_t count = self->alias_map[idx++];
if (symbol == original_symbol)
{
*start = &self->alias_map[idx];
*end = &self->alias_map[idx + count];
break;
}
idx += count;
}
}
static inline void ts_language_write_symbol_as_dot_string(const TSLanguage *self, FILE *f, TSSymbol symbol)
{
const char *name = ts_language_symbol_name(self, symbol);
for (const char *chr = name; *chr; chr++)
{
switch (*chr)
{
case '"':
case '\\':
fputc('\\', f);
fputc(*chr, f);
break;
case '\n':
fputs("\\n", f);
break;
case '\t':
fputs("\\t", f);
break;
default:
fputc(*chr, f);
break;
}
}
}
#ifdef __cplusplus
}
#endif
#endif // TREE_SITTER_LANGUAGE_H_

View file

@ -1,62 +0,0 @@
#ifndef TREE_SITTER_LENGTH_H_
#define TREE_SITTER_LENGTH_H_
#include "./api.h"
#include "./point.h"
#include <stdbool.h>
#include <stdlib.h>
typedef struct Length
{
uint32_t bytes;
TSPoint extent;
} Length;
static const Length LENGTH_UNDEFINED = {0, {0, 1}};
static const Length LENGTH_MAX = {UINT32_MAX, {UINT32_MAX, UINT32_MAX}};
static inline bool length_is_undefined(Length length)
{
return length.bytes == 0 && length.extent.column != 0;
}
static inline Length length_min(Length len1, Length len2)
{
return (len1.bytes < len2.bytes) ? len1 : len2;
}
static inline Length length_add(Length len1, Length len2)
{
Length result;
result.bytes = len1.bytes + len2.bytes;
result.extent = point_add(len1.extent, len2.extent);
return result;
}
static inline Length length_sub(Length len1, Length len2)
{
Length result;
result.bytes = len1.bytes - len2.bytes;
result.extent = point_sub(len1.extent, len2.extent);
return result;
}
static inline Length length_zero(void)
{
Length result = {0, {0, 0}};
return result;
}
static inline Length length_saturating_sub(Length len1, Length len2)
{
if (len1.bytes > len2.bytes)
{
return length_sub(len1, len2);
}
else
{
return length_zero();
}
}
#endif

View file

@ -1,419 +0,0 @@
#include <stdio.h>
#include "./lexer.h"
#include "./subtree.h"
#include "./length.h"
#include "./unicode.h"
#define LOG(message, character) \
if (self->logger.log) { \
snprintf( \
self->debug_buffer, \
TREE_SITTER_SERIALIZATION_BUFFER_SIZE, \
32 <= character && character < 127 ? \
message " character:'%c'" : \
message " character:%d", \
character \
); \
self->logger.log( \
self->logger.payload, \
TSLogTypeLex, \
self->debug_buffer \
); \
}
static const int32_t BYTE_ORDER_MARK = 0xFEFF;
static const TSRange DEFAULT_RANGE = {
.start_point = {
.row = 0,
.column = 0,
},
.end_point = {
.row = UINT32_MAX,
.column = UINT32_MAX,
},
.start_byte = 0,
.end_byte = UINT32_MAX
};
// Check if the lexer has reached EOF. This state is stored
// by setting the lexer's `current_included_range_index` such that
// it has consumed all of its available ranges.
static bool ts_lexer__eof(const TSLexer *_self) {
Lexer *self = (Lexer *)_self;
return self->current_included_range_index == self->included_range_count;
}
// Clear the currently stored chunk of source code, because the lexer's
// position has changed.
static void ts_lexer__clear_chunk(Lexer *self) {
self->chunk = NULL;
self->chunk_size = 0;
self->chunk_start = 0;
}
// Call the lexer's input callback to obtain a new chunk of source code
// for the current position.
static void ts_lexer__get_chunk(Lexer *self) {
self->chunk_start = self->current_position.bytes;
self->chunk = self->input.read(
self->input.payload,
self->current_position.bytes,
self->current_position.extent,
&self->chunk_size
);
if (!self->chunk_size) {
self->current_included_range_index = self->included_range_count;
self->chunk = NULL;
}
}
// Decode the next unicode character in the current chunk of source code.
// This assumes that the lexer has already retrieved a chunk of source
// code that spans the current position.
static void ts_lexer__get_lookahead(Lexer *self) {
uint32_t position_in_chunk = self->current_position.bytes - self->chunk_start;
uint32_t size = self->chunk_size - position_in_chunk;
if (size == 0) {
self->lookahead_size = 1;
self->data.lookahead = '\0';
return;
}
const uint8_t *chunk = (const uint8_t *)self->chunk + position_in_chunk;
UnicodeDecodeFunction decode = self->input.encoding == TSInputEncodingUTF8
? ts_decode_ascii
: ts_decode_ascii;
self->lookahead_size = decode(chunk, size, &self->data.lookahead);
// If this chunk ended in the middle of a multi-byte character,
// try again with a fresh chunk.
if (self->data.lookahead == TS_DECODE_ERROR && size < 4) {
ts_lexer__get_chunk(self);
chunk = (const uint8_t *)self->chunk;
size = self->chunk_size;
self->lookahead_size = decode(chunk, size, &self->data.lookahead);
}
if (self->data.lookahead == TS_DECODE_ERROR) {
self->lookahead_size = 1;
}
}
static void ts_lexer_goto(Lexer *self, Length position) {
self->current_position = position;
// Move to the first valid position at or after the given position.
bool found_included_range = false;
for (unsigned i = 0; i < self->included_range_count; i++) {
TSRange *included_range = &self->included_ranges[i];
if (
included_range->end_byte > self->current_position.bytes &&
included_range->end_byte > included_range->start_byte
) {
if (included_range->start_byte >= self->current_position.bytes) {
self->current_position = (Length) {
.bytes = included_range->start_byte,
.extent = included_range->start_point,
};
}
self->current_included_range_index = i;
found_included_range = true;
break;
}
}
if (found_included_range) {
// If the current position is outside of the current chunk of text,
// then clear out the current chunk of text.
if (self->chunk && (
self->current_position.bytes < self->chunk_start ||
self->current_position.bytes >= self->chunk_start + self->chunk_size
)) {
ts_lexer__clear_chunk(self);
}
self->lookahead_size = 0;
self->data.lookahead = '\0';
}
// If the given position is beyond any of included ranges, move to the EOF
// state - past the end of the included ranges.
else {
self->current_included_range_index = self->included_range_count;
TSRange *last_included_range = &self->included_ranges[self->included_range_count - 1];
self->current_position = (Length) {
.bytes = last_included_range->end_byte,
.extent = last_included_range->end_point,
};
ts_lexer__clear_chunk(self);
self->lookahead_size = 1;
self->data.lookahead = '\0';
}
}
// Intended to be called only from functions that control logging.
static void ts_lexer__do_advance(Lexer *self, bool skip) {
if (self->lookahead_size) {
self->current_position.bytes += self->lookahead_size;
if (self->data.lookahead == '\n') {
self->current_position.extent.row++;
self->current_position.extent.column = 0;
} else {
self->current_position.extent.column += self->lookahead_size;
}
}
const TSRange *current_range = &self->included_ranges[self->current_included_range_index];
while (
self->current_position.bytes >= current_range->end_byte ||
current_range->end_byte == current_range->start_byte
) {
if (self->current_included_range_index < self->included_range_count) {
self->current_included_range_index++;
}
if (self->current_included_range_index < self->included_range_count) {
current_range++;
self->current_position = (Length) {
current_range->start_byte,
current_range->start_point,
};
} else {
current_range = NULL;
break;
}
}
if (skip) self->token_start_position = self->current_position;
if (current_range) {
if (
self->current_position.bytes < self->chunk_start ||
self->current_position.bytes >= self->chunk_start + self->chunk_size
) {
ts_lexer__get_chunk(self);
}
ts_lexer__get_lookahead(self);
} else {
ts_lexer__clear_chunk(self);
self->data.lookahead = '\0';
self->lookahead_size = 1;
}
}
// Advance to the next character in the source code, retrieving a new
// chunk of source code if needed.
static void ts_lexer__advance(TSLexer *_self, bool skip) {
Lexer *self = (Lexer *)_self;
if (!self->chunk) return;
if (skip) {
LOG("skip", self->data.lookahead)
} else {
LOG("consume", self->data.lookahead)
}
ts_lexer__do_advance(self, skip);
}
// Mark that a token match has completed. This can be called multiple
// times if a longer match is found later.
static void ts_lexer__mark_end(TSLexer *_self) {
Lexer *self = (Lexer *)_self;
if (!ts_lexer__eof(&self->data)) {
// If the lexer is right at the beginning of included range,
// then the token should be considered to end at the *end* of the
// previous included range, rather than here.
TSRange *current_included_range = &self->included_ranges[
self->current_included_range_index
];
if (
self->current_included_range_index > 0 &&
self->current_position.bytes == current_included_range->start_byte
) {
TSRange *previous_included_range = current_included_range - 1;
self->token_end_position = (Length) {
previous_included_range->end_byte,
previous_included_range->end_point,
};
return;
}
}
self->token_end_position = self->current_position;
}
static uint32_t ts_lexer__get_column(TSLexer *_self) {
Lexer *self = (Lexer *)_self;
uint32_t goal_byte = self->current_position.bytes;
self->did_get_column = true;
self->current_position.bytes -= self->current_position.extent.column;
self->current_position.extent.column = 0;
if (self->current_position.bytes < self->chunk_start) {
ts_lexer__get_chunk(self);
}
uint32_t result = 0;
if (!ts_lexer__eof(_self)) {
ts_lexer__get_lookahead(self);
while (self->current_position.bytes < goal_byte && self->chunk) {
result++;
ts_lexer__do_advance(self, false);
if (ts_lexer__eof(_self)) break;
}
}
return result;
}
// Is the lexer at a boundary between two disjoint included ranges of
// source code? This is exposed as an API because some languages' external
// scanners need to perform custom actions at these boundaries.
static bool ts_lexer__is_at_included_range_start(const TSLexer *_self) {
const Lexer *self = (const Lexer *)_self;
if (self->current_included_range_index < self->included_range_count) {
TSRange *current_range = &self->included_ranges[self->current_included_range_index];
return self->current_position.bytes == current_range->start_byte;
} else {
return false;
}
}
void ts_lexer_init(Lexer *self) {
*self = (Lexer) {
.data = {
// The lexer's methods are stored as struct fields so that generated
// parsers can call them without needing to be linked against this
// library.
.advance = ts_lexer__advance,
.mark_end = ts_lexer__mark_end,
.get_column = ts_lexer__get_column,
.is_at_included_range_start = ts_lexer__is_at_included_range_start,
.eof = ts_lexer__eof,
.lookahead = 0,
.result_symbol = 0,
},
.chunk = NULL,
.chunk_size = 0,
.chunk_start = 0,
.current_position = {0, {0, 0}},
.logger = {
.payload = NULL,
.log = NULL
},
.included_ranges = NULL,
.included_range_count = 0,
.current_included_range_index = 0,
};
ts_lexer_set_included_ranges(self, NULL, 0);
}
void ts_lexer_delete(Lexer *self) {
ts_free(self->included_ranges);
}
void ts_lexer_set_input(Lexer *self, TSInput input) {
self->input = input;
ts_lexer__clear_chunk(self);
ts_lexer_goto(self, self->current_position);
}
// Move the lexer to the given position. This doesn't do any work
// if the parser is already at the given position.
void ts_lexer_reset(Lexer *self, Length position) {
if (position.bytes != self->current_position.bytes) {
ts_lexer_goto(self, position);
}
}
void ts_lexer_start(Lexer *self) {
self->token_start_position = self->current_position;
self->token_end_position = LENGTH_UNDEFINED;
self->data.result_symbol = 0;
self->did_get_column = false;
if (!ts_lexer__eof(&self->data)) {
if (!self->chunk_size) ts_lexer__get_chunk(self);
if (!self->lookahead_size) ts_lexer__get_lookahead(self);
if (
self->current_position.bytes == 0 &&
self->data.lookahead == BYTE_ORDER_MARK
) ts_lexer__advance(&self->data, true);
}
}
void ts_lexer_finish(Lexer *self, uint32_t *lookahead_end_byte) {
if (length_is_undefined(self->token_end_position)) {
ts_lexer__mark_end(&self->data);
}
// If the token ended at an included range boundary, then its end position
// will have been reset to the end of the preceding range. Reset the start
// position to match.
if (self->token_end_position.bytes < self->token_start_position.bytes) {
self->token_start_position = self->token_end_position;
}
uint32_t current_lookahead_end_byte = self->current_position.bytes + 1;
// In order to determine that a byte sequence is invalid UTF8 or UTF16,
// the character decoding algorithm may have looked at the following byte.
// Therefore, the next byte *after* the current (invalid) character
// affects the interpretation of the current character.
if (self->data.lookahead == TS_DECODE_ERROR) {
current_lookahead_end_byte += 4; // the maximum number of bytes read to identify an invalid code point
}
if (current_lookahead_end_byte > *lookahead_end_byte) {
*lookahead_end_byte = current_lookahead_end_byte;
}
}
void ts_lexer_advance_to_end(Lexer *self) {
while (self->chunk) {
ts_lexer__advance(&self->data, false);
}
}
void ts_lexer_mark_end(Lexer *self) {
ts_lexer__mark_end(&self->data);
}
bool ts_lexer_set_included_ranges(
Lexer *self,
const TSRange *ranges,
uint32_t count
) {
if (count == 0 || !ranges) {
ranges = &DEFAULT_RANGE;
count = 1;
} else {
uint32_t previous_byte = 0;
for (unsigned i = 0; i < count; i++) {
const TSRange *range = &ranges[i];
if (
range->start_byte < previous_byte ||
range->end_byte < range->start_byte
) return false;
previous_byte = range->end_byte;
}
}
size_t size = count * sizeof(TSRange);
self->included_ranges = ts_realloc(self->included_ranges, size);
memcpy(self->included_ranges, ranges, size);
self->included_range_count = count;
ts_lexer_goto(self, self->current_position);
return true;
}
TSRange *ts_lexer_included_ranges(const Lexer *self, uint32_t *count) {
*count = self->included_range_count;
return self->included_ranges;
}
#undef LOG

View file

@ -1,51 +0,0 @@
#ifndef TREE_SITTER_LEXER_H_
#define TREE_SITTER_LEXER_H_
#ifdef __cplusplus
extern "C"
{
#endif
#include "./api.h"
#include "./length.h"
#include "./parser.h"
#include "./subtree.h"
typedef struct Lexer
{
TSLexer data;
Length current_position;
Length token_start_position;
Length token_end_position;
TSRange *included_ranges;
const char *chunk;
TSInput input;
TSLogger logger;
uint32_t included_range_count;
uint32_t current_included_range_index;
uint32_t chunk_start;
uint32_t chunk_size;
uint32_t lookahead_size;
bool did_get_column;
char debug_buffer[TREE_SITTER_SERIALIZATION_BUFFER_SIZE];
} Lexer;
void ts_lexer_init(Lexer *);
void ts_lexer_delete(Lexer *);
void ts_lexer_set_input(Lexer *, TSInput);
void ts_lexer_reset(Lexer *, Length);
void ts_lexer_start(Lexer *);
void ts_lexer_finish(Lexer *, uint32_t *);
void ts_lexer_advance_to_end(Lexer *);
void ts_lexer_mark_end(Lexer *);
bool ts_lexer_set_included_ranges(Lexer *self, const TSRange *ranges, uint32_t count);
TSRange *ts_lexer_included_ranges(const Lexer *self, uint32_t *count);
#ifdef __cplusplus
}
#endif
#endif // TREE_SITTER_LEXER_H_

View file

@ -1,15 +0,0 @@
#define _POSIX_C_SOURCE 200112L
#include "./alloc.c"
#include "./create_language.c"
#include "./get_changed_ranges.c"
#include "./language.c"
#include "./lexer.c"
#include "./node.c"
#include "./parser.c"
#include "./query.c"
#include "./scanner.c"
#include "./stack.c"
#include "./subtree.c"
#include "./tree.c"
#include "./tree_cursor.c"

View file

@ -1,907 +0,0 @@
#include "./language.h"
#include "./subtree.h"
#include "./tree.h"
#include "me/str/str.h"
#include <stdbool.h>
typedef struct NodeChildIterator
{
Subtree parent;
const TSTree *tree;
Length position;
uint32_t child_index;
uint32_t structural_child_index;
const TSSymbol *alias_sequence;
} NodeChildIterator;
// TSNode - constructors
TSNode ts_node_new(const TSTree *tree, const Subtree *subtree, Length position, TSSymbol alias)
{
return (TSNode){
{position.bytes, position.extent.row, position.extent.column, alias},
subtree,
tree,
};
}
static inline TSNode ts_node__null(void)
{
return ts_node_new(NULL, NULL, length_zero(), 0);
}
// TSNode - accessors
uint32_t ts_node_start_byte(TSNode self)
{
return self.context[0];
}
TSPoint ts_node_start_point(TSNode self)
{
return (TSPoint){self.context[1], self.context[2]};
}
static inline uint32_t ts_node__alias(const TSNode *self)
{
return self->context[3];
}
static inline Subtree ts_node__subtree(TSNode self)
{
return *(const Subtree *)self.id;
}
// NodeChildIterator
static inline NodeChildIterator ts_node_iterate_children(const TSNode *node)
{
Subtree subtree = ts_node__subtree(*node);
if (ts_subtree_child_count(subtree) == 0)
{
return (NodeChildIterator){NULL_SUBTREE, node->tree, length_zero(), 0, 0, NULL};
}
const TSSymbol *alias_sequence = ts_language_alias_sequence(node->tree->language, subtree.ptr->inner.non_terminal.production_id);
return (NodeChildIterator){
.tree = node->tree,
.parent = subtree,
.position = {ts_node_start_byte(*node), ts_node_start_point(*node)},
.child_index = 0,
.structural_child_index = 0,
.alias_sequence = alias_sequence,
};
}
static inline bool ts_node_child_iterator_done(NodeChildIterator *self)
{
return self->child_index == self->parent.ptr->child_count;
}
static inline bool ts_node_child_iterator_next(NodeChildIterator *self, TSNode *result)
{
if (!self->parent.ptr || ts_node_child_iterator_done(self))
return false;
const Subtree *child = &ts_subtree_children(self->parent)[self->child_index];
TSSymbol alias_symbol = 0;
if (!ts_subtree_extra(*child))
{
if (self->alias_sequence)
{
alias_symbol = self->alias_sequence[self->structural_child_index];
}
self->structural_child_index++;
}
if (self->child_index > 0)
{
self->position = length_add(self->position, ts_subtree_padding(*child));
}
*result = ts_node_new(self->tree, child, self->position, alias_symbol);
self->position = length_add(self->position, ts_subtree_size(*child));
self->child_index++;
return true;
}
// TSNode - private
static inline bool ts_node__is_relevant(TSNode self, bool include_anonymous)
{
Subtree tree = ts_node__subtree(self);
if (include_anonymous)
{
return ts_subtree_visible(tree) || ts_node__alias(&self);
}
else
{
TSSymbol alias = ts_node__alias(&self);
if (alias)
{
return ts_language_symbol_metadata(self.tree->language, alias).named;
}
else
{
return ts_subtree_visible(tree) && ts_subtree_named(tree);
}
}
}
static inline uint32_t ts_node__relevant_child_count(TSNode self, bool include_anonymous)
{
Subtree tree = ts_node__subtree(self);
if (ts_subtree_child_count(tree) > 0)
{
if (include_anonymous)
{
return tree.ptr->inner.non_terminal.visible_child_count;
}
else
{
return tree.ptr->inner.non_terminal.named_child_count;
}
}
else
{
return 0;
}
}
static inline TSNode ts_node__child(TSNode self, uint32_t child_index, bool include_anonymous)
{
TSNode result = self;
bool did_descend = true;
while (did_descend)
{
did_descend = false;
TSNode child;
uint32_t index = 0;
NodeChildIterator iterator = ts_node_iterate_children(&result);
while (ts_node_child_iterator_next(&iterator, &child))
{
if (ts_node__is_relevant(child, include_anonymous))
{
if (index == child_index)
{
return child;
}
index++;
}
else
{
uint32_t grandchild_index = child_index - index;
uint32_t grandchild_count = ts_node__relevant_child_count(child, include_anonymous);
if (grandchild_index < grandchild_count)
{
did_descend = true;
result = child;
child_index = grandchild_index;
break;
}
index += grandchild_count;
}
}
}
return ts_node__null();
}
static bool ts_subtree_has_trailing_empty_descendant(Subtree self, Subtree other)
{
for (unsigned i = ts_subtree_child_count(self) - 1; i + 1 > 0; i--)
{
Subtree child = ts_subtree_children(self)[i];
if (ts_subtree_total_bytes(child) > 0)
break;
if (child.ptr == other.ptr || ts_subtree_has_trailing_empty_descendant(child, other))
{
return true;
}
}
return false;
}
static inline TSNode ts_node__prev_sibling(TSNode self, bool include_anonymous)
{
Subtree self_subtree = ts_node__subtree(self);
bool self_is_empty = ts_subtree_total_bytes(self_subtree) == 0;
uint32_t target_end_byte = ts_node_end_byte(self);
TSNode node = ts_node_parent(self);
TSNode earlier_node = ts_node__null();
bool earlier_node_is_relevant = false;
while (!ts_node_is_null(node))
{
TSNode earlier_child = ts_node__null();
bool earlier_child_is_relevant = false;
bool found_child_containing_target = false;
TSNode child;
NodeChildIterator iterator = ts_node_iterate_children(&node);
while (ts_node_child_iterator_next(&iterator, &child))
{
if (child.id == self.id)
break;
if (iterator.position.bytes > target_end_byte)
{
found_child_containing_target = true;
break;
}
if (iterator.position.bytes == target_end_byte &&
(!self_is_empty || ts_subtree_has_trailing_empty_descendant(ts_node__subtree(child), self_subtree)))
{
found_child_containing_target = true;
break;
}
if (ts_node__is_relevant(child, include_anonymous))
{
earlier_child = child;
earlier_child_is_relevant = true;
}
else if (ts_node__relevant_child_count(child, include_anonymous) > 0)
{
earlier_child = child;
earlier_child_is_relevant = false;
}
}
if (found_child_containing_target)
{
if (!ts_node_is_null(earlier_child))
{
earlier_node = earlier_child;
earlier_node_is_relevant = earlier_child_is_relevant;
}
node = child;
}
else if (earlier_child_is_relevant)
{
return earlier_child;
}
else if (!ts_node_is_null(earlier_child))
{
node = earlier_child;
}
else if (earlier_node_is_relevant)
{
return earlier_node;
}
else
{
node = earlier_node;
earlier_node = ts_node__null();
earlier_node_is_relevant = false;
}
}
return ts_node__null();
}
static inline TSNode ts_node__next_sibling(TSNode self, bool include_anonymous)
{
uint32_t target_end_byte = ts_node_end_byte(self);
TSNode node = ts_node_parent(self);
TSNode later_node = ts_node__null();
bool later_node_is_relevant = false;
while (!ts_node_is_null(node))
{
TSNode later_child = ts_node__null();
bool later_child_is_relevant = false;
TSNode child_containing_target = ts_node__null();
TSNode child;
NodeChildIterator iterator = ts_node_iterate_children(&node);
while (ts_node_child_iterator_next(&iterator, &child))
{
if (iterator.position.bytes < target_end_byte)
continue;
if (ts_node_start_byte(child) <= ts_node_start_byte(self))
{
if (ts_node__subtree(child).ptr != ts_node__subtree(self).ptr)
{
child_containing_target = child;
}
}
else if (ts_node__is_relevant(child, include_anonymous))
{
later_child = child;
later_child_is_relevant = true;
break;
}
else if (ts_node__relevant_child_count(child, include_anonymous) > 0)
{
later_child = child;
later_child_is_relevant = false;
break;
}
}
if (!ts_node_is_null(child_containing_target))
{
if (!ts_node_is_null(later_child))
{
later_node = later_child;
later_node_is_relevant = later_child_is_relevant;
}
node = child_containing_target;
}
else if (later_child_is_relevant)
{
return later_child;
}
else if (!ts_node_is_null(later_child))
{
node = later_child;
}
else if (later_node_is_relevant)
{
return later_node;
}
else
{
node = later_node;
}
}
return ts_node__null();
}
static inline TSNode ts_node__first_child_for_byte(TSNode self, uint32_t goal, bool include_anonymous)
{
TSNode node = self;
bool did_descend = true;
while (did_descend)
{
did_descend = false;
TSNode child;
NodeChildIterator iterator = ts_node_iterate_children(&node);
while (ts_node_child_iterator_next(&iterator, &child))
{
if (ts_node_end_byte(child) > goal)
{
if (ts_node__is_relevant(child, include_anonymous))
{
return child;
}
else if (ts_node_child_count(child) > 0)
{
did_descend = true;
node = child;
break;
}
}
}
}
return ts_node__null();
}
static inline TSNode ts_node__descendant_for_byte_range(TSNode self, uint32_t range_start, uint32_t range_end, bool include_anonymous)
{
TSNode node = self;
TSNode last_visible_node = self;
bool did_descend = true;
while (did_descend)
{
did_descend = false;
TSNode child;
NodeChildIterator iterator = ts_node_iterate_children(&node);
while (ts_node_child_iterator_next(&iterator, &child))
{
uint32_t node_end = iterator.position.bytes;
// The end of this node must extend far enough forward to touch
// the end of the range and exceed the start of the range.
if (node_end < range_end)
continue;
if (node_end <= range_start)
continue;
// The start of this node must extend far enough backward to
// touch the start of the range.
if (range_start < ts_node_start_byte(child))
break;
node = child;
if (ts_node__is_relevant(node, include_anonymous))
{
last_visible_node = node;
}
did_descend = true;
break;
}
}
return last_visible_node;
}
static inline TSNode ts_node__descendant_for_point_range(TSNode self, TSPoint range_start, TSPoint range_end, bool include_anonymous)
{
TSNode node = self;
TSNode last_visible_node = self;
bool did_descend = true;
while (did_descend)
{
did_descend = false;
TSNode child;
NodeChildIterator iterator = ts_node_iterate_children(&node);
while (ts_node_child_iterator_next(&iterator, &child))
{
TSPoint node_end = iterator.position.extent;
// The end of this node must extend far enough forward to touch
// the end of the range and exceed the start of the range.
if (point_lt(node_end, range_end))
continue;
if (point_lte(node_end, range_start))
continue;
// The start of this node must extend far enough backward to
// touch the start of the range.
if (point_lt(range_start, ts_node_start_point(child)))
break;
node = child;
if (ts_node__is_relevant(node, include_anonymous))
{
last_visible_node = node;
}
did_descend = true;
break;
}
}
return last_visible_node;
}
// TSNode - public
uint32_t ts_node_end_byte(TSNode self)
{
return ts_node_start_byte(self) + ts_subtree_size(ts_node__subtree(self)).bytes;
}
TSPoint ts_node_end_point(TSNode self)
{
return point_add(ts_node_start_point(self), ts_subtree_size(ts_node__subtree(self)).extent);
}
TSSymbol ts_node_symbol(TSNode self)
{
TSSymbol symbol = ts_node__alias(&self);
if (!symbol)
symbol = ts_subtree_symbol(ts_node__subtree(self));
return ts_language_public_symbol(self.tree->language, symbol);
}
const char *ts_node_type(TSNode self)
{
TSSymbol symbol = ts_node__alias(&self);
if (!symbol)
symbol = ts_subtree_symbol(ts_node__subtree(self));
return ts_language_symbol_name(self.tree->language, symbol);
}
const TSLanguage *ts_node_language(TSNode self)
{
return self.tree->language;
}
TSSymbol ts_node_grammar_symbol(TSNode self)
{
return ts_subtree_symbol(ts_node__subtree(self));
}
const char *ts_node_grammar_type(TSNode self)
{
TSSymbol symbol = ts_subtree_symbol(ts_node__subtree(self));
return ts_language_symbol_name(self.tree->language, symbol);
}
char *ts_node_string(TSNode self)
{
TSSymbol alias_symbol = ts_node__alias(&self);
return ts_subtree_string(ts_node__subtree(self), alias_symbol, ts_language_symbol_metadata(self.tree->language, alias_symbol).visible,
self.tree->language, false);
}
bool ts_node_eq(TSNode self, TSNode other)
{
return self.tree == other.tree && self.id == other.id;
}
bool ts_node_is_null(TSNode self)
{
return self.id == 0;
}
bool ts_node_is_extra(TSNode self)
{
return ts_subtree_extra(ts_node__subtree(self));
}
bool ts_node_is_named(TSNode self)
{
TSSymbol alias = ts_node__alias(&self);
return alias ? ts_language_symbol_metadata(self.tree->language, alias).named : ts_subtree_named(ts_node__subtree(self));
}
bool ts_node_is_missing(TSNode self)
{
return ts_subtree_missing(ts_node__subtree(self));
}
bool ts_node_has_changes(TSNode self)
{
return ts_subtree_has_changes(ts_node__subtree(self));
}
bool ts_node_has_error(TSNode self)
{
return ts_subtree_error_cost(ts_node__subtree(self)) > 0;
}
bool ts_node_is_error(TSNode self)
{
TSSymbol symbol = ts_node_symbol(self);
return symbol == ts_builtin_sym_error;
}
uint32_t ts_node_descendant_count(TSNode self)
{
return ts_subtree_visible_descendant_count(ts_node__subtree(self)) + 1;
}
TSStateId ts_node_parse_state(TSNode self)
{
return ts_subtree_parse_state(ts_node__subtree(self));
}
TSStateId ts_node_next_parse_state(TSNode self)
{
const TSLanguage *language = self.tree->language;
uint16_t state = ts_node_parse_state(self);
if (state == TS_TREE_STATE_NONE)
{
return TS_TREE_STATE_NONE;
}
uint16_t symbol = ts_node_grammar_symbol(self);
return ts_language_next_state(language, state, symbol);
}
TSNode ts_node_parent(TSNode self)
{
TSNode node = ts_tree_root_node(self.tree);
if (node.id == self.id)
return ts_node__null();
while (true)
{
TSNode next_node = ts_node_child_containing_descendant(node, self);
if (ts_node_is_null(next_node))
break;
node = next_node;
}
return node;
}
TSNode ts_node_child_containing_descendant(TSNode self, TSNode subnode)
{
uint32_t start_byte = ts_node_start_byte(subnode);
uint32_t end_byte = ts_node_end_byte(subnode);
do
{
NodeChildIterator iter = ts_node_iterate_children(&self);
do
{
if (!ts_node_child_iterator_next(&iter, &self) || ts_node_start_byte(self) > start_byte || self.id == subnode.id)
{
return ts_node__null();
}
} while (iter.position.bytes < end_byte || ts_node_child_count(self) == 0);
} while (!ts_node__is_relevant(self, true));
return self;
}
TSNode ts_node_child(TSNode self, uint32_t child_index)
{
return ts_node__child(self, child_index, true);
}
TSNode ts_node_named_child(TSNode self, uint32_t child_index)
{
return ts_node__child(self, child_index, false);
}
TSNode ts_node_child_by_field_id(TSNode self, TSFieldId field_id)
{
recur:
if (!field_id || ts_node_child_count(self) == 0)
return ts_node__null();
const TSFieldMapEntry *field_map, *field_map_end;
ts_language_field_map(self.tree->language, ts_node__subtree(self).ptr->inner.non_terminal.production_id, &field_map, &field_map_end);
if (field_map == field_map_end)
return ts_node__null();
// The field mappings are sorted by their field id. Scan all
// the mappings to find the ones for the given field id.
while (field_map->field_id < field_id)
{
field_map++;
if (field_map == field_map_end)
return ts_node__null();
}
while (field_map_end[-1].field_id > field_id)
{
field_map_end--;
if (field_map == field_map_end)
return ts_node__null();
}
TSNode child;
NodeChildIterator iterator = ts_node_iterate_children(&self);
while (ts_node_child_iterator_next(&iterator, &child))
{
if (!ts_subtree_extra(ts_node__subtree(child)))
{
uint32_t index = iterator.structural_child_index - 1;
if (index < field_map->child_index)
continue;
// Hidden nodes' fields are "inherited" by their visible parent.
if (field_map->inherited)
{
// If this is the *last* possible child node for this field,
// then perform a tail call to avoid recursion.
if (field_map + 1 == field_map_end)
{
self = child;
goto recur;
}
// Otherwise, descend into this child, but if it doesn't contain
// the field, continue searching subsequent children.
else
{
TSNode result = ts_node_child_by_field_id(child, field_id);
if (result.id)
return result;
field_map++;
if (field_map == field_map_end)
return ts_node__null();
}
}
else if (ts_node__is_relevant(child, true))
{
return child;
}
// If the field refers to a hidden node with visible children,
// return the first visible child.
else if (ts_node_child_count(child) > 0)
{
return ts_node_child(child, 0);
}
// Otherwise, continue searching subsequent children.
else
{
field_map++;
if (field_map == field_map_end)
return ts_node__null();
}
}
}
return ts_node__null();
}
static inline TSFieldId ts_node__field_id_from_language(TSNode self, uint32_t structural_child_index)
{
const TSFieldMapEntry *field_map, *field_map_end;
ts_language_field_map(self.tree->language, ts_node__subtree(self).ptr->inner.non_terminal.production_id, &field_map, &field_map_end);
for (; field_map != field_map_end; field_map++)
{
if (!field_map->inherited && field_map->child_index == structural_child_index)
{
return field_map->field_id;
}
}
return 0;
}
static inline const char *ts_node__field_name_from_language(TSNode self, uint32_t structural_child_index)
{
const TSFieldMapEntry *field_map, *field_map_end;
ts_language_field_map(self.tree->language, ts_node__subtree(self).ptr->inner.non_terminal.production_id, &field_map, &field_map_end);
for (; field_map != field_map_end; field_map++)
{
if (!field_map->inherited && field_map->child_index == structural_child_index)
{
return self.tree->language->field_names[field_map->field_id];
}
}
return NULL;
}
const char *ts_node_field_name_for_child(TSNode self, uint32_t child_index)
{
TSNode result = self;
bool did_descend = true;
const char *inherited_field_name = NULL;
while (did_descend)
{
did_descend = false;
TSNode child;
uint32_t index = 0;
NodeChildIterator iterator = ts_node_iterate_children(&result);
while (ts_node_child_iterator_next(&iterator, &child))
{
if (ts_node__is_relevant(child, true))
{
if (index == child_index)
{
if (ts_node_is_extra(child))
{
return NULL;
}
const char *field_name = ts_node__field_name_from_language(result, iterator.structural_child_index - 1);
if (field_name)
return field_name;
return inherited_field_name;
}
index++;
}
else
{
uint32_t grandchild_index = child_index - index;
uint32_t grandchild_count = ts_node__relevant_child_count(child, true);
if (grandchild_index < grandchild_count)
{
const char *field_name = ts_node__field_name_from_language(result, iterator.structural_child_index - 1);
if (field_name)
inherited_field_name = field_name;
did_descend = true;
result = child;
child_index = grandchild_index;
break;
}
index += grandchild_count;
}
}
}
return NULL;
}
TSNode ts_node_child_by_field_name(TSNode self, const char *name, uint32_t name_length)
{
TSFieldId field_id = ts_language_field_id_for_name(self.tree->language, name, name_length);
return ts_node_child_by_field_id(self, field_id);
}
uint32_t ts_node_child_count(TSNode self)
{
Subtree tree = ts_node__subtree(self);
if (ts_subtree_child_count(tree) > 0)
{
return tree.ptr->inner.non_terminal.visible_child_count;
}
else
{
return 0;
}
}
uint32_t ts_node_named_child_count(TSNode self)
{
Subtree tree = ts_node__subtree(self);
if (ts_subtree_child_count(tree) > 0)
{
return tree.ptr->inner.non_terminal.named_child_count;
}
else
{
return 0;
}
}
TSFieldId ts_node_field_id_for_child(TSNode self, uint32_t child_index)
{
const char *field_name;
field_name = ts_node_field_name_for_child(self, child_index);
if (field_name != NULL)
return (ts_language_field_id_for_name(ts_node_language(self), field_name, str_len(field_name)));
return 0;
}
TSNode ts_node_next_sibling(TSNode self)
{
return ts_node__next_sibling(self, true);
}
TSNode ts_node_next_named_sibling(TSNode self)
{
return ts_node__next_sibling(self, false);
}
TSNode ts_node_prev_sibling(TSNode self)
{
return ts_node__prev_sibling(self, true);
}
TSNode ts_node_prev_named_sibling(TSNode self)
{
return ts_node__prev_sibling(self, false);
}
TSNode ts_node_first_child_for_byte(TSNode self, uint32_t byte)
{
return ts_node__first_child_for_byte(self, byte, true);
}
TSNode ts_node_first_named_child_for_byte(TSNode self, uint32_t byte)
{
return ts_node__first_child_for_byte(self, byte, false);
}
TSNode ts_node_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end)
{
return ts_node__descendant_for_byte_range(self, start, end, true);
}
TSNode ts_node_named_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end)
{
return ts_node__descendant_for_byte_range(self, start, end, false);
}
TSNode ts_node_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end)
{
return ts_node__descendant_for_point_range(self, start, end, true);
}
TSNode ts_node_named_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end)
{
return ts_node__descendant_for_point_range(self, start, end, false);
}
void ts_node_edit(TSNode *self, const TSInputEdit *edit)
{
uint32_t start_byte = ts_node_start_byte(*self);
TSPoint start_point = ts_node_start_point(*self);
if (start_byte >= edit->old_end_byte)
{
start_byte = edit->new_end_byte + (start_byte - edit->old_end_byte);
start_point = point_add(edit->new_end_point, point_sub(start_point, edit->old_end_point));
}
else if (start_byte > edit->start_byte)
{
start_byte = edit->new_end_byte;
start_point = edit->new_end_point;
}
self->context[0] = start_byte;
self->context[1] = start_point.row;
self->context[2] = start_point.column;
}

File diff suppressed because it is too large Load diff

View file

@ -1,285 +0,0 @@
#ifndef TREE_SITTER_PARSER_H_
#define TREE_SITTER_PARSER_H_
#ifdef __cplusplus
extern "C"
{
#endif
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#define ts_builtin_sym_error ((TSSymbol)-1)
#define ts_builtin_sym_end 0
#define TREE_SITTER_SERIALIZATION_BUFFER_SIZE 1024
#ifndef TREE_SITTER_API_H_
typedef uint16_t TSStateId;
typedef uint16_t TSSymbol;
typedef uint16_t TSFieldId;
typedef struct TSLanguage TSLanguage;
#endif
typedef struct TSFieldMapEntry
{
TSFieldId field_id;
uint8_t child_index;
bool inherited;
} TSFieldMapEntry;
typedef struct TSFieldMapSlice
{
uint16_t index;
uint16_t length;
} TSFieldMapSlice;
typedef struct TSSymbolMetadata
{
bool visible;
bool named;
bool supertype;
} TSSymbolMetadata;
typedef struct TSLexer TSLexer;
struct TSLexer
{
int32_t lookahead;
TSSymbol result_symbol;
void (*advance)(TSLexer *, bool);
void (*mark_end)(TSLexer *);
uint32_t (*get_column)(TSLexer *);
bool (*is_at_included_range_start)(const TSLexer *);
bool (*eof)(const TSLexer *);
};
typedef enum TSParseActionType
{
TSParseActionTypeShift,
TSParseActionTypeReduce,
TSParseActionTypeAccept,
TSParseActionTypeRecover,
} TSParseActionType;
typedef union TSParseAction {
struct TSParseActionShift
{
uint8_t type;
TSStateId state;
bool extra;
bool repetition;
} shift;
struct TSParseActionReduce
{
uint8_t type;
uint8_t child_count;
TSSymbol symbol;
int16_t dynamic_precedence;
uint16_t production_id;
} reduce;
uint8_t type;
} TSParseAction;
typedef struct TSLexMode
{
uint16_t lex_state;
uint16_t external_lex_state;
} TSLexMode;
typedef union TSParseActionEntry {
TSParseAction action;
struct TSParseActionEntryData
{
uint8_t count;
bool reusable;
} entry;
} TSParseActionEntry;
typedef struct TSCharacterRange
{
int32_t start;
int32_t end;
} TSCharacterRange;
struct TSLanguage
{
uint32_t version;
uint32_t symbol_count;
uint32_t alias_count;
uint32_t token_count;
uint32_t external_token_count;
uint32_t state_count;
uint32_t large_state_count;
uint32_t production_id_count;
uint32_t field_count;
uint16_t max_alias_sequence_length;
const uint16_t *parse_table;
const uint16_t *small_parse_table;
const uint32_t *small_parse_table_map;
const TSParseActionEntry *parse_actions;
const char *const *symbol_names;
const char *const *field_names;
const TSFieldMapSlice *field_map_slices;
const TSFieldMapEntry *field_map_entries;
const TSSymbolMetadata *symbol_metadata;
const TSSymbol *public_symbol_map;
const uint16_t *alias_map;
const TSSymbol *alias_sequences;
const TSLexMode *lex_modes;
bool (*lex_fn)(TSLexer *, TSStateId);
bool (*keyword_lex_fn)(TSLexer *, TSStateId);
TSSymbol keyword_capture_token;
struct ExternalScannerDefinition
{
const bool *states;
const TSSymbol *symbol_map;
void *(*create)(void);
void (*destroy)(void *);
bool (*scan)(void *, TSLexer *, const bool *symbol_whitelist);
unsigned (*serialize)(void *, char *);
void (*deserialize)(void *, const char *, unsigned);
} external_scanner;
const TSStateId *primary_state_ids;
};
static inline bool set_contains(TSCharacterRange *ranges, uint32_t len, int32_t lookahead)
{
uint32_t index = 0;
uint32_t size = len - index;
while (size > 1)
{
uint32_t half_size = size / 2;
uint32_t mid_index = index + half_size;
TSCharacterRange *range = &ranges[mid_index];
if (lookahead >= range->start && lookahead <= range->end)
{
return true;
}
else if (lookahead > range->end)
{
index = mid_index;
}
size -= half_size;
}
TSCharacterRange *range = &ranges[index];
return (lookahead >= range->start && lookahead <= range->end);
}
/*
* Lexer Macros
*/
#ifdef _MSC_VER
# define UNUSED __pragma(warning(suppress : 4101))
#else
# define UNUSED __attribute__((unused))
#endif
#define START_LEXER() \
bool result = false; \
bool skip = false; \
UNUSED \
bool eof = false; \
int32_t lookahead; \
goto start; \
next_state: \
lexer->advance(lexer, skip); \
start: \
skip = false; \
lookahead = lexer->lookahead;
#define ADVANCE(state_value) \
{ \
state = state_value; \
goto next_state; \
}
#define ADVANCE_MAP(...) \
{ \
static const uint16_t map[] = {__VA_ARGS__}; \
for (uint32_t i = 0; i < sizeof(map) / sizeof(map[0]); i += 2) \
{ \
if (map[i] == lookahead) \
{ \
state = map[i + 1]; \
goto next_state; \
} \
} \
}
#define SKIP(state_value) \
{ \
skip = true; \
state = state_value; \
goto next_state; \
}
#define ACCEPT_TOKEN(symbol_value) \
result = true; \
lexer->result_symbol = symbol_value; \
lexer->mark_end(lexer);
#define END_STATE() return result;
/*
* Parse Table Macros
*/
#define SMALL_STATE(id) ((id)-LARGE_STATE_COUNT)
#define STATE(id) id
#define ACTIONS(id) id
#define SHIFT(state_value) \
{ \
{ \
.shift = {.type = TSParseActionTypeShift, .state = (state_value) } \
} \
}
#define SHIFT_REPEAT(state_value) \
{ \
{ \
.shift = {.type = TSParseActionTypeShift, .state = (state_value), .repetition = true } \
} \
}
#define SHIFT_EXTRA() \
{ \
{ \
.shift = {.type = TSParseActionTypeShift, .extra = true } \
} \
}
#define REDUCE(symbol_name, children, precedence, prod_id) \
{ \
{ \
.reduce = {.type = TSParseActionTypeReduce, \
.symbol = symbol_name, \
.child_count = children, \
.dynamic_precedence = precedence, \
.production_id = prod_id}, \
} \
}
#define RECOVER() \
{ \
{ \
.type = TSParseActionTypeRecover \
} \
}
#define ACCEPT_INPUT() \
{ \
{ \
.type = TSParseActionTypeAccept \
} \
}
#ifdef __cplusplus
}
#endif
#endif // TREE_SITTER_PARSER_H_

View file

@ -1,72 +0,0 @@
#ifndef TREE_SITTER_POINT_H_
#define TREE_SITTER_POINT_H_
#include "./api.h"
#define POINT_ZERO ((TSPoint){0, 0})
#define POINT_MAX ((TSPoint){UINT32_MAX, UINT32_MAX})
static inline TSPoint point__new(unsigned row, unsigned column)
{
TSPoint result = {row, column};
return result;
}
static inline TSPoint point_add(TSPoint a, TSPoint b)
{
if (b.row > 0)
return point__new(a.row + b.row, b.column);
else
return point__new(a.row, a.column + b.column);
}
static inline TSPoint point_sub(TSPoint a, TSPoint b)
{
if (a.row > b.row)
return point__new(a.row - b.row, a.column);
else
return point__new(0, a.column - b.column);
}
static inline bool point_lte(TSPoint a, TSPoint b)
{
return (a.row < b.row) || (a.row == b.row && a.column <= b.column);
}
static inline bool point_lt(TSPoint a, TSPoint b)
{
return (a.row < b.row) || (a.row == b.row && a.column < b.column);
}
static inline bool point_gt(TSPoint a, TSPoint b)
{
return (a.row > b.row) || (a.row == b.row && a.column > b.column);
}
static inline bool point_gte(TSPoint a, TSPoint b)
{
return (a.row > b.row) || (a.row == b.row && a.column >= b.column);
}
static inline bool point_eq(TSPoint a, TSPoint b)
{
return a.row == b.row && a.column == b.column;
}
static inline TSPoint point_min(TSPoint a, TSPoint b)
{
if (a.row < b.row || (a.row == b.row && a.column < b.column))
return a;
else
return b;
}
static inline TSPoint point_max(TSPoint a, TSPoint b)
{
if (a.row > b.row || (a.row == b.row && a.column > b.column))
return a;
else
return b;
}
#endif

File diff suppressed because it is too large Load diff

View file

@ -1,37 +0,0 @@
#ifndef TREE_SITTER_REDUCE_ACTION_H_
#define TREE_SITTER_REDUCE_ACTION_H_
#ifdef __cplusplus
extern "C"
{
#endif
#include "./api.h"
#include "./array.h"
typedef struct ReduceAction
{
uint32_t count;
TSSymbol symbol;
int dynamic_precedence;
unsigned short production_id;
} ReduceAction;
typedef Array(ReduceAction) ReduceActionSet;
static inline void ts_reduce_action_set_add(ReduceActionSet *self, ReduceAction new_action)
{
for (uint32_t i = 0; i < self->size; i++)
{
ReduceAction action = self->contents[i];
if (action.symbol == new_action.symbol && action.count == new_action.count)
return;
}
array_push(self, new_action);
}
#ifdef __cplusplus
}
#endif
#endif // TREE_SITTER_REDUCE_ACTION_H_

View file

@ -1,111 +0,0 @@
#include "./subtree.h"
typedef struct StackEntry
{
Subtree tree;
uint32_t child_index;
uint32_t byte_offset;
} StackEntry;
typedef struct ReusableNode
{
Array(StackEntry) stack;
Subtree last_external_token;
} ReusableNode;
static inline ReusableNode reusable_node_new(void)
{
return (ReusableNode){array_new(), NULL_SUBTREE};
}
static inline void reusable_node_clear(ReusableNode *self)
{
array_clear(&self->stack);
self->last_external_token = NULL_SUBTREE;
}
static inline Subtree reusable_node_tree(ReusableNode *self)
{
return self->stack.size > 0 ? self->stack.contents[self->stack.size - 1].tree : NULL_SUBTREE;
}
static inline uint32_t reusable_node_byte_offset(ReusableNode *self)
{
return self->stack.size > 0 ? self->stack.contents[self->stack.size - 1].byte_offset : UINT32_MAX;
}
static inline void reusable_node_delete(ReusableNode *self)
{
array_delete(&self->stack);
}
static inline void reusable_node_advance(ReusableNode *self)
{
StackEntry last_entry = *array_back(&self->stack);
uint32_t byte_offset = last_entry.byte_offset + ts_subtree_total_bytes(last_entry.tree);
if (ts_subtree_has_external_tokens(last_entry.tree))
{
self->last_external_token = ts_subtree_last_external_token(last_entry.tree);
}
Subtree tree;
uint32_t next_index;
do
{
StackEntry popped_entry = array_pop(&self->stack);
next_index = popped_entry.child_index + 1;
if (self->stack.size == 0)
return;
tree = array_back(&self->stack)->tree;
} while (ts_subtree_child_count(tree) <= next_index);
array_push(&self->stack, ((StackEntry){
.tree = ts_subtree_children(tree)[next_index],
.child_index = next_index,
.byte_offset = byte_offset,
}));
}
static inline bool reusable_node_descend(ReusableNode *self)
{
StackEntry last_entry = *array_back(&self->stack);
if (ts_subtree_child_count(last_entry.tree) > 0)
{
array_push(&self->stack, ((StackEntry){
.tree = ts_subtree_children(last_entry.tree)[0],
.child_index = 0,
.byte_offset = last_entry.byte_offset,
}));
return true;
}
else
{
return false;
}
}
static inline void reusable_node_advance_past_leaf(ReusableNode *self)
{
while (reusable_node_descend(self))
{
}
reusable_node_advance(self);
}
static inline void reusable_node_reset(ReusableNode *self, Subtree tree)
{
reusable_node_clear(self);
array_push(&self->stack, ((StackEntry){
.tree = tree,
.child_index = 0,
.byte_offset = 0,
}));
// Never reuse the root node, because it has a non-standard internal structure
// due to transformations that are applied when it is accepted: adding the EOF
// child and any extra children.
if (!reusable_node_descend(self))
{
reusable_node_clear(self);
}
}

File diff suppressed because it is too large Load diff

View file

@ -1,992 +0,0 @@
#include "./stack.h"
#include "./alloc.h"
#include "./array.h"
#include "./language.h"
#include "./length.h"
#include "./subtree.h"
#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
#define MAX_LINK_COUNT 8
#define MAX_NODE_POOL_SIZE 50
#define MAX_ITERATOR_COUNT 64
#if defined _WIN32 && !defined __GNUC__
# define forceinline __forceinline
#else
# define forceinline static inline __attribute__((always_inline))
#endif
typedef struct StackNode StackNode;
typedef struct StackLink
{
StackNode *node;
Subtree subtree;
bool is_pending;
} StackLink;
struct StackNode
{
TSStateId state;
Length position;
StackLink links[MAX_LINK_COUNT];
short unsigned int link_count;
uint32_t ref_count;
unsigned error_cost;
unsigned node_count;
int dynamic_precedence;
};
typedef struct StackIterator
{
StackNode *node;
SubtreeArray subtrees;
uint32_t subtree_count;
bool is_pending;
} StackIterator;
typedef Array(StackNode *) StackNodeArray;
typedef enum StackStatus
{
StackStatusActive,
StackStatusPaused,
StackStatusHalted,
} StackStatus;
typedef struct StackHead
{
StackNode *node;
StackSummary *summary;
unsigned node_count_at_last_error;
Subtree last_external_token;
Subtree lookahead_when_paused;
StackStatus status;
} StackHead;
struct Stack
{
Array(StackHead) heads;
StackSliceArray slices;
Array(StackIterator) iterators;
StackNodeArray node_pool;
StackNode *base_node;
SubtreePool *subtree_pool;
};
typedef unsigned StackAction;
enum StackAction
{
StackActionNone,
StackActionStop = 1,
StackActionPop = 2,
};
typedef StackAction (*StackCallback)(void *, const StackIterator *);
static void stack_node_retain(StackNode *self)
{
if (!self)
return;
assert(self->ref_count > 0);
self->ref_count++;
assert(self->ref_count != 0);
}
static void stack_node_release(StackNode *self, StackNodeArray *pool, SubtreePool *subtree_pool)
{
recur:
assert(self->ref_count != 0);
self->ref_count--;
if (self->ref_count > 0)
return;
StackNode *first_predecessor = NULL;
if (self->link_count > 0)
{
for (unsigned i = self->link_count - 1; i > 0; i--)
{
StackLink link = self->links[i];
if (link.subtree.ptr)
ts_subtree_release(subtree_pool, link.subtree);
stack_node_release(link.node, pool, subtree_pool);
}
StackLink link = self->links[0];
if (link.subtree.ptr)
ts_subtree_release(subtree_pool, link.subtree);
first_predecessor = self->links[0].node;
}
if (pool->size < MAX_NODE_POOL_SIZE)
{
array_push(pool, self);
}
else
{
ts_free(self);
}
if (first_predecessor)
{
self = first_predecessor;
goto recur;
}
}
/// Get the number of nodes in the subtree, for the purpose of measuring
/// how much progress has been made by a given version of the stack.
static uint32_t stack__subtree_node_count(Subtree subtree)
{
uint32_t count = ts_subtree_visible_descendant_count(subtree);
if (ts_subtree_visible(subtree))
count++;
// Count intermediate error nodes even though they are not visible,
// because a stack version's node count is used to check whether it
// has made any progress since the last time it encountered an error.
if (ts_subtree_symbol(subtree) == ts_builtin_sym_error_repeat)
count++;
return count;
}
static StackNode *stack_node_new(StackNode *previous_node, Subtree subtree, bool is_pending, TSStateId state, StackNodeArray *pool)
{
StackNode *node = pool->size > 0 ? array_pop(pool) : ts_malloc(sizeof(StackNode));
*node = (StackNode){.ref_count = 1, .link_count = 0, .state = state};
if (previous_node)
{
node->link_count = 1;
node->links[0] = (StackLink){
.node = previous_node,
.subtree = subtree,
.is_pending = is_pending,
};
node->position = previous_node->position;
node->error_cost = previous_node->error_cost;
node->dynamic_precedence = previous_node->dynamic_precedence;
node->node_count = previous_node->node_count;
if (subtree.ptr)
{
node->error_cost += ts_subtree_error_cost(subtree);
node->position = length_add(node->position, ts_subtree_total_size(subtree));
node->node_count += stack__subtree_node_count(subtree);
node->dynamic_precedence += ts_subtree_dynamic_precedence(subtree);
}
}
else
{
node->position = length_zero();
node->error_cost = 0;
}
return node;
}
static bool stack__subtree_is_equivalent(Subtree left, Subtree right)
{
if (left.ptr == right.ptr)
return true;
if (!left.ptr || !right.ptr)
return false;
// Symbols must match
if (ts_subtree_symbol(left) != ts_subtree_symbol(right))
return false;
// If both have errors, don't bother keeping both.
if (ts_subtree_error_cost(left) > 0 && ts_subtree_error_cost(right) > 0)
return true;
return (ts_subtree_padding(left).bytes == ts_subtree_padding(right).bytes &&
ts_subtree_size(left).bytes == ts_subtree_size(right).bytes && ts_subtree_child_count(left) == ts_subtree_child_count(right) &&
ts_subtree_extra(left) == ts_subtree_extra(right) && ts_subtree_external_scanner_state_eq(left, right));
}
static void stack_node_add_link(StackNode *self, StackLink link, SubtreePool *subtree_pool)
{
if (link.node == self)
return;
for (int i = 0; i < self->link_count; i++)
{
StackLink *existing_link = &self->links[i];
if (stack__subtree_is_equivalent(existing_link->subtree, link.subtree))
{
// In general, we preserve ambiguities until they are removed from the stack
// during a pop operation where multiple paths lead to the same node. But in
// the special case where two links directly connect the same pair of nodes,
// we can safely remove the ambiguity ahead of time without changing behavior.
if (existing_link->node == link.node)
{
if (ts_subtree_dynamic_precedence(link.subtree) > ts_subtree_dynamic_precedence(existing_link->subtree))
{
ts_subtree_retain(link.subtree);
ts_subtree_release(subtree_pool, existing_link->subtree);
existing_link->subtree = link.subtree;
self->dynamic_precedence = link.node->dynamic_precedence + ts_subtree_dynamic_precedence(link.subtree);
}
return;
}
// If the previous nodes are mergeable, merge them recursively.
if (existing_link->node->state == link.node->state && existing_link->node->position.bytes == link.node->position.bytes &&
existing_link->node->error_cost == link.node->error_cost)
{
for (int j = 0; j < link.node->link_count; j++)
{
stack_node_add_link(existing_link->node, link.node->links[j], subtree_pool);
}
int32_t dynamic_precedence = link.node->dynamic_precedence;
if (link.subtree.ptr)
{
dynamic_precedence += ts_subtree_dynamic_precedence(link.subtree);
}
if (dynamic_precedence > self->dynamic_precedence)
{
self->dynamic_precedence = dynamic_precedence;
}
return;
}
}
}
if (self->link_count == MAX_LINK_COUNT)
return;
stack_node_retain(link.node);
unsigned node_count = link.node->node_count;
int dynamic_precedence = link.node->dynamic_precedence;
self->links[self->link_count++] = link;
if (link.subtree.ptr)
{
ts_subtree_retain(link.subtree);
node_count += stack__subtree_node_count(link.subtree);
dynamic_precedence += ts_subtree_dynamic_precedence(link.subtree);
}
if (node_count > self->node_count)
self->node_count = node_count;
if (dynamic_precedence > self->dynamic_precedence)
self->dynamic_precedence = dynamic_precedence;
}
static void stack_head_delete(StackHead *self, StackNodeArray *pool, SubtreePool *subtree_pool)
{
if (self->node)
{
if (self->last_external_token.ptr)
{
ts_subtree_release(subtree_pool, self->last_external_token);
}
if (self->lookahead_when_paused.ptr)
{
ts_subtree_release(subtree_pool, self->lookahead_when_paused);
}
if (self->summary)
{
array_delete(self->summary);
ts_free(self->summary);
}
stack_node_release(self->node, pool, subtree_pool);
}
}
static StackVersion ts_stack__add_version(Stack *self, StackVersion original_version, StackNode *node)
{
StackHead head = {
.node = node,
.node_count_at_last_error = self->heads.contents[original_version].node_count_at_last_error,
.last_external_token = self->heads.contents[original_version].last_external_token,
.status = StackStatusActive,
.lookahead_when_paused = NULL_SUBTREE,
};
array_push(&self->heads, head);
stack_node_retain(node);
if (head.last_external_token.ptr)
ts_subtree_retain(head.last_external_token);
return (StackVersion)(self->heads.size - 1);
}
static void ts_stack__add_slice(Stack *self, StackVersion original_version, StackNode *node, SubtreeArray *subtrees)
{
for (uint32_t i = self->slices.size - 1; i + 1 > 0; i--)
{
StackVersion version = self->slices.contents[i].version;
if (self->heads.contents[version].node == node)
{
StackSlice slice = {*subtrees, version};
array_insert(&self->slices, i + 1, slice);
return;
}
}
StackVersion version = ts_stack__add_version(self, original_version, node);
StackSlice slice = {*subtrees, version};
array_push(&self->slices, slice);
}
static StackSliceArray stack__iter(Stack *self, StackVersion version, StackCallback callback, void *payload, int goal_subtree_count)
{
array_clear(&self->slices);
array_clear(&self->iterators);
StackHead *head = array_get(&self->heads, version);
StackIterator new_iterator = {
.node = head->node,
.subtrees = array_new(),
.subtree_count = 0,
.is_pending = true,
};
bool include_subtrees = false;
if (goal_subtree_count >= 0)
{
include_subtrees = true;
array_reserve(&new_iterator.subtrees, (uint32_t)ts_subtree_alloc_size(goal_subtree_count) / sizeof(Subtree));
}
array_push(&self->iterators, new_iterator);
while (self->iterators.size > 0)
{
for (uint32_t i = 0, size = self->iterators.size; i < size; i++)
{
StackIterator *iterator = &self->iterators.contents[i];
StackNode *node = iterator->node;
StackAction action = callback(payload, iterator);
bool should_pop = action & StackActionPop;
bool should_stop = action & StackActionStop || node->link_count == 0;
if (should_pop)
{
SubtreeArray subtrees = iterator->subtrees;
if (!should_stop)
{
ts_subtree_array_copy(subtrees, &subtrees);
}
ts_subtree_array_reverse(&subtrees);
ts_stack__add_slice(self, version, node, &subtrees);
}
if (should_stop)
{
if (!should_pop)
{
ts_subtree_array_delete(self->subtree_pool, &iterator->subtrees);
}
array_erase(&self->iterators, i);
i--, size--;
continue;
}
for (uint32_t j = 1; j <= node->link_count; j++)
{
StackIterator *next_iterator;
StackLink link;
if (j == node->link_count)
{
link = node->links[0];
next_iterator = &self->iterators.contents[i];
}
else
{
if (self->iterators.size >= MAX_ITERATOR_COUNT)
continue;
link = node->links[j];
StackIterator current_iterator = self->iterators.contents[i];
array_push(&self->iterators, current_iterator);
next_iterator = array_back(&self->iterators);
ts_subtree_array_copy(next_iterator->subtrees, &next_iterator->subtrees);
}
next_iterator->node = link.node;
if (link.subtree.ptr)
{
if (include_subtrees)
{
array_push(&next_iterator->subtrees, link.subtree);
ts_subtree_retain(link.subtree);
}
if (!ts_subtree_extra(link.subtree))
{
next_iterator->subtree_count++;
if (!link.is_pending)
{
next_iterator->is_pending = false;
}
}
}
else
{
next_iterator->subtree_count++;
next_iterator->is_pending = false;
}
}
}
}
return self->slices;
}
Stack *ts_stack_new(SubtreePool *subtree_pool)
{
Stack *self = ts_calloc(1, sizeof(Stack));
array_init(&self->heads);
array_init(&self->slices);
array_init(&self->iterators);
array_init(&self->node_pool);
array_reserve(&self->heads, 4);
array_reserve(&self->slices, 4);
array_reserve(&self->iterators, 4);
array_reserve(&self->node_pool, MAX_NODE_POOL_SIZE);
self->subtree_pool = subtree_pool;
self->base_node = stack_node_new(NULL, NULL_SUBTREE, false, 1, &self->node_pool);
ts_stack_clear(self);
return self;
}
void ts_stack_delete(Stack *self)
{
if (self->slices.contents)
array_delete(&self->slices);
if (self->iterators.contents)
array_delete(&self->iterators);
stack_node_release(self->base_node, &self->node_pool, self->subtree_pool);
for (uint32_t i = 0; i < self->heads.size; i++)
{
stack_head_delete(&self->heads.contents[i], &self->node_pool, self->subtree_pool);
}
array_clear(&self->heads);
if (self->node_pool.contents)
{
for (uint32_t i = 0; i < self->node_pool.size; i++)
ts_free(self->node_pool.contents[i]);
array_delete(&self->node_pool);
}
array_delete(&self->heads);
ts_free(self);
}
uint32_t ts_stack_version_count(const Stack *self)
{
return self->heads.size;
}
TSStateId ts_stack_state(const Stack *self, StackVersion version)
{
return array_get(&self->heads, version)->node->state;
}
Length ts_stack_position(const Stack *self, StackVersion version)
{
return array_get(&self->heads, version)->node->position;
}
Subtree ts_stack_last_external_token(const Stack *self, StackVersion version)
{
return array_get(&self->heads, version)->last_external_token;
}
void ts_stack_set_last_external_token(Stack *self, StackVersion version, Subtree token)
{
StackHead *head = array_get(&self->heads, version);
if (token.ptr)
ts_subtree_retain(token);
if (head->last_external_token.ptr)
ts_subtree_release(self->subtree_pool, head->last_external_token);
head->last_external_token = token;
}
unsigned ts_stack_error_cost(const Stack *self, StackVersion version)
{
StackHead *head = array_get(&self->heads, version);
unsigned result = head->node->error_cost;
if (head->status == StackStatusPaused || (head->node->state == ERROR_STATE && !head->node->links[0].subtree.ptr))
{
result += ERROR_COST_PER_RECOVERY;
}
return result;
}
unsigned ts_stack_node_count_since_error(const Stack *self, StackVersion version)
{
StackHead *head = array_get(&self->heads, version);
if (head->node->node_count < head->node_count_at_last_error)
{
head->node_count_at_last_error = head->node->node_count;
}
return head->node->node_count - head->node_count_at_last_error;
}
void ts_stack_push(Stack *self, StackVersion version, Subtree subtree, bool pending, TSStateId state)
{
StackHead *head = array_get(&self->heads, version);
StackNode *new_node = stack_node_new(head->node, subtree, pending, state, &self->node_pool);
if (!subtree.ptr)
head->node_count_at_last_error = new_node->node_count;
head->node = new_node;
}
forceinline StackAction pop_count_callback(void *payload, const StackIterator *iterator)
{
unsigned *goal_subtree_count = payload;
if (iterator->subtree_count == *goal_subtree_count)
{
return StackActionPop | StackActionStop;
}
else
{
return StackActionNone;
}
}
StackSliceArray ts_stack_pop_count(Stack *self, StackVersion version, uint32_t count)
{
return stack__iter(self, version, pop_count_callback, &count, (int)count);
}
forceinline StackAction pop_pending_callback(void *payload, const StackIterator *iterator)
{
(void)payload;
if (iterator->subtree_count >= 1)
{
if (iterator->is_pending)
{
return StackActionPop | StackActionStop;
}
else
{
return StackActionStop;
}
}
else
{
return StackActionNone;
}
}
StackSliceArray ts_stack_pop_pending(Stack *self, StackVersion version)
{
StackSliceArray pop = stack__iter(self, version, pop_pending_callback, NULL, 0);
if (pop.size > 0)
{
ts_stack_renumber_version(self, pop.contents[0].version, version);
pop.contents[0].version = version;
}
return pop;
}
forceinline StackAction pop_error_callback(void *payload, const StackIterator *iterator)
{
if (iterator->subtrees.size > 0)
{
bool *found_error = payload;
if (!*found_error && ts_subtree_is_error(iterator->subtrees.contents[0]))
{
*found_error = true;
return StackActionPop | StackActionStop;
}
else
{
return StackActionStop;
}
}
else
{
return StackActionNone;
}
}
SubtreeArray ts_stack_pop_error(Stack *self, StackVersion version)
{
StackNode *node = array_get(&self->heads, version)->node;
for (unsigned i = 0; i < node->link_count; i++)
{
if (node->links[i].subtree.ptr && ts_subtree_is_error(node->links[i].subtree))
{
bool found_error = false;
StackSliceArray pop = stack__iter(self, version, pop_error_callback, &found_error, 1);
if (pop.size > 0)
{
assert(pop.size == 1);
ts_stack_renumber_version(self, pop.contents[0].version, version);
return pop.contents[0].subtrees;
}
break;
}
}
return (SubtreeArray){.size = 0};
}
forceinline StackAction pop_all_callback(void *payload, const StackIterator *iterator)
{
(void)payload;
return iterator->node->link_count == 0 ? StackActionPop : StackActionNone;
}
StackSliceArray ts_stack_pop_all(Stack *self, StackVersion version)
{
return stack__iter(self, version, pop_all_callback, NULL, 0);
}
typedef struct SummarizeStackSession
{
StackSummary *summary;
unsigned max_depth;
} SummarizeStackSession;
forceinline StackAction summarize_stack_callback(void *payload, const StackIterator *iterator)
{
SummarizeStackSession *session = payload;
TSStateId state = iterator->node->state;
unsigned depth = iterator->subtree_count;
if (depth > session->max_depth)
return StackActionStop;
for (unsigned i = session->summary->size - 1; i + 1 > 0; i--)
{
StackSummaryEntry entry = session->summary->contents[i];
if (entry.depth < depth)
break;
if (entry.depth == depth && entry.state == state)
return StackActionNone;
}
array_push(session->summary, ((StackSummaryEntry){
.position = iterator->node->position,
.depth = depth,
.state = state,
}));
return StackActionNone;
}
void ts_stack_record_summary(Stack *self, StackVersion version, unsigned max_depth)
{
SummarizeStackSession session = {.summary = ts_malloc(sizeof(StackSummary)), .max_depth = max_depth};
array_init(session.summary);
stack__iter(self, version, summarize_stack_callback, &session, -1);
StackHead *head = &self->heads.contents[version];
if (head->summary)
{
array_delete(head->summary);
ts_free(head->summary);
}
head->summary = session.summary;
}
StackSummary *ts_stack_get_summary(Stack *self, StackVersion version)
{
return array_get(&self->heads, version)->summary;
}
int ts_stack_dynamic_precedence(Stack *self, StackVersion version)
{
return array_get(&self->heads, version)->node->dynamic_precedence;
}
bool ts_stack_has_advanced_since_error(const Stack *self, StackVersion version)
{
const StackHead *head = array_get(&self->heads, version);
const StackNode *node = head->node;
if (node->error_cost == 0)
return true;
while (node)
{
if (node->link_count > 0)
{
Subtree subtree = node->links[0].subtree;
if (subtree.ptr)
{
if (ts_subtree_total_bytes(subtree) > 0)
{
return true;
}
else if (node->node_count > head->node_count_at_last_error && ts_subtree_error_cost(subtree) == 0)
{
node = node->links[0].node;
continue;
}
}
}
break;
}
return false;
}
void ts_stack_remove_version(Stack *self, StackVersion version)
{
stack_head_delete(array_get(&self->heads, version), &self->node_pool, self->subtree_pool);
array_erase(&self->heads, version);
}
void ts_stack_renumber_version(Stack *self, StackVersion v1, StackVersion v2)
{
if (v1 == v2)
return;
assert(v2 < v1);
assert((uint32_t)v1 < self->heads.size);
StackHead *source_head = &self->heads.contents[v1];
StackHead *target_head = &self->heads.contents[v2];
if (target_head->summary && !source_head->summary)
{
source_head->summary = target_head->summary;
target_head->summary = NULL;
}
stack_head_delete(target_head, &self->node_pool, self->subtree_pool);
*target_head = *source_head;
array_erase(&self->heads, v1);
}
void ts_stack_swap_versions(Stack *self, StackVersion v1, StackVersion v2)
{
StackHead temporary_head = self->heads.contents[v1];
self->heads.contents[v1] = self->heads.contents[v2];
self->heads.contents[v2] = temporary_head;
}
StackVersion ts_stack_copy_version(Stack *self, StackVersion version)
{
assert(version < self->heads.size);
array_push(&self->heads, self->heads.contents[version]);
StackHead *head = array_back(&self->heads);
stack_node_retain(head->node);
if (head->last_external_token.ptr)
ts_subtree_retain(head->last_external_token);
head->summary = NULL;
return self->heads.size - 1;
}
bool ts_stack_merge(Stack *self, StackVersion version1, StackVersion version2)
{
if (!ts_stack_can_merge(self, version1, version2))
return false;
StackHead *head1 = &self->heads.contents[version1];
StackHead *head2 = &self->heads.contents[version2];
for (uint32_t i = 0; i < head2->node->link_count; i++)
{
stack_node_add_link(head1->node, head2->node->links[i], self->subtree_pool);
}
if (head1->node->state == ERROR_STATE)
{
head1->node_count_at_last_error = head1->node->node_count;
}
ts_stack_remove_version(self, version2);
return true;
}
bool ts_stack_can_merge(Stack *self, StackVersion version1, StackVersion version2)
{
StackHead *head1 = &self->heads.contents[version1];
StackHead *head2 = &self->heads.contents[version2];
return head1->status == StackStatusActive && head2->status == StackStatusActive && head1->node->state == head2->node->state &&
head1->node->position.bytes == head2->node->position.bytes && head1->node->error_cost == head2->node->error_cost &&
ts_subtree_external_scanner_state_eq(head1->last_external_token, head2->last_external_token);
}
void ts_stack_halt(Stack *self, StackVersion version)
{
array_get(&self->heads, version)->status = StackStatusHalted;
}
void ts_stack_pause(Stack *self, StackVersion version, Subtree lookahead)
{
StackHead *head = array_get(&self->heads, version);
head->status = StackStatusPaused;
head->lookahead_when_paused = lookahead;
head->node_count_at_last_error = head->node->node_count;
}
bool ts_stack_is_active(const Stack *self, StackVersion version)
{
return array_get(&self->heads, version)->status == StackStatusActive;
}
bool ts_stack_is_halted(const Stack *self, StackVersion version)
{
return array_get(&self->heads, version)->status == StackStatusHalted;
}
bool ts_stack_is_paused(const Stack *self, StackVersion version)
{
return array_get(&self->heads, version)->status == StackStatusPaused;
}
Subtree ts_stack_resume(Stack *self, StackVersion version)
{
StackHead *head = array_get(&self->heads, version);
assert(head->status == StackStatusPaused);
Subtree result = head->lookahead_when_paused;
head->status = StackStatusActive;
head->lookahead_when_paused = NULL_SUBTREE;
return result;
}
void ts_stack_clear(Stack *self)
{
stack_node_retain(self->base_node);
for (uint32_t i = 0; i < self->heads.size; i++)
{
stack_head_delete(&self->heads.contents[i], &self->node_pool, self->subtree_pool);
}
array_clear(&self->heads);
array_push(&self->heads, ((StackHead){
.node = self->base_node,
.status = StackStatusActive,
.last_external_token = NULL_SUBTREE,
.lookahead_when_paused = NULL_SUBTREE,
}));
}
bool ts_stack_print_dot_graph(Stack *self, const TSLanguage *language, FILE *f)
{
array_reserve(&self->iterators, 32);
if (!f)
f = stderr;
fprintf(f, "digraph stack {\n");
fprintf(f, "rankdir=\"RL\";\n");
fprintf(f, "edge [arrowhead=none]\n");
Array(StackNode *) visited_nodes = array_new();
array_clear(&self->iterators);
for (uint32_t i = 0; i < self->heads.size; i++)
{
StackHead *head = &self->heads.contents[i];
if (head->status == StackStatusHalted)
continue;
fprintf(f, "node_head_%u [shape=none, label=\"\"]\n", i);
fprintf(f, "node_head_%u -> node_%p [", i, (void *)head->node);
if (head->status == StackStatusPaused)
{
fprintf(f, "color=red ");
}
fprintf(f, "label=%u, fontcolor=blue, weight=10000, labeltooltip=\"node_count: %u\nerror_cost: %u", i,
ts_stack_node_count_since_error(self, i), ts_stack_error_cost(self, i));
if (head->summary)
{
fprintf(f, "\nsummary:");
for (uint32_t j = 0; j < head->summary->size; j++)
fprintf(f, " %u", head->summary->contents[j].state);
}
if (head->last_external_token.ptr)
{
const ExternalScannerState *state = &head->last_external_token.ptr->inner.external_scanner_state;
const char *data = ts_external_scanner_state_data(state);
fprintf(f, "\nexternal_scanner_state:");
for (uint32_t j = 0; j < state->length; j++)
fprintf(f, " %2X", data[j]);
}
fprintf(f, "\"]\n");
array_push(&self->iterators, ((StackIterator){.node = head->node}));
}
bool all_iterators_done = false;
while (!all_iterators_done)
{
all_iterators_done = true;
for (uint32_t i = 0; i < self->iterators.size; i++)
{
StackIterator iterator = self->iterators.contents[i];
StackNode *node = iterator.node;
for (uint32_t j = 0; j < visited_nodes.size; j++)
{
if (visited_nodes.contents[j] == node)
{
node = NULL;
break;
}
}
if (!node)
continue;
all_iterators_done = false;
fprintf(f, "node_%p [", (void *)node);
if (node->state == ERROR_STATE)
{
fprintf(f, "label=\"?\"");
}
else if (node->link_count == 1 && node->links[0].subtree.ptr && ts_subtree_extra(node->links[0].subtree))
{
fprintf(f, "shape=point margin=0 label=\"\"");
}
else
{
fprintf(f, "label=\"%d\"", node->state);
}
fprintf(f, " tooltip=\"position: %u,%u\nnode_count:%u\nerror_cost: %u\ndynamic_precedence: %d\"];\n",
node->position.extent.row + 1, node->position.extent.column, node->node_count, node->error_cost,
node->dynamic_precedence);
for (int j = 0; j < node->link_count; j++)
{
StackLink link = node->links[j];
fprintf(f, "node_%p -> node_%p [", (void *)node, (void *)link.node);
if (link.is_pending)
fprintf(f, "style=dashed ");
if (link.subtree.ptr && ts_subtree_extra(link.subtree))
fprintf(f, "fontcolor=gray ");
if (!link.subtree.ptr)
{
fprintf(f, "color=red");
}
else
{
fprintf(f, "label=\"");
bool quoted = ts_subtree_visible(link.subtree) && !ts_subtree_named(link.subtree);
if (quoted)
fprintf(f, "'");
ts_language_write_symbol_as_dot_string(language, f, ts_subtree_symbol(link.subtree));
if (quoted)
fprintf(f, "'");
fprintf(f, "\"");
fprintf(f, "labeltooltip=\"error_cost: %u\ndynamic_precedence: %" PRId32 "\"", ts_subtree_error_cost(link.subtree),
ts_subtree_dynamic_precedence(link.subtree));
}
fprintf(f, "];\n");
StackIterator *next_iterator;
if (j == 0)
{
next_iterator = &self->iterators.contents[i];
}
else
{
array_push(&self->iterators, iterator);
next_iterator = array_back(&self->iterators);
}
next_iterator->node = link.node;
}
array_push(&visited_nodes, node);
}
}
fprintf(f, "}\n");
array_delete(&visited_nodes);
return true;
}
#undef forceinline

View file

@ -1,136 +0,0 @@
#ifndef TREE_SITTER_PARSE_STACK_H_
#define TREE_SITTER_PARSE_STACK_H_
#ifdef __cplusplus
extern "C"
{
#endif
#include "./array.h"
#include "./error_costs.h"
#include "./subtree.h"
#include <stdio.h>
typedef struct Stack Stack;
typedef unsigned StackVersion;
#define STACK_VERSION_NONE ((StackVersion)-1)
typedef struct StackSlice
{
SubtreeArray subtrees;
StackVersion version;
} StackSlice;
typedef Array(StackSlice) StackSliceArray;
typedef struct StackSummaryEntry
{
Length position;
unsigned depth;
TSStateId state;
} StackSummaryEntry;
typedef Array(StackSummaryEntry) StackSummary;
// Create a stack.
Stack *ts_stack_new(SubtreePool *);
// Release the memory reserved for a given stack.
void ts_stack_delete(Stack *);
// Get the stack's current number of versions.
uint32_t ts_stack_version_count(const Stack *);
// Get the state at the top of the given version of the stack. If the stack is
// empty, this returns the initial state, 0.
TSStateId ts_stack_state(const Stack *, StackVersion);
// Get the last external token associated with a given version of the stack.
Subtree ts_stack_last_external_token(const Stack *, StackVersion);
// Set the last external token associated with a given version of the stack.
void ts_stack_set_last_external_token(Stack *, StackVersion, Subtree);
// Get the position of the given version of the stack within the document.
Length ts_stack_position(const Stack *, StackVersion);
// Push a tree and state onto the given version of the stack.
//
// This transfers ownership of the tree to the Stack. Callers that
// need to retain ownership of the tree for their own purposes should
// first retain the tree.
void ts_stack_push(Stack *, StackVersion, Subtree, bool, TSStateId);
// Pop the given number of entries from the given version of the stack. This
// operation can increase the number of stack versions by revealing multiple
// versions which had previously been merged. It returns an array that
// specifies the index of each revealed version and the trees that were
// removed from that version.
StackSliceArray ts_stack_pop_count(Stack *, StackVersion, uint32_t count);
// Remove an error at the top of the given version of the stack.
SubtreeArray ts_stack_pop_error(Stack *, StackVersion);
// Remove any pending trees from the top of the given version of the stack.
StackSliceArray ts_stack_pop_pending(Stack *, StackVersion);
// Remove any all trees from the given version of the stack.
StackSliceArray ts_stack_pop_all(Stack *, StackVersion);
// Get the maximum number of tree nodes reachable from this version of the stack
// since the last error was detected.
unsigned ts_stack_node_count_since_error(const Stack *, StackVersion);
int ts_stack_dynamic_precedence(Stack *, StackVersion);
bool ts_stack_has_advanced_since_error(const Stack *, StackVersion);
// Compute a summary of all the parse states near the top of the given
// version of the stack and store the summary for later retrieval.
void ts_stack_record_summary(Stack *, StackVersion, unsigned max_depth);
// Retrieve a summary of all the parse states near the top of the
// given version of the stack.
StackSummary *ts_stack_get_summary(Stack *, StackVersion);
// Get the total cost of all errors on the given version of the stack.
unsigned ts_stack_error_cost(const Stack *, StackVersion version);
// Merge the given two stack versions if possible, returning true
// if they were successfully merged and false otherwise.
bool ts_stack_merge(Stack *, StackVersion, StackVersion);
// Determine whether the given two stack versions can be merged.
bool ts_stack_can_merge(Stack *, StackVersion, StackVersion);
Subtree ts_stack_resume(Stack *, StackVersion);
void ts_stack_pause(Stack *, StackVersion, Subtree);
void ts_stack_halt(Stack *, StackVersion);
bool ts_stack_is_active(const Stack *, StackVersion);
bool ts_stack_is_paused(const Stack *, StackVersion);
bool ts_stack_is_halted(const Stack *, StackVersion);
void ts_stack_renumber_version(Stack *, StackVersion, StackVersion);
void ts_stack_swap_versions(Stack *, StackVersion, StackVersion);
StackVersion ts_stack_copy_version(Stack *, StackVersion);
// Remove the given version from the stack.
void ts_stack_remove_version(Stack *, StackVersion);
void ts_stack_clear(Stack *);
bool ts_stack_print_dot_graph(Stack *, const TSLanguage *, FILE *);
typedef void (*StackIterateCallback)(void *, TSStateId, uint32_t);
#ifdef __cplusplus
}
#endif
#endif // TREE_SITTER_PARSE_STACK_H_

File diff suppressed because it is too large Load diff

View file

@ -1,456 +0,0 @@
#ifndef TREE_SITTER_SUBTREE_H_
#define TREE_SITTER_SUBTREE_H_
#ifdef __cplusplus
extern "C"
{
#endif
#include "./api.h"
#include "./array.h"
#include "./error_costs.h"
#include "./host.h"
#include "./length.h"
#include "./parser.h"
#include <limits.h>
#include <stdbool.h>
#include <stdio.h>
#define TS_TREE_STATE_NONE USHRT_MAX
#define NULL_SUBTREE ((Subtree){.ptr = NULL})
// The serialized state of an external scanner.
//
// Every time an external token subtree is created after a call to an
// external scanner, the scanner's `serialize` function is called to
// retrieve a serialized copy of its state. The bytes are then copied
// onto the subtree itself so that the scanner's state can later be
// restored using its `deserialize` function.
//
// Small byte arrays are stored inline, and long ones are allocated
// separately on the heap.
typedef struct ExternalScannerState
{
union ExternalScannerStateData {
char *long_data;
char short_data[24];
} data;
uint32_t length;
} ExternalScannerState;
// A compact representation of a subtree.
//
// This representation is used for small leaf nodes that are not
// errors, and were not created by an external scanner.
//
// The idea behind the layout of this struct is that the `is_inline`
// bit will fall exactly into the same location as the least significant
// bit of the pointer in `Subtree` or `MutableSubtree`, respectively.
// Because of alignment, for any valid pointer this will be 0, giving
// us the opportunity to make use of this bit to signify whether to use
// the pointer or the inline struct.
typedef struct SubtreeInlineData SubtreeInlineData;
#define SUBTREE_BITS \
bool visible : 1; \
bool named : 1; \
bool extra : 1; \
bool has_changes : 1; \
bool is_missing : 1; \
bool is_keyword : 1;
#define SUBTREE_SIZE \
uint8_t padding_columns; \
uint8_t padding_rows : 4; \
uint8_t lookahead_bytes : 4; \
uint8_t padding_bytes; \
uint8_t size_bytes;
#if TS_BIG_ENDIAN
# if TS_PTR_SIZE == 32
struct SubtreeInlineData
{
uint16_t parse_state;
uint8_t symbol;
SUBTREE_BITS
bool unused : 1;
bool is_inline : 1;
SUBTREE_SIZE
};
# else
struct SubtreeInlineData
{
SUBTREE_SIZE
uint16_t parse_state;
uint8_t symbol;
SUBTREE_BITS
bool unused : 1;
bool is_inline : 1;
};
# endif
#else
struct SubtreeInlineData
{
bool is_inline : 1;
SUBTREE_BITS
uint8_t symbol;
uint16_t parse_state;
SUBTREE_SIZE
};
#endif
#undef SUBTREE_BITS
#undef SUBTREE_SIZE
// A heap-allocated representation of a subtree.
//
// This representation is used for parent nodes, external tokens,
// errors, and other leaf nodes whose data is too large to fit into
// the inline representation.
typedef struct SubtreeHeapData
{
volatile uint32_t ref_count;
Length padding;
Length size;
uint32_t lookahead_bytes;
uint32_t error_cost;
uint32_t child_count;
TSSymbol symbol;
TSStateId parse_state;
bool visible : 1;
bool named : 1;
bool extra : 1;
bool fragile_left : 1;
bool fragile_right : 1;
bool has_changes : 1;
bool has_external_tokens : 1;
bool has_external_scanner_state_change : 1;
bool depends_on_column : 1;
bool is_missing : 1;
bool is_keyword : 1;
union SubtreeHeapDataInner {
// Non-terminal subtrees (`child_count > 0`)
struct SubtreeHeapDataInnerNonTerminal
{
uint32_t visible_child_count;
uint32_t named_child_count;
uint32_t visible_descendant_count;
int32_t dynamic_precedence;
uint16_t repeat_depth;
uint16_t production_id;
struct SubtreeHeapDataInnerNonTerminalFirstLeaf
{
TSSymbol symbol;
TSStateId parse_state;
} first_leaf;
} non_terminal;
// External terminal subtrees (`child_count == 0 && has_external_tokens`)
ExternalScannerState external_scanner_state;
// Error terminal subtrees (`child_count == 0 && symbol == ts_builtin_sym_error`)
int32_t lookahead_char;
} inner;
} SubtreeHeapData;
// The fundamental building block of a syntax tree.
typedef union Subtree {
SubtreeInlineData data;
const SubtreeHeapData *ptr;
} Subtree;
// Like Subtree, but mutable.
typedef union MutableSubtree {
SubtreeInlineData data;
SubtreeHeapData *ptr;
} MutableSubtree;
typedef Array(Subtree) SubtreeArray;
typedef Array(MutableSubtree) MutableSubtreeArray;
typedef struct SubtreePool
{
MutableSubtreeArray free_trees;
MutableSubtreeArray tree_stack;
} SubtreePool;
void ts_external_scanner_state_init(ExternalScannerState *, const char *, unsigned);
const char *ts_external_scanner_state_data(const ExternalScannerState *);
bool ts_external_scanner_state_eq(const ExternalScannerState *self, const char *, unsigned);
void ts_external_scanner_state_delete(ExternalScannerState *self);
void ts_subtree_array_copy(SubtreeArray, SubtreeArray *);
void ts_subtree_array_clear(SubtreePool *, SubtreeArray *);
void ts_subtree_array_delete(SubtreePool *, SubtreeArray *);
void ts_subtree_array_remove_trailing_extras(SubtreeArray *, SubtreeArray *);
void ts_subtree_array_reverse(SubtreeArray *);
SubtreePool ts_subtree_pool_new(uint32_t capacity);
void ts_subtree_pool_delete(SubtreePool *);
Subtree ts_subtree_new_leaf(SubtreePool *, TSSymbol, Length, Length, uint32_t, TSStateId, bool, bool, bool, const TSLanguage *);
Subtree ts_subtree_new_error(SubtreePool *, int32_t, Length, Length, uint32_t, TSStateId, const TSLanguage *);
MutableSubtree ts_subtree_new_node(TSSymbol, SubtreeArray *, unsigned, const TSLanguage *);
Subtree ts_subtree_new_error_node(SubtreeArray *, bool, const TSLanguage *);
Subtree ts_subtree_new_missing_leaf(SubtreePool *, TSSymbol, Length, uint32_t, const TSLanguage *);
MutableSubtree ts_subtree_make_mut(SubtreePool *, Subtree);
void ts_subtree_retain(Subtree);
void ts_subtree_release(SubtreePool *, Subtree);
int ts_subtree_compare(Subtree, Subtree, SubtreePool *);
void ts_subtree_set_symbol(MutableSubtree *, TSSymbol, const TSLanguage *);
void ts_subtree_summarize(MutableSubtree, const Subtree *, uint32_t, const TSLanguage *);
void ts_subtree_summarize_children(MutableSubtree, const TSLanguage *);
void ts_subtree_balance(Subtree, SubtreePool *, const TSLanguage *);
Subtree ts_subtree_edit(Subtree, const TSInputEdit *edit, SubtreePool *);
char *ts_subtree_string(Subtree, TSSymbol, bool, const TSLanguage *, bool include_all);
void ts_subtree_print_dot_graph(Subtree, const TSLanguage *, FILE *);
Subtree ts_subtree_last_external_token(Subtree);
const ExternalScannerState *ts_subtree_external_scanner_state(Subtree self);
bool ts_subtree_external_scanner_state_eq(Subtree, Subtree);
#define SUBTREE_GET(self, name) ((self).data.is_inline ? (self).data.name : (self).ptr->name)
static inline TSSymbol ts_subtree_symbol(Subtree self)
{
return SUBTREE_GET(self, symbol);
}
static inline bool ts_subtree_visible(Subtree self)
{
return SUBTREE_GET(self, visible);
}
static inline bool ts_subtree_named(Subtree self)
{
return SUBTREE_GET(self, named);
}
static inline bool ts_subtree_extra(Subtree self)
{
return SUBTREE_GET(self, extra);
}
static inline bool ts_subtree_has_changes(Subtree self)
{
return SUBTREE_GET(self, has_changes);
}
static inline bool ts_subtree_missing(Subtree self)
{
return SUBTREE_GET(self, is_missing);
}
static inline bool ts_subtree_is_keyword(Subtree self)
{
return SUBTREE_GET(self, is_keyword);
}
static inline TSStateId ts_subtree_parse_state(Subtree self)
{
return SUBTREE_GET(self, parse_state);
}
static inline uint32_t ts_subtree_lookahead_bytes(Subtree self)
{
return SUBTREE_GET(self, lookahead_bytes);
}
#undef SUBTREE_GET
// Get the size needed to store a heap-allocated subtree with the given
// number of children.
static inline size_t ts_subtree_alloc_size(uint32_t child_count)
{
return child_count * sizeof(Subtree) + sizeof(SubtreeHeapData);
}
// Get a subtree's children, which are allocated immediately before the
// tree's own heap data.
#define ts_subtree_children(self) ((self).data.is_inline ? NULL : (Subtree *)((self).ptr) - (self).ptr->child_count)
static inline void ts_subtree_set_extra(MutableSubtree *self, bool is_extra)
{
if (self->data.is_inline)
{
self->data.extra = is_extra;
}
else
{
self->ptr->extra = is_extra;
}
}
static inline TSSymbol ts_subtree_leaf_symbol(Subtree self)
{
if (self.data.is_inline)
return self.data.symbol;
if (self.ptr->child_count == 0)
return self.ptr->symbol;
return self.ptr->inner.non_terminal.first_leaf.symbol;
}
static inline TSStateId ts_subtree_leaf_parse_state(Subtree self)
{
if (self.data.is_inline)
return self.data.parse_state;
if (self.ptr->child_count == 0)
return self.ptr->parse_state;
return self.ptr->inner.non_terminal.first_leaf.parse_state;
}
static inline Length ts_subtree_padding(Subtree self)
{
if (self.data.is_inline)
{
Length result = {self.data.padding_bytes, {self.data.padding_rows, self.data.padding_columns}};
return result;
}
else
{
return self.ptr->padding;
}
}
static inline Length ts_subtree_size(Subtree self)
{
if (self.data.is_inline)
{
Length result = {self.data.size_bytes, {0, self.data.size_bytes}};
return result;
}
else
{
return self.ptr->size;
}
}
static inline Length ts_subtree_total_size(Subtree self)
{
return length_add(ts_subtree_padding(self), ts_subtree_size(self));
}
static inline uint32_t ts_subtree_total_bytes(Subtree self)
{
return ts_subtree_total_size(self).bytes;
}
static inline uint32_t ts_subtree_child_count(Subtree self)
{
return self.data.is_inline ? 0 : self.ptr->child_count;
}
static inline uint32_t ts_subtree_repeat_depth(Subtree self)
{
return self.data.is_inline ? 0 : self.ptr->inner.non_terminal.repeat_depth;
}
static inline uint32_t ts_subtree_is_repetition(Subtree self)
{
return self.data.is_inline ? 0 : !self.ptr->named && !self.ptr->visible && self.ptr->child_count != 0;
}
static inline uint32_t ts_subtree_visible_descendant_count(Subtree self)
{
return (self.data.is_inline || self.ptr->child_count == 0) ? 0 : self.ptr->inner.non_terminal.visible_descendant_count;
}
static inline uint32_t ts_subtree_visible_child_count(Subtree self)
{
if (ts_subtree_child_count(self) > 0)
{
return self.ptr->inner.non_terminal.visible_child_count;
}
else
{
return 0;
}
}
static inline uint32_t ts_subtree_error_cost(Subtree self)
{
if (ts_subtree_missing(self))
{
return ERROR_COST_PER_MISSING_TREE + ERROR_COST_PER_RECOVERY;
}
else
{
return self.data.is_inline ? 0 : self.ptr->error_cost;
}
}
static inline int32_t ts_subtree_dynamic_precedence(Subtree self)
{
return (self.data.is_inline || self.ptr->child_count == 0) ? 0 : self.ptr->inner.non_terminal.dynamic_precedence;
}
static inline uint16_t ts_subtree_production_id(Subtree self)
{
if (ts_subtree_child_count(self) > 0)
{
return self.ptr->inner.non_terminal.production_id;
}
else
{
return 0;
}
}
static inline bool ts_subtree_fragile_left(Subtree self)
{
return self.data.is_inline ? false : self.ptr->fragile_left;
}
static inline bool ts_subtree_fragile_right(Subtree self)
{
return self.data.is_inline ? false : self.ptr->fragile_right;
}
static inline bool ts_subtree_has_external_tokens(Subtree self)
{
return self.data.is_inline ? false : self.ptr->has_external_tokens;
}
static inline bool ts_subtree_has_external_scanner_state_change(Subtree self)
{
return self.data.is_inline ? false : self.ptr->has_external_scanner_state_change;
}
static inline bool ts_subtree_depends_on_column(Subtree self)
{
return self.data.is_inline ? false : self.ptr->depends_on_column;
}
static inline bool ts_subtree_is_fragile(Subtree self)
{
return self.data.is_inline ? false : (self.ptr->fragile_left || self.ptr->fragile_right);
}
static inline bool ts_subtree_is_error(Subtree self)
{
return ts_subtree_symbol(self) == ts_builtin_sym_error;
}
static inline bool ts_subtree_is_eof(Subtree self)
{
return ts_subtree_symbol(self) == ts_builtin_sym_end;
}
static inline Subtree ts_subtree_from_mut(MutableSubtree self)
{
Subtree result;
result.data = self.data;
return result;
}
static inline MutableSubtree ts_subtree_to_mut_unsafe(Subtree self)
{
MutableSubtree result;
result.data = self.data;
return result;
}
#ifdef __cplusplus
}
#endif
#endif // TREE_SITTER_SUBTREE_H_

View file

@ -1,165 +0,0 @@
#define _POSIX_C_SOURCE 200112L
#include "./api.h"
#include "./array.h"
#include "./get_changed_ranges.h"
#include "./length.h"
#include "./subtree.h"
#include "./tree_cursor.h"
#include "./tree.h"
TSTree *ts_tree_new(
Subtree root, const TSLanguage *language,
const TSRange *included_ranges, unsigned included_range_count
) {
TSTree *result = ts_malloc(sizeof(TSTree));
result->root = root;
result->language = ts_language_copy(language);
result->included_ranges = ts_calloc(included_range_count, sizeof(TSRange));
memcpy(result->included_ranges, included_ranges, included_range_count * sizeof(TSRange));
result->included_range_count = included_range_count;
return result;
}
TSTree *ts_tree_copy(const TSTree *self) {
ts_subtree_retain(self->root);
return ts_tree_new(self->root, self->language, self->included_ranges, self->included_range_count);
}
void ts_tree_delete(TSTree *self) {
if (!self) return;
SubtreePool pool = ts_subtree_pool_new(0);
ts_subtree_release(&pool, self->root);
ts_subtree_pool_delete(&pool);
ts_language_delete(self->language);
ts_free(self->included_ranges);
ts_free(self);
}
TSNode ts_tree_root_node(const TSTree *self) {
return ts_node_new(self, &self->root, ts_subtree_padding(self->root), 0);
}
TSNode ts_tree_root_node_with_offset(
const TSTree *self,
uint32_t offset_bytes,
TSPoint offset_extent
) {
Length offset = {offset_bytes, offset_extent};
return ts_node_new(self, &self->root, length_add(offset, ts_subtree_padding(self->root)), 0);
}
const TSLanguage *ts_tree_language(const TSTree *self) {
return self->language;
}
void ts_tree_edit(TSTree *self, const TSInputEdit *edit) {
for (unsigned i = 0; i < self->included_range_count; i++) {
TSRange *range = &self->included_ranges[i];
if (range->end_byte >= edit->old_end_byte) {
if (range->end_byte != UINT32_MAX) {
range->end_byte = edit->new_end_byte + (range->end_byte - edit->old_end_byte);
range->end_point = point_add(
edit->new_end_point,
point_sub(range->end_point, edit->old_end_point)
);
if (range->end_byte < edit->new_end_byte) {
range->end_byte = UINT32_MAX;
range->end_point = POINT_MAX;
}
}
} else if (range->end_byte > edit->start_byte) {
range->end_byte = edit->start_byte;
range->end_point = edit->start_point;
}
if (range->start_byte >= edit->old_end_byte) {
range->start_byte = edit->new_end_byte + (range->start_byte - edit->old_end_byte);
range->start_point = point_add(
edit->new_end_point,
point_sub(range->start_point, edit->old_end_point)
);
if (range->start_byte < edit->new_end_byte) {
range->start_byte = UINT32_MAX;
range->start_point = POINT_MAX;
}
} else if (range->start_byte > edit->start_byte) {
range->start_byte = edit->start_byte;
range->start_point = edit->start_point;
}
}
SubtreePool pool = ts_subtree_pool_new(0);
self->root = ts_subtree_edit(self->root, edit, &pool);
ts_subtree_pool_delete(&pool);
}
TSRange *ts_tree_included_ranges(const TSTree *self, uint32_t *length) {
*length = self->included_range_count;
TSRange *ranges = ts_calloc(self->included_range_count, sizeof(TSRange));
memcpy(ranges, self->included_ranges, self->included_range_count * sizeof(TSRange));
return ranges;
}
TSRange *ts_tree_get_changed_ranges(const TSTree *old_tree, const TSTree *new_tree, uint32_t *length) {
TreeCursor cursor1 = {NULL, array_new(), 0};
TreeCursor cursor2 = {NULL, array_new(), 0};
ts_tree_cursor_init(&cursor1, ts_tree_root_node(old_tree));
ts_tree_cursor_init(&cursor2, ts_tree_root_node(new_tree));
TSRangeArray included_range_differences = array_new();
ts_range_array_get_changed_ranges(
old_tree->included_ranges, old_tree->included_range_count,
new_tree->included_ranges, new_tree->included_range_count,
&included_range_differences
);
TSRange *result;
*length = ts_subtree_get_changed_ranges(
&old_tree->root, &new_tree->root, &cursor1, &cursor2,
old_tree->language, &included_range_differences, &result
);
array_delete(&included_range_differences);
array_delete(&cursor1.stack);
array_delete(&cursor2.stack);
return result;
}
#ifdef _WIN32
#include <io.h>
#include <windows.h>
int _ts_dup(HANDLE handle) {
HANDLE dup_handle;
if (!DuplicateHandle(
GetCurrentProcess(), handle,
GetCurrentProcess(), &dup_handle,
0, FALSE, DUPLICATE_SAME_ACCESS
)) return -1;
return _open_osfhandle((intptr_t)dup_handle, 0);
}
void ts_tree_print_dot_graph(const TSTree *self, int fd) {
FILE *file = _fdopen(_ts_dup((HANDLE)_get_osfhandle(fd)), "a");
ts_subtree_print_dot_graph(self->root, self->language, file);
fclose(file);
}
#else
#include <unistd.h>
int _ts_dup(int file_descriptor) {
return dup(file_descriptor);
}
void ts_tree_print_dot_graph(const TSTree *self, int file_descriptor) {
FILE *file = fdopen(_ts_dup(file_descriptor), "a");
ts_subtree_print_dot_graph(self->root, self->language, file);
fclose(file);
}
#endif

View file

@ -1,34 +0,0 @@
#ifndef TREE_SITTER_TREE_H_
#define TREE_SITTER_TREE_H_
#include "./subtree.h"
#ifdef __cplusplus
extern "C"
{
#endif
typedef struct ParentCacheEntry
{
const Subtree *child;
const Subtree *parent;
Length position;
TSSymbol alias_symbol;
} ParentCacheEntry;
struct TSTree
{
Subtree root;
const TSLanguage *language;
TSRange *included_ranges;
unsigned included_range_count;
};
TSTree *ts_tree_new(Subtree root, const TSLanguage *language, const TSRange *, unsigned);
TSNode ts_node_new(const TSTree *, const Subtree *, Length, TSSymbol);
#ifdef __cplusplus
}
#endif
#endif // TREE_SITTER_TREE_H_

View file

@ -1,714 +0,0 @@
#include "./api.h"
#include "./alloc.h"
#include "./tree_cursor.h"
#include "./language.h"
#include "./tree.h"
typedef struct CursorChildIterator{
Subtree parent;
const TSTree *tree;
Length position;
uint32_t child_index;
uint32_t structural_child_index;
uint32_t descendant_index;
const TSSymbol *alias_sequence;
} CursorChildIterator;
// CursorChildIterator
static inline bool ts_tree_cursor_is_entry_visible(const TreeCursor *self, uint32_t index) {
TreeCursorEntry *entry = &self->stack.contents[index];
if (index == 0 || ts_subtree_visible(*entry->subtree)) {
return true;
} else if (!ts_subtree_extra(*entry->subtree)) {
TreeCursorEntry *parent_entry = &self->stack.contents[index - 1];
return ts_language_alias_at(
self->tree->language,
parent_entry->subtree->ptr->inner.non_terminal.production_id,
entry->structural_child_index
);
} else {
return false;
}
}
static inline CursorChildIterator ts_tree_cursor_iterate_children(const TreeCursor *self) {
TreeCursorEntry *last_entry = array_back(&self->stack);
if (ts_subtree_child_count(*last_entry->subtree) == 0) {
return (CursorChildIterator) {NULL_SUBTREE, self->tree, length_zero(), 0, 0, 0, NULL};
}
const TSSymbol *alias_sequence = ts_language_alias_sequence(
self->tree->language,
last_entry->subtree->ptr->inner.non_terminal.production_id
);
uint32_t descendant_index = last_entry->descendant_index;
if (ts_tree_cursor_is_entry_visible(self, self->stack.size - 1)) {
descendant_index += 1;
}
return (CursorChildIterator) {
.tree = self->tree,
.parent = *last_entry->subtree,
.position = last_entry->position,
.child_index = 0,
.structural_child_index = 0,
.descendant_index = descendant_index,
.alias_sequence = alias_sequence,
};
}
static inline bool ts_tree_cursor_child_iterator_next(
CursorChildIterator *self,
TreeCursorEntry *result,
bool *visible
) {
if (!self->parent.ptr || self->child_index == self->parent.ptr->child_count) return false;
const Subtree *child = &ts_subtree_children(self->parent)[self->child_index];
*result = (TreeCursorEntry) {
.subtree = child,
.position = self->position,
.child_index = self->child_index,
.structural_child_index = self->structural_child_index,
.descendant_index = self->descendant_index,
};
*visible = ts_subtree_visible(*child);
bool extra = ts_subtree_extra(*child);
if (!extra) {
if (self->alias_sequence) {
*visible |= self->alias_sequence[self->structural_child_index];
}
self->structural_child_index++;
}
self->descendant_index += ts_subtree_visible_descendant_count(*child);
if (*visible) {
self->descendant_index += 1;
}
self->position = length_add(self->position, ts_subtree_size(*child));
self->child_index++;
if (self->child_index < self->parent.ptr->child_count) {
Subtree next_child = ts_subtree_children(self->parent)[self->child_index];
self->position = length_add(self->position, ts_subtree_padding(next_child));
}
return true;
}
// Return a position that, when `b` is added to it, yields `a`. This
// can only be computed if `b` has zero rows. Otherwise, this function
// returns `LENGTH_UNDEFINED`, and the caller needs to recompute
// the position some other way.
static inline Length length_backtrack(Length a, Length b) {
if (length_is_undefined(a) || b.extent.row != 0) {
return LENGTH_UNDEFINED;
}
Length result;
result.bytes = a.bytes - b.bytes;
result.extent.row = a.extent.row;
result.extent.column = a.extent.column - b.extent.column;
return result;
}
static inline bool ts_tree_cursor_child_iterator_previous(
CursorChildIterator *self,
TreeCursorEntry *result,
bool *visible
) {
// this is mostly a reverse `ts_tree_cursor_child_iterator_next` taking into
// account unsigned underflow
if (!self->parent.ptr || (int8_t)self->child_index == -1) return false;
const Subtree *child = &ts_subtree_children(self->parent)[self->child_index];
*result = (TreeCursorEntry) {
.subtree = child,
.position = self->position,
.child_index = self->child_index,
.structural_child_index = self->structural_child_index,
};
*visible = ts_subtree_visible(*child);
bool extra = ts_subtree_extra(*child);
if (!extra && self->alias_sequence) {
*visible |= self->alias_sequence[self->structural_child_index];
self->structural_child_index--;
}
self->position = length_backtrack(self->position, ts_subtree_padding(*child));
self->child_index--;
// unsigned can underflow so compare it to child_count
if (self->child_index < self->parent.ptr->child_count) {
Subtree previous_child = ts_subtree_children(self->parent)[self->child_index];
Length size = ts_subtree_size(previous_child);
self->position = length_backtrack(self->position, size);
}
return true;
}
// TSTreeCursor - lifecycle
TSTreeCursor ts_tree_cursor_new(TSNode node) {
TSTreeCursor self = {NULL, NULL, {0, 0, 0}};
ts_tree_cursor_init((TreeCursor *)&self, node);
return self;
}
void ts_tree_cursor_reset(TSTreeCursor *_self, TSNode node) {
ts_tree_cursor_init((TreeCursor *)_self, node);
}
void ts_tree_cursor_init(TreeCursor *self, TSNode node) {
self->tree = node.tree;
self->root_alias_symbol = node.context[3];
array_clear(&self->stack);
array_push(&self->stack, ((TreeCursorEntry) {
.subtree = (const Subtree *)node.id,
.position = {
ts_node_start_byte(node),
ts_node_start_point(node)
},
.child_index = 0,
.structural_child_index = 0,
.descendant_index = 0,
}));
}
void ts_tree_cursor_delete(TSTreeCursor *_self) {
TreeCursor *self = (TreeCursor *)_self;
array_delete(&self->stack);
}
// TSTreeCursor - walking the tree
TreeCursorStep ts_tree_cursor_goto_first_child_internal(TSTreeCursor *_self) {
TreeCursor *self = (TreeCursor *)_self;
bool visible;
TreeCursorEntry entry;
CursorChildIterator iterator = ts_tree_cursor_iterate_children(self);
while (ts_tree_cursor_child_iterator_next(&iterator, &entry, &visible)) {
if (visible) {
array_push(&self->stack, entry);
return TreeCursorStepVisible;
}
if (ts_subtree_visible_child_count(*entry.subtree) > 0) {
array_push(&self->stack, entry);
return TreeCursorStepHidden;
}
}
return TreeCursorStepNone;
}
bool ts_tree_cursor_goto_first_child(TSTreeCursor *self) {
for (;;) {
switch (ts_tree_cursor_goto_first_child_internal(self)) {
case TreeCursorStepHidden:
continue;
case TreeCursorStepVisible:
return true;
default:
return false;
}
}
return false;
}
TreeCursorStep ts_tree_cursor_goto_last_child_internal(TSTreeCursor *_self) {
TreeCursor *self = (TreeCursor *)_self;
bool visible;
TreeCursorEntry entry;
CursorChildIterator iterator = ts_tree_cursor_iterate_children(self);
if (!iterator.parent.ptr || iterator.parent.ptr->child_count == 0) return TreeCursorStepNone;
TreeCursorEntry last_entry = {0};
TreeCursorStep last_step = TreeCursorStepNone;
while (ts_tree_cursor_child_iterator_next(&iterator, &entry, &visible)) {
if (visible) {
last_entry = entry;
last_step = TreeCursorStepVisible;
}
else if (ts_subtree_visible_child_count(*entry.subtree) > 0) {
last_entry = entry;
last_step = TreeCursorStepHidden;
}
}
if (last_entry.subtree) {
array_push(&self->stack, last_entry);
return last_step;
}
return TreeCursorStepNone;
}
bool ts_tree_cursor_goto_last_child(TSTreeCursor *self) {
for (;;) {
switch (ts_tree_cursor_goto_last_child_internal(self)) {
case TreeCursorStepHidden:
continue;
case TreeCursorStepVisible:
return true;
default:
return false;
}
}
return false;
}
static inline int64_t ts_tree_cursor_goto_first_child_for_byte_and_point(
TSTreeCursor *_self,
uint32_t goal_byte,
TSPoint goal_point
) {
TreeCursor *self = (TreeCursor *)_self;
uint32_t initial_size = self->stack.size;
uint32_t visible_child_index = 0;
bool did_descend;
do {
did_descend = false;
bool visible;
TreeCursorEntry entry;
CursorChildIterator iterator = ts_tree_cursor_iterate_children(self);
while (ts_tree_cursor_child_iterator_next(&iterator, &entry, &visible)) {
Length entry_end = length_add(entry.position, ts_subtree_size(*entry.subtree));
bool at_goal = entry_end.bytes >= goal_byte && point_gte(entry_end.extent, goal_point);
uint32_t visible_child_count = ts_subtree_visible_child_count(*entry.subtree);
if (at_goal) {
if (visible) {
array_push(&self->stack, entry);
return visible_child_index;
}
if (visible_child_count > 0) {
array_push(&self->stack, entry);
did_descend = true;
break;
}
} else if (visible) {
visible_child_index++;
} else {
visible_child_index += visible_child_count;
}
}
} while (did_descend);
self->stack.size = initial_size;
return -1;
}
int64_t ts_tree_cursor_goto_first_child_for_byte(TSTreeCursor *self, uint32_t goal_byte) {
return ts_tree_cursor_goto_first_child_for_byte_and_point(self, goal_byte, POINT_ZERO);
}
int64_t ts_tree_cursor_goto_first_child_for_point(TSTreeCursor *self, TSPoint goal_point) {
return ts_tree_cursor_goto_first_child_for_byte_and_point(self, 0, goal_point);
}
TreeCursorStep ts_tree_cursor_goto_sibling_internal(
TSTreeCursor *_self,
bool (*advance)(CursorChildIterator *, TreeCursorEntry *, bool *)) {
TreeCursor *self = (TreeCursor *)_self;
uint32_t initial_size = self->stack.size;
while (self->stack.size > 1) {
TreeCursorEntry entry = array_pop(&self->stack);
CursorChildIterator iterator = ts_tree_cursor_iterate_children(self);
iterator.child_index = entry.child_index;
iterator.structural_child_index = entry.structural_child_index;
iterator.position = entry.position;
iterator.descendant_index = entry.descendant_index;
bool visible = false;
advance(&iterator, &entry, &visible);
if (visible && self->stack.size + 1 < initial_size) break;
while (advance(&iterator, &entry, &visible)) {
if (visible) {
array_push(&self->stack, entry);
return TreeCursorStepVisible;
}
if (ts_subtree_visible_child_count(*entry.subtree)) {
array_push(&self->stack, entry);
return TreeCursorStepHidden;
}
}
}
self->stack.size = initial_size;
return TreeCursorStepNone;
}
TreeCursorStep ts_tree_cursor_goto_next_sibling_internal(TSTreeCursor *_self) {
return ts_tree_cursor_goto_sibling_internal(_self, ts_tree_cursor_child_iterator_next);
}
bool ts_tree_cursor_goto_next_sibling(TSTreeCursor *self) {
switch (ts_tree_cursor_goto_next_sibling_internal(self)) {
case TreeCursorStepHidden:
ts_tree_cursor_goto_first_child(self);
return true;
case TreeCursorStepVisible:
return true;
default:
return false;
}
}
TreeCursorStep ts_tree_cursor_goto_previous_sibling_internal(TSTreeCursor *_self) {
// since subtracting across row loses column information, we may have to
// restore it
TreeCursor *self = (TreeCursor *)_self;
// for that, save current position before traversing
TreeCursorStep step = ts_tree_cursor_goto_sibling_internal(
_self, ts_tree_cursor_child_iterator_previous);
if (step == TreeCursorStepNone)
return step;
// if length is already valid, there's no need to recompute it
if (!length_is_undefined(array_back(&self->stack)->position))
return step;
// restore position from the parent node
const TreeCursorEntry *parent = &self->stack.contents[self->stack.size - 2];
Length position = parent->position;
uint32_t child_index = array_back(&self->stack)->child_index;
const Subtree *children = ts_subtree_children((*(parent->subtree)));
if (child_index > 0) {
// skip first child padding since its position should match the position of the parent
position = length_add(position, ts_subtree_size(children[0]));
for (uint32_t i = 1; i < child_index; ++i) {
position = length_add(position, ts_subtree_total_size(children[i]));
}
position = length_add(position, ts_subtree_padding(children[child_index]));
}
array_back(&self->stack)->position = position;
return step;
}
bool ts_tree_cursor_goto_previous_sibling(TSTreeCursor *self) {
switch (ts_tree_cursor_goto_previous_sibling_internal(self)) {
case TreeCursorStepHidden:
ts_tree_cursor_goto_last_child(self);
return true;
case TreeCursorStepVisible:
return true;
default:
return false;
}
}
bool ts_tree_cursor_goto_parent(TSTreeCursor *_self) {
TreeCursor *self = (TreeCursor *)_self;
for (unsigned i = self->stack.size - 2; i + 1 > 0; i--) {
if (ts_tree_cursor_is_entry_visible(self, i)) {
self->stack.size = i + 1;
return true;
}
}
return false;
}
void ts_tree_cursor_goto_descendant(
TSTreeCursor *_self,
uint32_t goal_descendant_index
) {
TreeCursor *self = (TreeCursor *)_self;
// Ascend to the lowest ancestor that contains the goal node.
for (;;) {
uint32_t i = self->stack.size - 1;
TreeCursorEntry *entry = &self->stack.contents[i];
uint32_t next_descendant_index =
entry->descendant_index +
(ts_tree_cursor_is_entry_visible(self, i) ? 1 : 0) +
ts_subtree_visible_descendant_count(*entry->subtree);
if (
(entry->descendant_index <= goal_descendant_index) &&
(next_descendant_index > goal_descendant_index)
) {
break;
} else if (self->stack.size <= 1) {
return;
} else {
self->stack.size--;
}
}
// Descend to the goal node.
bool did_descend = true;
do {
did_descend = false;
bool visible;
TreeCursorEntry entry;
CursorChildIterator iterator = ts_tree_cursor_iterate_children(self);
if (iterator.descendant_index > goal_descendant_index) {
return;
}
while (ts_tree_cursor_child_iterator_next(&iterator, &entry, &visible)) {
if (iterator.descendant_index > goal_descendant_index) {
array_push(&self->stack, entry);
if (visible && entry.descendant_index == goal_descendant_index) {
return;
} else {
did_descend = true;
break;
}
}
}
} while (did_descend);
}
uint32_t ts_tree_cursor_current_descendant_index(const TSTreeCursor *_self) {
const TreeCursor *self = (const TreeCursor *)_self;
TreeCursorEntry *last_entry = array_back(&self->stack);
return last_entry->descendant_index;
}
TSNode ts_tree_cursor_current_node(const TSTreeCursor *_self) {
const TreeCursor *self = (const TreeCursor *)_self;
TreeCursorEntry *last_entry = array_back(&self->stack);
TSSymbol alias_symbol = self->root_alias_symbol;
if (self->stack.size > 1 && !ts_subtree_extra(*last_entry->subtree)) {
TreeCursorEntry *parent_entry = &self->stack.contents[self->stack.size - 2];
alias_symbol = ts_language_alias_at(
self->tree->language,
parent_entry->subtree->ptr->inner.non_terminal.production_id,
last_entry->structural_child_index
);
}
return ts_node_new(
self->tree,
last_entry->subtree,
last_entry->position,
alias_symbol
);
}
// Private - Get various facts about the current node that are needed
// when executing tree queries.
void ts_tree_cursor_current_status(
const TSTreeCursor *_self,
TSFieldId *field_id,
bool *has_later_siblings,
bool *has_later_named_siblings,
bool *can_have_later_siblings_with_this_field,
TSSymbol *supertypes,
unsigned *supertype_count
) {
const TreeCursor *self = (const TreeCursor *)_self;
unsigned max_supertypes = *supertype_count;
*field_id = 0;
*supertype_count = 0;
*has_later_siblings = false;
*has_later_named_siblings = false;
*can_have_later_siblings_with_this_field = false;
// Walk up the tree, visiting the current node and its invisible ancestors,
// because fields can refer to nodes through invisible *wrapper* nodes,
for (unsigned i = self->stack.size - 1; i > 0; i--) {
TreeCursorEntry *entry = &self->stack.contents[i];
TreeCursorEntry *parent_entry = &self->stack.contents[i - 1];
const TSSymbol *alias_sequence = ts_language_alias_sequence(
self->tree->language,
parent_entry->subtree->ptr->inner.non_terminal.production_id
);
#define subtree_symbol(subtree, structural_child_index) \
(( \
!ts_subtree_extra(subtree) && \
alias_sequence && \
alias_sequence[structural_child_index] \
) ? \
alias_sequence[structural_child_index] : \
ts_subtree_symbol(subtree))
// Stop walking up when a visible ancestor is found.
TSSymbol entry_symbol = subtree_symbol(
*entry->subtree,
entry->structural_child_index
);
TSSymbolMetadata entry_metadata = ts_language_symbol_metadata(
self->tree->language,
entry_symbol
);
if (i != self->stack.size - 1 && entry_metadata.visible) break;
// Record any supertypes
if (entry_metadata.supertype && *supertype_count < max_supertypes) {
supertypes[*supertype_count] = entry_symbol;
(*supertype_count)++;
}
// Determine if the current node has later siblings.
if (!*has_later_siblings) {
unsigned sibling_count = parent_entry->subtree->ptr->child_count;
unsigned structural_child_index = entry->structural_child_index;
if (!ts_subtree_extra(*entry->subtree)) structural_child_index++;
for (unsigned j = entry->child_index + 1; j < sibling_count; j++) {
Subtree sibling = ts_subtree_children(*parent_entry->subtree)[j];
TSSymbolMetadata sibling_metadata = ts_language_symbol_metadata(
self->tree->language,
subtree_symbol(sibling, structural_child_index)
);
if (sibling_metadata.visible) {
*has_later_siblings = true;
if (*has_later_named_siblings) break;
if (sibling_metadata.named) {
*has_later_named_siblings = true;
break;
}
} else if (ts_subtree_visible_child_count(sibling) > 0) {
*has_later_siblings = true;
if (*has_later_named_siblings) break;
if (sibling.ptr->inner.non_terminal.named_child_count > 0) {
*has_later_named_siblings = true;
break;
}
}
if (!ts_subtree_extra(sibling)) structural_child_index++;
}
}
#undef subtree_symbol
if (!ts_subtree_extra(*entry->subtree)) {
const TSFieldMapEntry *field_map, *field_map_end;
ts_language_field_map(
self->tree->language,
parent_entry->subtree->ptr->inner.non_terminal.production_id,
&field_map, &field_map_end
);
// Look for a field name associated with the current node.
if (!*field_id) {
for (const TSFieldMapEntry *map = field_map; map < field_map_end; map++) {
if (!map->inherited && map->child_index == entry->structural_child_index) {
*field_id = map->field_id;
break;
}
}
}
// Determine if the current node can have later siblings with the same field name.
if (*field_id) {
for (const TSFieldMapEntry *map = field_map; map < field_map_end; map++) {
if (
map->field_id == *field_id &&
map->child_index > entry->structural_child_index
) {
*can_have_later_siblings_with_this_field = true;
break;
}
}
}
}
}
}
uint32_t ts_tree_cursor_current_depth(const TSTreeCursor *_self) {
const TreeCursor *self = (const TreeCursor *)_self;
uint32_t depth = 0;
for (unsigned i = 1; i < self->stack.size; i++) {
if (ts_tree_cursor_is_entry_visible(self, i)) {
depth++;
}
}
return depth;
}
TSNode ts_tree_cursor_parent_node(const TSTreeCursor *_self) {
const TreeCursor *self = (const TreeCursor *)_self;
for (int i = (int)self->stack.size - 2; i >= 0; i--) {
TreeCursorEntry *entry = &self->stack.contents[i];
bool is_visible = true;
TSSymbol alias_symbol = 0;
if (i > 0) {
TreeCursorEntry *parent_entry = &self->stack.contents[i - 1];
alias_symbol = ts_language_alias_at(
self->tree->language,
parent_entry->subtree->ptr->inner.non_terminal.production_id,
entry->structural_child_index
);
is_visible = (alias_symbol != 0) || ts_subtree_visible(*entry->subtree);
}
if (is_visible) {
return ts_node_new(
self->tree,
entry->subtree,
entry->position,
alias_symbol
);
}
}
return ts_node_new(NULL, NULL, length_zero(), 0);
}
TSFieldId ts_tree_cursor_current_field_id(const TSTreeCursor *_self) {
const TreeCursor *self = (const TreeCursor *)_self;
// Walk up the tree, visiting the current node and its invisible ancestors.
for (unsigned i = self->stack.size - 1; i > 0; i--) {
TreeCursorEntry *entry = &self->stack.contents[i];
TreeCursorEntry *parent_entry = &self->stack.contents[i - 1];
// Stop walking up when another visible node is found.
if (
i != self->stack.size - 1 &&
ts_tree_cursor_is_entry_visible(self, i)
) break;
if (ts_subtree_extra(*entry->subtree)) break;
const TSFieldMapEntry *field_map, *field_map_end;
ts_language_field_map(
self->tree->language,
parent_entry->subtree->ptr->inner.non_terminal.production_id,
&field_map, &field_map_end
);
for (const TSFieldMapEntry *map = field_map; map < field_map_end; map++) {
if (!map->inherited && map->child_index == entry->structural_child_index) {
return map->field_id;
}
}
}
return 0;
}
const char *ts_tree_cursor_current_field_name(const TSTreeCursor *_self) {
TSFieldId id = ts_tree_cursor_current_field_id(_self);
if (id) {
const TreeCursor *self = (const TreeCursor *)_self;
return self->tree->language->field_names[id];
} else {
return NULL;
}
}
TSTreeCursor ts_tree_cursor_copy(const TSTreeCursor *_cursor) {
const TreeCursor *cursor = (const TreeCursor *)_cursor;
TSTreeCursor res = {NULL, NULL, {0, 0}};
TreeCursor *copy = (TreeCursor *)&res;
copy->tree = cursor->tree;
copy->root_alias_symbol = cursor->root_alias_symbol;
array_init(&copy->stack);
array_push_all(&copy->stack, &cursor->stack);
return res;
}
void ts_tree_cursor_reset_to(TSTreeCursor *_dst, const TSTreeCursor *_src) {
const TreeCursor *cursor = (const TreeCursor *)_src;
TreeCursor *copy = (TreeCursor *)_dst;
copy->tree = cursor->tree;
copy->root_alias_symbol = cursor->root_alias_symbol;
array_clear(&copy->stack);
array_push_all(&copy->stack, &cursor->stack);
}

View file

@ -1,44 +0,0 @@
#ifndef TREE_SITTER_TREE_CURSOR_H_
#define TREE_SITTER_TREE_CURSOR_H_
#include "./subtree.h"
typedef struct TreeCursorEntry
{
const Subtree *subtree;
Length position;
uint32_t child_index;
uint32_t structural_child_index;
uint32_t descendant_index;
} TreeCursorEntry;
typedef struct TreeCursor
{
const TSTree *tree;
Array(TreeCursorEntry) stack;
TSSymbol root_alias_symbol;
} TreeCursor;
typedef enum TreeCursorStep
{
TreeCursorStepNone,
TreeCursorStepHidden,
TreeCursorStepVisible,
} TreeCursorStep;
void ts_tree_cursor_init(TreeCursor *, TSNode);
void ts_tree_cursor_current_status(const TSTreeCursor *, TSFieldId *, bool *, bool *, bool *, TSSymbol *, unsigned *);
TreeCursorStep ts_tree_cursor_goto_first_child_internal(TSTreeCursor *);
TreeCursorStep ts_tree_cursor_goto_next_sibling_internal(TSTreeCursor *);
static inline Subtree ts_tree_cursor_current_subtree(const TSTreeCursor *_self)
{
const TreeCursor *self = (const TreeCursor *)_self;
TreeCursorEntry *last_entry = array_back(&self->stack);
return *last_entry->subtree;
}
TSNode ts_tree_cursor_parent_node(const TSTreeCursor *);
#endif // TREE_SITTER_TREE_CURSOR_H_

View file

@ -1,32 +0,0 @@
#ifndef TREE_SITTER_UNICODE_H_
#define TREE_SITTER_UNICODE_H_
#ifdef __cplusplus
extern "C"
{
#endif
#include <limits.h>
#include <stdint.h>
#define U_EXPORT
#define U_EXPORT2
static const int32_t TS_DECODE_ERROR = -1;
// These functions read one unicode code point from the given string,
// returning the number of bytes consumed.
typedef uint32_t (*UnicodeDecodeFunction)(const uint8_t *string, uint32_t length, int32_t *code_point);
static inline uint32_t ts_decode_ascii(const uint8_t *string, uint32_t length, int32_t *code_point)
{
if (length >= 1 && string[0] <= 127)
return (*code_point = string[0], 1);
return (0);
}
#ifdef __cplusplus
}
#endif
#endif // TREE_SITTER_UNICODE_H_

View file

@ -6,7 +6,7 @@
/* By: maiboyer <maiboyer@student.42.fr> +#+ +:+ +#+ */ /* By: maiboyer <maiboyer@student.42.fr> +#+ +:+ +#+ */
/* +#+#+#+#+#+ +#+ */ /* +#+#+#+#+#+ +#+ */
/* Created: 2024/04/24 23:01:45 by maiboyer #+# #+# */ /* Created: 2024/04/24 23:01:45 by maiboyer #+# #+# */
/* Updated: 2024/06/29 21:11:19 by maiboyer ### ########.fr */ /* Updated: 2024/06/30 18:03:54 by maiboyer ### ########.fr */
/* */ /* */
/* ************************************************************************** */ /* ************************************************************************** */
@ -16,9 +16,9 @@
#include <stdbool.h> #include <stdbool.h>
#include <stdint.h> #include <stdint.h>
#include "./nsrc/api.h" #include "./nnsrc/api.h"
#include "./nsrc/lexer.h" #include "./nnsrc/lexer.h"
#include "./nsrc/parser.h" #include "./nnsrc/parser.h"
#include "me/types.h" #include "me/types.h"
#include "parser/types/types_lexer_state.h" #include "parser/types/types_lexer_state.h"

View file

@ -1,65 +0,0 @@
#ifndef TREE_SITTER_ARRAY_H_
#define TREE_SITTER_ARRAY_H_
#include "me/char/char.h"
#include "me/mem/mem.h"
#include <assert.h>
#include <limits.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "./api_structs.h"
#include "./array.h"
#include "./funcs.h"
#define ts_builtin_sym_error_repeat (ts_builtin_sym_error - 1)
#define LANGUAGE_VERSION_WITH_PRIMARY_STATES 14
#define LANGUAGE_VERSION_USABLE_VIA_WASM 13
#define ERROR_STATE 0
#define ERROR_COST_PER_RECOVERY 500
#define ERROR_COST_PER_MISSING_TREE 110
#define ERROR_COST_PER_SKIPPED_TREE 100
#define ERROR_COST_PER_SKIPPED_LINE 30
#define ERROR_COST_PER_SKIPPED_CHAR 1
#define MAX_STEP_CAPTURE_COUNT 3
#define MAX_NEGATED_FIELD_COUNT 8
#define MAX_STATE_PREDECESSOR_COUNT 256
#define MAX_ANALYSIS_STATE_DEPTH 8
#define MAX_ANALYSIS_ITERATION_COUNT 256
#define MAX_LINK_COUNT 8
#define MAX_NODE_POOL_SIZE 50
#define MAX_ITERATOR_COUNT 64
#define TS_MAX_INLINE_TREE_LENGTH UINT8_MAX
#define TS_MAX_TREE_POOL_SIZE 32
#define ts_builtin_sym_error ((t_symbol)-1)
#define ts_builtin_sym_end 0
#define POINT_ZERO ((t_point){0, 0})
#define POINT_MAX ((t_point){UINT32_MAX, UINT32_MAX})
#define TS_TREE_STATE_NONE USHRT_MAX
#define NULL_SUBTREE ((t_subtree){.ptr = NULL})
#define STACK_VERSION_NONE ((t_stack_version)-1)
#define TS_DECODE_ERROR (-1)
#if true
# undef malloc
# undef calloc
# undef realloc
# undef free
# define malloc(s) mem_alloc((s))
# define calloc(s, l) mem_alloc_array((s), (l))
# define realloc(p, t) mem_realloc((p), (t))
# define free(p) mem_free((p))
#endif
// Get a subtree's children, which are allocated immediately before the
// tree's own heap data.
#define ts_subtree_children(self) ((self).data.is_inline ? NULL : (t_subtree *)((self).ptr) - (self).ptr->child_count)
static const t_length LENGTH_UNDEFINED = {0, {0, 1}};
static const t_length LENGTH_MAX = {UINT32_MAX, {UINT32_MAX, UINT32_MAX}};
#endif // TREE_SITTER_TREE_H_

View file

@ -1,546 +0,0 @@
#ifndef API_STRUCTS_H
#define API_STRUCTS_H
#define TREE_SITTER_SERIALIZATION_BUFFER_SIZE 1024
#include "./array.h"
#include "me/types.h"
#include <stdint.h>
typedef uint16_t t_field_id;
typedef uint16_t t_state_id;
typedef uint16_t t_symbol;
typedef uint64_t t_parser_clock;
typedef uint64_t t_parser_duration;
typedef uint32_t t_stack_version;
typedef union u_parse_action_entry t_parse_action_entry;
typedef union u_subtree t_subtree;
typedef union u_mutable_subtree t_mutable_subtree;
typedef union u_parse_action t_parse_action;
typedef struct s_char_range t_char_range;
typedef struct s_external_scanner_state t_external_scanner_state;
typedef struct s_field_map_entry t_field_map_entry;
typedef struct s_field_map_slice t_field_map_slice;
typedef struct s_first_parser t_first_parser;
typedef struct s_first_tree t_first_tree;
typedef struct s_input_edit t_input_edit;
typedef struct s_language t_language;
typedef struct s_length t_length;
typedef struct s_lex_mode t_lex_mode;
typedef struct s_lexer t_lexer;
typedef struct s_lexer_data t_lexer_data;
typedef struct s_lookahead_iterator t_lookahead_iterator;
typedef struct s_parse_input t_parse_input;
typedef struct s_parse_logger t_parse_logger;
typedef struct s_parse_node t_parse_node;
typedef struct s_parse_query t_parse_query;
typedef struct s_parse_query_cursor t_parse_query_cursor;
typedef struct s_parse_query_error t_parse_query_error;
typedef struct s_parse_query_error_cost t_parse_query_error_cost;
typedef struct s_parse_range t_parse_range;
typedef struct s_parse_state t_parse_state;
typedef struct s_point t_point;
typedef struct s_query_capture t_query_capture;
typedef struct s_query_cursor t_query_cursor;
typedef struct s_query_match t_query_match;
typedef struct s_query_predicate_step t_query_predicate_step;
typedef struct s_reduce_action t_reduce_action;
typedef struct s_reusable_node t_reusable_node;
typedef struct s_stack t_stack;
typedef struct s_stack_entry t_stack_entry;
typedef struct s_stack_slice t_stack_slice;
typedef struct s_stack_summary_entry t_stack_summary_entry;
typedef struct s_subtree_heap_data t_subtree_heap_data;
typedef struct s_subtree_inline_data t_subtree_inline_data;
typedef struct s_subtree_pool t_subtree_pool;
typedef struct s_symbol_metadata t_symbol_metadata;
typedef struct s_table_entry t_table_entry;
typedef struct s_tree_cursor t_tree_cursor;
typedef struct s_tree_cursor_entry t_tree_cursor_entry;
typedef enum e_input_encoding t_input_encoding;
typedef enum e_log_type t_log_type;
typedef enum e_parse_action_type t_parse_action_type;
typedef enum e_quantifier t_quantifier;
typedef enum e_query_error t_query_error;
typedef enum e_query_predicate_step_type t_query_predicate_step_type;
typedef enum e_symbol_type t_symbol_type;
typedef Array(t_parse_range) t_range_array;
typedef Array(t_subtree) t_subtree_array;
typedef Array(t_mutable_subtree) t_mutable_subtree_array;
typedef Array(t_reduce_action) t_reduce_action_set;
typedef Array(t_stack_slice) t_stack_slice_array;
typedef Array(t_stack_summary_entry) t_stack_summary;
typedef void (*StackIterateCallback)(void *, t_state_id, uint32_t);
struct s_point
{
uint32_t row;
uint32_t column;
};
struct s_length
{
uint32_t bytes;
t_point extent;
};
struct s_stack_slice
{
t_subtree_array subtrees;
t_stack_version version;
};
struct s_stack_summary_entry
{
t_length position;
unsigned depth;
t_state_id state;
};
enum e_input_encoding
{
TSInputEncodingUTF8,
TSInputEncodingUTF16,
};
enum e_symbol_type
{
TSSymbolTypeRegular,
TSSymbolTypeAnonymous,
TSSymbolTypeAuxiliary,
};
struct s_parse_range
{
t_point start_point;
t_point end_point;
uint32_t start_byte;
uint32_t end_byte;
};
struct s_parse_input
{
void *payload;
const char *(*read)(void *payload, uint32_t byte_index, t_point position, uint32_t *bytes_read);
t_input_encoding encoding;
};
enum e_log_type
{
TSLogTypeParse,
TSLogTypeLex,
};
struct s_parse_logger
{
void *payload;
void (*log)(void *payload, t_log_type log_type, const char *buffer);
};
struct s_input_edit
{
uint32_t start_byte;
uint32_t old_end_byte;
uint32_t new_end_byte;
t_point start_point;
t_point old_end_point;
t_point new_end_point;
};
struct s_parse_node
{
uint32_t context[4];
const void *id;
const t_first_tree *tree;
};
struct s_tree_cursor_entry
{
const t_subtree *subtree;
t_length position;
uint32_t child_index;
uint32_t structural_child_index;
uint32_t descendant_index;
};
struct s_tree_cursor
{
const t_first_tree *tree;
Array(t_tree_cursor_entry) stack;
t_symbol root_alias_symbol;
};
struct s_query_capture
{
t_parse_node node;
uint32_t index;
};
enum e_quantifier
{
TSQuantifierZero = 0, // must match the array initialization value
TSQuantifierZeroOrOne,
TSQuantifierZeroOrMore,
TSQuantifierOne,
TSQuantifierOneOrMore,
};
struct s_query_match
{
uint32_t id;
uint16_t pattern_index;
uint16_t capture_count;
const t_query_capture *captures;
};
enum e_query_predicate_step_type
{
TSQueryPredicateStepTypeDone,
TSQueryPredicateStepTypeCapture,
TSQueryPredicateStepTypeString,
};
struct s_query_predicate_step
{
t_query_predicate_step_type type;
uint32_t value_id;
};
enum e_query_error
{
TSQueryErrorNone = 0,
TSQueryErrorSyntax,
TSQueryErrorNodeType,
TSQueryErrorField,
TSQueryErrorCapture,
TSQueryErrorStructure,
TSQueryErrorLanguage,
};
struct s_parent_cache_entry
{
const t_subtree *child;
const t_subtree *parent;
t_length position;
t_symbol alias_symbol;
};
typedef enum e_tree_cursor_step
{
TreeCursorStepNone,
TreeCursorStepHidden,
TreeCursorStepVisible,
} t_tree_cursor_step;
// The serialized state of an external scanner.
//
// Every time an external token subtree is created after a call to an
// external scanner, the scanner's `serialize` function is called to
// retrieve a serialized copy of its state. The bytes are then copied
// onto the subtree itself so that the scanner's state can later be
// restored using its `deserialize` function.
//
// Small byte arrays are stored inline, and long ones are allocated
// separately on the heap.
struct s_external_scanner_state
{
// TODO: extract this anonymous struct
union {
char *long_data;
char short_data[24];
};
uint32_t length;
};
struct s_subtree_inline_data
{
bool is_inline : 1;
bool visible : 1;
bool named : 1;
bool extra : 1;
bool has_changes : 1;
bool is_missing : 1;
bool is_keyword : 1;
uint8_t symbol;
uint16_t parse_state;
uint8_t padding_columns;
uint8_t padding_rows : 4;
uint8_t lookahead_bytes : 4;
uint8_t padding_bytes;
uint8_t size_bytes;
};
struct s_subtree_heap_data
{
volatile uint32_t ref_count;
t_length padding;
t_length size;
uint32_t lookahead_bytes;
uint32_t error_cost;
uint32_t child_count;
t_symbol symbol;
t_state_id parse_state;
bool visible : 1;
bool named : 1;
bool extra : 1;
bool fragile_left : 1;
bool fragile_right : 1;
bool has_changes : 1;
bool has_external_tokens : 1;
bool has_external_scanner_state_change : 1;
bool depends_on_column : 1;
bool is_missing : 1;
bool is_keyword : 1;
// TODO: extract these anonymous struct
union {
// Non-terminal subtrees (`child_count > 0`)
struct
{
uint32_t visible_child_count;
uint32_t named_child_count;
uint32_t visible_descendant_count;
int32_t dynamic_precedence;
uint16_t repeat_depth;
uint16_t production_id;
struct
{
t_symbol symbol;
t_state_id parse_state;
} first_leaf;
};
// External terminal subtrees (`child_count == 0 &&
// has_external_tokens`)
t_external_scanner_state external_scanner_state;
// Error terminal subtrees (`child_count == 0 && symbol ==
// ts_builtin_sym_error`)
int32_t lookahead_char;
};
};
// The fundamental building block of a syntax tree.
union u_subtree {
t_subtree_inline_data data;
const t_subtree_heap_data *ptr;
};
// Like t_subtree, but mutable.
union u_mutable_subtree {
t_subtree_inline_data data;
t_subtree_heap_data *ptr;
};
struct s_subtree_pool
{
t_mutable_subtree_array free_trees;
t_mutable_subtree_array tree_stack;
};
union u_parse_action {
// TODO: extract this anonymous struct
struct
{
uint8_t type;
t_state_id state;
bool extra;
bool repetition;
} shift;
// TODO: extract this anonymous struct
struct
{
uint8_t type;
uint8_t child_count;
t_symbol symbol;
int16_t dynamic_precedence;
uint16_t production_id;
} reduce;
uint8_t type;
};
struct s_table_entry
{
const t_parse_action *actions;
uint32_t action_count;
bool is_reusable;
};
struct s_lookahead_iterator
{
const t_language *language;
const uint16_t *data;
const uint16_t *group_end;
t_state_id state;
uint16_t table_value;
uint16_t section_index;
uint16_t group_count;
bool is_small_state;
const t_parse_action *actions;
t_symbol symbol;
t_state_id next_state;
uint16_t action_count;
};
struct s_symbol_metadata
{
bool visible;
bool named;
bool supertype;
};
enum e_parse_action_type
{
TSParseActionTypeShift,
TSParseActionTypeReduce,
TSParseActionTypeAccept,
TSParseActionTypeRecover,
};
union u_parse_action_entry {
t_parse_action action;
// TODO: extract this anonymous struct
struct
{
uint8_t count;
bool reusable;
} entry;
};
struct s_field_map_entry
{
t_field_id field_id;
uint8_t child_index;
bool inherited;
};
struct s_field_map_slice
{
uint16_t index;
uint16_t length;
};
struct s_lexer_data
{
int32_t lookahead;
t_symbol result_symbol;
void (*advance)(t_lexer_data *, bool);
void (*mark_end)(t_lexer_data *);
uint32_t (*get_column)(t_lexer_data *);
bool (*is_at_included_range_start)(const t_lexer_data *);
bool (*eof)(const t_lexer_data *);
};
struct s_lex_mode
{
uint16_t lex_state;
uint16_t external_lex_state;
};
struct s_char_range
{
int32_t start;
int32_t end;
};
struct s_language
{
uint32_t version;
uint32_t symbol_count;
uint32_t alias_count;
uint32_t token_count;
uint32_t external_token_count;
uint32_t state_count;
uint32_t large_state_count;
uint32_t production_id_count;
uint32_t field_count;
uint16_t max_alias_sequence_length;
const uint16_t *parse_table;
const uint16_t *small_parse_table;
const uint32_t *small_parse_table_map;
const t_parse_action_entry *parse_actions;
const char *const *symbol_names;
const char *const *field_names;
const t_field_map_slice *field_map_slices;
const t_field_map_entry *field_map_entries;
const t_symbol_metadata *symbol_metadata;
const t_symbol *public_symbol_map;
const uint16_t *alias_map;
const t_symbol *alias_sequences;
const t_lex_mode *lex_modes;
bool (*lex_fn)(t_lexer_data *, t_state_id);
bool (*keyword_lex_fn)(t_lexer_data *, t_state_id);
t_symbol keyword_capture_token;
// TODO: extract this anonymous struct
struct
{
const bool *states;
const t_symbol *symbol_map;
void *(*create)(void);
void (*destroy)(void *);
bool (*scan)(void *, t_lexer_data *, const bool *symbol_whitelist);
uint32_t (*serialize)(void *, char *);
void (*deserialize)(void *, const char *, uint32_t);
} external_scanner;
const t_state_id *primary_state_ids;
};
struct s_lexer
{
t_lexer_data data;
t_length current_position;
t_length token_start_position;
t_length token_end_position;
t_parse_range *included_ranges;
const char *chunk;
t_parse_input input;
t_parse_logger logger;
uint32_t included_range_count;
uint32_t current_included_range_index;
uint32_t chunk_start;
uint32_t chunk_size;
uint32_t lookahead_size;
bool did_get_column;
char debug_buffer[TREE_SITTER_SERIALIZATION_BUFFER_SIZE];
};
struct s_reduce_action
{
uint32_t count;
t_symbol symbol;
int32_t dynamic_precedence;
uint16_t production_id;
};
struct s_stack_entry
{
t_subtree tree;
uint32_t child_index;
uint32_t byte_offset;
};
struct s_reusable_node
{
Array(t_stack_entry) stack;
t_subtree last_external_token;
};
struct s_first_tree
{
t_subtree root;
const t_language *language;
t_parse_range *included_ranges;
uint32_t included_range_count;
};
#endif // API_STRUCTS_H

View file

@ -1,283 +0,0 @@
#ifndef ARRAY_H
#define ARRAY_H
#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#if true
# undef malloc
# undef calloc
# undef realloc
# undef free
# define malloc(s) mem_alloc((s))
# define calloc(s, l) mem_alloc_array((s), (l))
# define realloc(p, t) mem_realloc((p), (t))
# define free(p) mem_free((p))
#endif
#define Array(T) \
struct \
{ \
T *contents; \
uint32_t size; \
uint32_t capacity; \
}
#ifndef inline
# define inline __inline__
#endif
/// Initialize an array.
#define array_init(self) ((self)->size = 0, (self)->capacity = 0, (self)->contents = NULL)
/// Create an empty array.
#define array_new() \
{ \
NULL, 0, 0 \
}
/// Get a pointer to the element at a given `index` in the array.
#define array_get(self, _index) (assert((uint32_t)(_index) < (self)->size), &(self)->contents[_index])
/// Get a pointer to the first element in the array.
#define array_front(self) array_get(self, 0)
/// Get a pointer to the last element in the array.
#define array_back(self) array_get(self, (self)->size - 1)
/// Clear the array, setting its size to zero. Note that this does not free any
/// memory allocated for the array's contents.
#define array_clear(self) ((self)->size = 0)
/// Reserve `new_capacity` elements of space in the array. If `new_capacity` is
/// less than the array's current capacity, this function has no effect.
#define array_reserve(self, new_capacity) _array__reserve((Array *)(self), array_elem_size(self), new_capacity)
/// Free any memory allocated for this array. Note that this does not free any
/// memory allocated for the array's contents.
#define array_delete(self) _array__delete((Array *)(self))
/// Push a new `element` onto the end of the array.
#define array_push(self, element) (_array__grow((Array *)(self), 1, array_elem_size(self)), (self)->contents[(self)->size++] = (element))
/// Increase the array's size by `count` elements.
/// New elements are zero-initialized.
#define array_grow_by(self, count) \
do \
{ \
if ((count) == 0) \
break; \
_array__grow((Array *)(self), count, array_elem_size(self)); \
memset((self)->contents + (self)->size, 0, (count) * array_elem_size(self)); \
(self)->size += (count); \
} while (0)
/// Append all elements from one array to the end of another.
#define array_push_all(self, other) array_extend((self), (other)->size, (other)->contents)
/// Append `count` elements to the end of the array, reading their values from
/// the `contents` pointer.
#define array_extend(self, count, contents) _array__splice((Array *)(self), array_elem_size(self), (self)->size, 0, count, contents)
/// Remove `old_count` elements from the array starting at the given `index`. At
/// the same index, insert `new_count` new elements, reading their values from
/// the `new_contents` pointer.
#define array_splice(self, _index, old_count, new_count, new_contents) \
_array__splice((Array *)(self), array_elem_size(self), _index, old_count, new_count, new_contents)
/// Insert one `element` into the array at the given `index`.
#define array_insert(self, _index, element) _array__splice((Array *)(self), array_elem_size(self), _index, 0, 1, &(element))
/// Remove one element from the array at the given `index`.
#define array_erase(self, _index) _array__erase((Array *)(self), array_elem_size(self), _index)
/// Pop the last element off the array, returning the element by value.
#define array_pop(self) ((self)->contents[--(self)->size])
/// Assign the contents of one array to another, reallocating if necessary.
#define array_assign(self, other) _array__assign((Array *)(self), (const Array *)(other), array_elem_size(self))
/// Swap one array with another
#define array_swap(self, other) _array__swap((Array *)(self), (Array *)(other))
/// Get the size of the array contents
#define array_elem_size(self) (sizeof *(self)->contents)
/// Search a sorted array for a given `needle` value, using the given `compare`
/// callback to determine the order.
///
/// If an existing element is found to be equal to `needle`, then the `index`
/// out-parameter is set to the existing value's index, and the `exists`
/// out-parameter is set to true. Otherwise, `index` is set to an index where
/// `needle` should be inserted in order to preserve the sorting, and `exists`
/// is set to false.
#define array_search_sorted_with(self, compare, needle, _index, _exists) _array__search_sorted(self, 0, compare, , needle, _index, _exists)
/// Helper macro for the `_sorted_by` routines below. This takes the left
/// (existing) parameter by reference in order to work with the generic sorting
/// function above.
#define _compare_int(a, b) ((int)*(a) - (int)(b))
/// Search a sorted array for a given `needle` value, using integer comparisons
/// of a given struct field (specified with a leading dot) to determine the
/// order.
///
/// See also `array_search_sorted_with`.
#define array_search_sorted_by(self, field, needle, _index, _exists) _array__search_sorted(self, 0, _compare_int, field, needle, _index, _exists)
/// Insert a given `value` into a sorted array, using the given `compare`
/// callback to determine the order.
#define array_insert_sorted_with(self, compare, value) \
do \
{ \
unsigned _index, _exists; \
array_search_sorted_with(self, compare, &(value), &_index, &_exists); \
if (!_exists) \
array_insert(self, _index, value); \
} while (0)
/// Insert a given `value` into a sorted array, using integer comparisons of
/// a given struct field (specified with a leading dot) to determine the order.
///
/// See also `array_search_sorted_by`.
#define array_insert_sorted_by(self, field, value) \
do \
{ \
unsigned _index, _exists; \
array_search_sorted_by(self, field, (value)field, &_index, &_exists); \
if (!_exists) \
array_insert(self, _index, value); \
} while (0)
typedef Array(void) Array;
/// This is not what you're looking for, see `array_delete`.
static inline void _array__delete(Array *self)
{
if (self->contents)
{
free(self->contents);
self->contents = NULL;
self->size = 0;
self->capacity = 0;
}
}
/// This is not what you're looking for, see `array_erase`.
static inline void _array__erase(Array *self, size_t element_size, uint32_t index)
{
assert(index < self->size);
char *contents = (char *)self->contents;
memmove(contents + index * element_size, contents + (index + 1) * element_size, (self->size - index - 1) * element_size);
self->size--;
}
/// This is not what you're looking for, see `array_reserve`.
static inline void _array__reserve(Array *self, size_t element_size, uint32_t new_capacity)
{
if (new_capacity > self->capacity)
{
if (self->contents)
{
self->contents = realloc(self->contents, new_capacity * element_size);
}
else
{
self->contents = malloc(new_capacity * element_size);
}
self->capacity = new_capacity;
}
}
/// This is not what you're looking for, see `array_assign`.
static inline void _array__assign(Array *self, const Array *other, size_t element_size)
{
_array__reserve(self, element_size, other->size);
self->size = other->size;
memcpy(self->contents, other->contents, self->size * element_size);
}
/// This is not what you're looking for, see `array_swap`.
static inline void _array__swap(Array *self, Array *other)
{
Array swap = *other;
*other = *self;
*self = swap;
}
/// This is not what you're looking for, see `array_push` or `array_grow_by`.
static inline void _array__grow(Array *self, uint32_t count, size_t element_size)
{
uint32_t new_size = self->size + count;
if (new_size > self->capacity)
{
uint32_t new_capacity = self->capacity * 2;
if (new_capacity < 8)
new_capacity = 8;
if (new_capacity < new_size)
new_capacity = new_size;
_array__reserve(self, element_size, new_capacity);
}
}
/// This is not what you're looking for, see `array_splice`.
static inline void _array__splice(Array *self, size_t element_size, uint32_t index, uint32_t old_count, uint32_t new_count, const void *elements)
{
uint32_t new_size = self->size + new_count - old_count;
uint32_t old_end = index + old_count;
uint32_t new_end = index + new_count;
assert(old_end <= self->size);
_array__reserve(self, element_size, new_size);
char *contents = (char *)self->contents;
if (self->size > old_end)
{
memmove(contents + new_end * element_size, contents + old_end * element_size, (self->size - old_end) * element_size);
}
if (new_count > 0)
{
if (elements)
{
memcpy((contents + index * element_size), elements, new_count * element_size);
}
else
{
memset((contents + index * element_size), 0, new_count * element_size);
}
}
self->size += new_count - old_count;
}
/// A binary search routine, based on Rust's `std::slice::binary_search_by`.
/// This is not what you're looking for, see `array_search_sorted_with` or
/// `array_search_sorted_by`.
#define _array__search_sorted(self, start, compare, suffix, needle, _index, _exists) \
do \
{ \
*(_index) = start; \
*(_exists) = false; \
uint32_t size = (self)->size - *(_index); \
if (size == 0) \
break; \
int comparison; \
while (size > 1) \
{ \
uint32_t half_size = size / 2; \
uint32_t mid_index = *(_index) + half_size; \
comparison = compare(&((self)->contents[mid_index] suffix), (needle)); \
if (comparison <= 0) \
*(_index) = mid_index; \
size -= half_size; \
} \
comparison = compare(&((self)->contents[*(_index)] suffix), (needle)); \
if (comparison == 0) \
*(_exists) = true; \
else if (comparison < 0) \
*(_index) += 1; \
} while (0)
#endif // ARRAY_H

File diff suppressed because it is too large Load diff

View file

@ -1,272 +0,0 @@
/* ************************************************************************** */
/* */
/* ::: :::::::: */
/* combined.h :+: :+: :+: */
/* +:+ +:+ +:+ */
/* By: maiboyer <maiboyer@student.42.fr> +#+ +:+ +#+ */
/* +#+#+#+#+#+ +#+ */
/* Created: 2024/06/18 17:01:23 by maiboyer #+# #+# */
/* Updated: 2024/06/18 17:12:45 by maiboyer ### ########.fr */
/* */
/* ************************************************************************** */
#ifndef COMBINED_H
#define COMBINED_H
#include "./api.h"
#include "./structs.h"
t_u32 ascii_decode(const t_u8 *chunk, t_u32 size, t_i32 *codepoint);
int _ts_dup(int file_descriptor);
t_external_scanner_state ts_external_scanner_state_copy(const t_external_scanner_state *self);
const char *ts_external_scanner_state_data(const t_external_scanner_state *self);
void ts_external_scanner_state_delete(t_external_scanner_state *self);
bool ts_external_scanner_state_eq(const t_external_scanner_state *self, const char *buffer, unsigned length);
void ts_external_scanner_state_init(t_external_scanner_state *self, const char *data, unsigned length);
const t_language *ts_language_copy(const t_language *self);
void ts_language_delete(const t_language *self);
t_u32 ts_language_field_count(const t_language *self);
t_field_id ts_language_field_id_for_name(const t_language *self, const char *name, t_u32 name_length);
const char *ts_language_field_name_for_id(const t_language *self, t_field_id id);
t_state_id ts_language_next_state(const t_language *self, t_state_id state, t_symbol symbol);
t_symbol ts_language_public_symbol(const t_language *self, t_symbol symbol);
t_u32 ts_language_state_count(const t_language *self);
t_u32 ts_language_symbol_count(const t_language *self);
t_symbol ts_language_symbol_for_name(const t_language *self, const char *string, t_u32 length, bool is_named);
t_symbol_metadata ts_language_symbol_metadata(const t_language *self, t_symbol symbol);
const char *ts_language_symbol_name(const t_language *self, t_symbol symbol);
t_symbol_type ts_language_symbol_type(const t_language *self, t_symbol symbol);
void ts_language_table_entry(const t_language *self, t_state_id state, t_symbol symbol, t_table_entry *result);
t_u32 ts_language_version(const t_language *self);
void ts_lexer_advance_to_end(t_lexer *self);
void ts_lexer_delete(t_lexer *self);
void ts_lexer_finish(t_lexer *self, t_u32 *lookahead_end_byte);
t_parse_range *ts_lexer_included_ranges(const t_lexer *self, t_u32 *count);
void ts_lexer_init(t_lexer *self);
void ts_lexer_mark_end(t_lexer *self);
void ts_lexer_reset(t_lexer *self, t_length position);
bool ts_lexer_set_included_ranges(t_lexer *self, const t_parse_range *ranges, t_u32 count);
void ts_lexer_set_input(t_lexer *self, t_parse_input input);
void ts_lexer_start(t_lexer *self);
// START PROBABLY DELETE WORTHY
t_symbol ts_lookahead_iterator_current_symbol(const t_lookahead_iterator *self);
const char *ts_lookahead_iterator_current_symbol_name(const t_lookahead_iterator *self);
void ts_lookahead_iterator_delete(t_lookahead_iterator *self);
const t_language *ts_lookahead_iterator_language(const t_lookahead_iterator *self);
t_lookahead_iterator *ts_lookahead_iterator_new(const t_language *self, t_state_id state);
bool ts_lookahead_iterator_next(t_lookahead_iterator *self);
bool ts_lookahead_iterator_reset(t_lookahead_iterator *self, const t_language *language, t_state_id state);
bool ts_lookahead_iterator_reset_state(t_lookahead_iterator *self, t_state_id state);
// END PROBABLY DELETE WORTHY
t_parse_node ts_node_child(t_parse_node self, t_u32 child_index);
t_parse_node ts_node_child_by_field_id(t_parse_node self, t_field_id field_id);
t_parse_node ts_node_child_by_field_name(t_parse_node self, const char *name, t_u32 name_length);
t_parse_node ts_node_child_containing_descendant(t_parse_node self, t_parse_node subnode);
t_u32 ts_node_child_count(t_parse_node self);
t_u32 ts_node_descendant_count(t_parse_node self);
t_parse_node ts_node_descendant_for_byte_range(t_parse_node self, t_u32 start, t_u32 end);
t_parse_node ts_node_descendant_for_point_range(t_parse_node self, t_point start, t_point end);
void ts_node_edit(t_parse_node *self, const t_input_edit *edit);
t_u32 ts_node_end_byte(t_parse_node self);
t_point ts_node_end_point(t_parse_node self);
bool ts_node_eq(t_parse_node self, t_parse_node other);
t_field_id ts_node_field_id_for_child(t_parse_node self, t_u32 child_index);
const char *ts_node_field_name_for_child(t_parse_node self, t_u32 child_index);
t_parse_node ts_node_first_child_for_byte(t_parse_node self, t_u32 byte);
t_parse_node ts_node_first_named_child_for_byte(t_parse_node self, t_u32 byte);
t_symbol ts_node_grammar_symbol(t_parse_node self);
const char *ts_node_grammar_type(t_parse_node self);
bool ts_node_has_changes(t_parse_node self);
bool ts_node_has_error(t_parse_node self);
bool ts_node_is_error(t_parse_node self);
bool ts_node_is_extra(t_parse_node self);
bool ts_node_is_missing(t_parse_node self);
bool ts_node_is_named(t_parse_node self);
bool ts_node_is_null(t_parse_node self);
const t_language *ts_node_language(t_parse_node self);
t_parse_node ts_node_named_child(t_parse_node self, t_u32 child_index);
t_u32 ts_node_named_child_count(t_parse_node self);
t_parse_node ts_node_named_descendant_for_byte_range(t_parse_node self, t_u32 start, t_u32 end);
t_parse_node ts_node_named_descendant_for_point_range(t_parse_node self, t_point start, t_point end);
t_parse_node ts_node_new(const t_first_tree *tree, const t_subtree *subtree, t_length position, t_symbol alias);
t_parse_node ts_node_next_named_sibling(t_parse_node self);
t_state_id ts_node_next_parse_state(t_parse_node self);
t_parse_node ts_node_next_sibling(t_parse_node self);
t_parse_node ts_node_parent(t_parse_node self);
t_state_id ts_node_parse_state(t_parse_node self);
t_parse_node ts_node_prev_named_sibling(t_parse_node self);
t_parse_node ts_node_prev_sibling(t_parse_node self);
t_u32 ts_node_start_byte(t_parse_node self);
t_point ts_node_start_point(t_parse_node self);
char *ts_node_string(t_parse_node self);
t_symbol ts_node_symbol(t_parse_node self);
const char *ts_node_type(t_parse_node self);
const size_t *ts_parser_cancellation_flag(const t_first_parser *self);
void ts_parser_delete(t_first_parser *self);
const t_parse_range *ts_parser_included_ranges(const t_first_parser *self, t_u32 *count);
const t_language *ts_parser_language(const t_first_parser *self);
t_parse_logger ts_parser_logger(const t_first_parser *self);
t_first_parser *ts_parser_new(void);
t_first_tree *ts_parser_parse(t_first_parser *self, const t_first_tree *old_tree, t_parse_input input);
t_first_tree *ts_parser_parse_string(t_first_parser *self, const t_first_tree *old_tree, const char *string, t_u32 length);
t_first_tree *ts_parser_parse_string_encoding(t_first_parser *self, const t_first_tree *old_tree, const char *string, t_u32 length, t_input_encoding encoding);
void ts_parser_print_dot_graphs(t_first_parser *self, int fd);
void ts_parser_reset(t_first_parser *self);
void ts_parser_set_cancellation_flag(t_first_parser *self, const size_t *flag);
bool ts_parser_set_included_ranges(t_first_parser *self, const t_parse_range *ranges, t_u32 count);
bool ts_parser_set_language(t_first_parser *self, const t_language *language);
void ts_parser_set_logger(t_first_parser *self, t_parse_logger logger);
void ts_parser_set_timeout_micros(t_first_parser *self, t_u64 timeout_micros);
t_u64 ts_parser_timeout_micros(const t_first_parser *self);
// START PROBABLY DELETE WORTHY
bool ts_query__step_is_fallible(const t_parse_query *self, t_u16 step_index);
t_u32 ts_query_capture_count(const t_parse_query *self);
const char *ts_query_capture_name_for_id(const t_parse_query *self, t_u32 index, t_u32 *length);
t_quantifier ts_query_capture_quantifier_for_id(const t_parse_query *self, t_u32 pattern_index, t_u32 capture_index);
void ts_query_cursor__compare_captures(t_query_cursor *self, t_query_state *left_state, t_query_state *right_state, bool *left_contains_right, bool *right_contains_left);
int ts_query_cursor__compare_nodes(t_parse_node left, t_parse_node right);
void ts_query_cursor_delete(t_query_cursor *self);
bool ts_query_cursor_did_exceed_match_limit(const t_query_cursor *self);
void ts_query_cursor_exec(t_query_cursor *self, const t_parse_query *query, t_parse_node node);
t_u32 ts_query_cursor_match_limit(const t_query_cursor *self);
t_query_cursor *ts_query_cursor_new(void);
bool ts_query_cursor_next_capture(t_query_cursor *self, t_query_match *match, t_u32 *capture_index);
bool ts_query_cursor_next_match(t_query_cursor *self, t_query_match *match);
void ts_query_cursor_remove_match(t_query_cursor *self, t_u32 match_id);
void ts_query_cursor_set_byte_range(t_query_cursor *self, t_u32 start_byte, t_u32 end_byte);
void ts_query_cursor_set_match_limit(t_query_cursor *self, t_u32 limit);
void ts_query_cursor_set_max_start_depth(t_query_cursor *self, t_u32 max_start_depth);
void ts_query_cursor_set_point_range(t_query_cursor *self, t_point start_point, t_point end_point);
void ts_query_delete(t_parse_query *self);
void ts_query_disable_capture(t_parse_query *self, const char *name, t_u32 length);
void ts_query_disable_pattern(t_parse_query *self, t_u32 pattern_index);
bool ts_query_is_pattern_guaranteed_at_step(const t_parse_query *self, t_u32 byte_offset);
bool ts_query_is_pattern_non_local(const t_parse_query *self, t_u32 pattern_index);
bool ts_query_is_pattern_rooted(const t_parse_query *self, t_u32 pattern_index);
t_parse_query *ts_query_new(const t_language *language, const char *source, t_u32 source_len, t_u32 *error_offset, t_query_error *error_type);
t_u32 ts_query_pattern_count(const t_parse_query *self);
const t_query_predicate_step *ts_query_predicates_for_pattern(const t_parse_query *self, t_u32 pattern_index, t_u32 *step_count);
t_u32 ts_query_start_byte_for_pattern(const t_parse_query *self, t_u32 pattern_index);
t_u32 ts_query_string_count(const t_parse_query *self);
const char *ts_query_string_value_for_id(const t_parse_query *self, t_u32 index, t_u32 *length);
// END PROBABLY DELETE WORTHY
void ts_range_array_get_changed_ranges(const t_parse_range *old_ranges, unsigned old_range_count, const t_parse_range *new_ranges, unsigned new_range_count, t_range_array *differences);
bool ts_range_array_intersects(const t_range_array *self, unsigned start_index, t_u32 start_byte, t_u32 end_byte);
bool ts_stack_can_merge(t_stack *self, t_stack_version version1, t_stack_version version2);
void ts_stack_clear(t_stack *self);
t_stack_version ts_stack_copy_version(t_stack *self, t_stack_version version);
void ts_stack_delete(t_stack *self);
int ts_stack_dynamic_precedence(t_stack *self, t_stack_version version);
unsigned ts_stack_error_cost(const t_stack *self, t_stack_version version);
t_stack_summary *ts_stack_get_summary(t_stack *self, t_stack_version version);
void ts_stack_halt(t_stack *self, t_stack_version version);
bool ts_stack_has_advanced_since_error(const t_stack *self, t_stack_version version);
bool ts_stack_is_active(const t_stack *self, t_stack_version version);
bool ts_stack_is_halted(const t_stack *self, t_stack_version version);
bool ts_stack_is_paused(const t_stack *self, t_stack_version version);
t_subtree ts_stack_last_external_token(const t_stack *self, t_stack_version version);
bool ts_stack_merge(t_stack *self, t_stack_version version1, t_stack_version version2);
t_stack *ts_stack_new(t_subtree_pool *subtree_pool);
unsigned ts_stack_node_count_since_error(const t_stack *self, t_stack_version version);
void ts_stack_pause(t_stack *self, t_stack_version version, t_subtree lookahead);
t_stack_slice_array ts_stack_pop_all(t_stack *self, t_stack_version version);
t_stack_slice_array ts_stack_pop_count(t_stack *self, t_stack_version version, t_u32 count);
t_subtree_array ts_stack_pop_error(t_stack *self, t_stack_version version);
t_stack_slice_array ts_stack_pop_pending(t_stack *self, t_stack_version version);
t_length ts_stack_position(const t_stack *self, t_stack_version version);
bool ts_stack_print_dot_graph(t_stack *self, const t_language *language, void *f);
void ts_stack_push(t_stack *self, t_stack_version version, t_subtree subtree, bool pending, t_state_id state);
void ts_stack_record_summary(t_stack *self, t_stack_version version, unsigned max_depth);
void ts_stack_remove_version(t_stack *self, t_stack_version version);
void ts_stack_renumber_version(t_stack *self, t_stack_version v1, t_stack_version v2);
t_subtree ts_stack_resume(t_stack *self, t_stack_version version);
void ts_stack_set_last_external_token(t_stack *self, t_stack_version version, t_subtree token);
t_state_id ts_stack_state(const t_stack *self, t_stack_version version);
void ts_stack_swap_versions(t_stack *self, t_stack_version v1, t_stack_version v2);
t_u32 ts_stack_version_count(const t_stack *self);
void ts_subtree__print_dot_graph(const t_subtree *self, t_u32 start_offset, const t_language *language, t_symbol alias_symbol, void *f);
void ts_subtree_array_clear(t_subtree_pool *pool, t_subtree_array *self);
void ts_subtree_array_copy(t_subtree_array self, t_subtree_array *dest);
void ts_subtree_array_delete(t_subtree_pool *pool, t_subtree_array *self);
void ts_subtree_array_remove_trailing_extras(t_subtree_array *self, t_subtree_array *destination);
void ts_subtree_array_reverse(t_subtree_array *self);
void ts_subtree_balance(t_subtree self, t_subtree_pool *pool, const t_language *language);
t_mutable_subtree ts_subtree_clone(t_subtree self);
int ts_subtree_compare(t_subtree left, t_subtree right, t_subtree_pool *pool);
t_subtree ts_subtree_edit(t_subtree self, const t_input_edit *input_edit, t_subtree_pool *pool);
const t_external_scanner_state *ts_subtree_external_scanner_state(t_subtree self);
bool ts_subtree_external_scanner_state_eq(t_subtree self, t_subtree other);
unsigned ts_subtree_get_changed_ranges(const t_subtree *old_tree, const t_subtree *new_tree, t_tree_cursor *cursor1, t_tree_cursor *cursor2, const t_language *language, const t_range_array *included_range_differences, t_parse_range **ranges);
t_subtree ts_subtree_last_external_token(t_subtree tree);
t_mutable_subtree ts_subtree_make_mut(t_subtree_pool *pool, t_subtree self);
t_subtree ts_subtree_new_error(t_subtree_pool *pool, t_i32 lookahead_char, t_length padding, t_length size, t_u32 bytes_scanned, t_state_id parse_state, const t_language *language);
t_subtree ts_subtree_new_error_node(t_subtree_array *children, bool extra, const t_language *language);
t_subtree ts_subtree_new_leaf(t_subtree_pool *pool, t_symbol symbol, t_length padding, t_length size, t_u32 lookahead_bytes, t_state_id parse_state, bool has_external_tokens, bool depends_on_column, bool is_keyword, const t_language *language);
t_subtree ts_subtree_new_missing_leaf(t_subtree_pool *pool, t_symbol symbol, t_length padding, t_u32 lookahead_bytes, const t_language *language);
t_mutable_subtree ts_subtree_new_node(t_symbol symbol, t_subtree_array *children, unsigned production_id, const t_language *language);
void ts_subtree_pool_delete(t_subtree_pool *self);
t_subtree_pool ts_subtree_pool_new(t_u32 capacity);
void ts_subtree_release(t_subtree_pool *pool, t_subtree self);
void ts_subtree_retain(t_subtree self);
void ts_subtree_set_symbol(t_mutable_subtree *self, t_symbol symbol, const t_language *language);
char *ts_subtree_string(t_subtree self, t_symbol alias_symbol, bool alias_is_named, const t_language *language, bool include_all);
void ts_subtree_summarize_children(t_mutable_subtree self, const t_language *language);
t_first_tree *ts_tree_copy(const t_first_tree *self);
// START PROBABLY DELETE WORTHY
t_tree_cursor ts_tree_cursor_copy(const t_tree_cursor *_cursor);
t_u32 ts_tree_cursor_current_depth(const t_tree_cursor *_self);
t_u32 ts_tree_cursor_current_descendant_index(const t_tree_cursor *_self);
t_field_id ts_tree_cursor_current_field_id(const t_tree_cursor *_self);
const char *ts_tree_cursor_current_field_name(const t_tree_cursor *_self);
t_parse_node ts_tree_cursor_current_node(const t_tree_cursor *_self);
void ts_tree_cursor_current_status(const t_tree_cursor *_self, t_field_id *field_id, bool *has_later_siblings, bool *has_later_named_siblings, bool *can_have_later_siblings_with_this_field, t_symbol *supertypes, unsigned *supertype_count);
void ts_tree_cursor_delete(t_tree_cursor *_self);
void ts_tree_cursor_goto_descendant(t_tree_cursor *_self, t_u32 goal_descendant_index);
bool ts_tree_cursor_goto_first_child(t_tree_cursor *self);
t_i64 ts_tree_cursor_goto_first_child_for_byte(t_tree_cursor *self, t_u32 goal_byte);
t_i64 ts_tree_cursor_goto_first_child_for_point(t_tree_cursor *self, t_point goal_point);
t_tree_cursor_step ts_tree_cursor_goto_first_child_internal(t_tree_cursor *_self);
bool ts_tree_cursor_goto_last_child(t_tree_cursor *self);
t_tree_cursor_step ts_tree_cursor_goto_last_child_internal(t_tree_cursor *_self);
bool ts_tree_cursor_goto_next_sibling(t_tree_cursor *self);
t_tree_cursor_step ts_tree_cursor_goto_next_sibling_internal(t_tree_cursor *_self);
bool ts_tree_cursor_goto_parent(t_tree_cursor *_self);
bool ts_tree_cursor_goto_previous_sibling(t_tree_cursor *self);
t_tree_cursor_step ts_tree_cursor_goto_previous_sibling_internal(t_tree_cursor *_self);
t_tree_cursor_step ts_tree_cursor_goto_sibling_internal(t_tree_cursor *_self, bool (*advance)(t_cursor_child_iterator *, t_tree_cursor_entry *, bool *));
void ts_tree_cursor_init(t_tree_cursor *self, t_parse_node node);
t_tree_cursor ts_tree_cursor_new(t_parse_node node);
t_parse_node ts_tree_cursor_parent_node(const t_tree_cursor *_self);
void ts_tree_cursor_reset(t_tree_cursor *_self, t_parse_node node);
void ts_tree_cursor_reset_to(t_tree_cursor *_dst, const t_tree_cursor *_src);
// END PROBABLY DELETE WORTHY
void ts_tree_delete(t_first_tree *self);
void ts_tree_edit(t_first_tree *self, const t_input_edit *edit);
t_parse_range *ts_tree_get_changed_ranges(const t_first_tree *old_tree, const t_first_tree *new_tree, t_u32 *length);
t_parse_range *ts_tree_included_ranges(const t_first_tree *self, t_u32 *length);
const t_language *ts_tree_language(const t_first_tree *self);
t_first_tree *ts_tree_new(t_subtree root, const t_language *language, const t_parse_range *included_ranges, unsigned included_range_count);
void ts_tree_print_dot_graph(const t_first_tree *self, int file_descriptor);
t_parse_node ts_tree_root_node(const t_first_tree *self);
t_parse_node ts_tree_root_node_with_offset(const t_first_tree *self, t_u32 offset_bytes, t_point offset_extent);
#endif /* COMBINED_H */

View file

@ -1,98 +0,0 @@
/* ************************************************************************** */
/* */
/* ::: :::::::: */
/* create_language.c :+: :+: :+: */
/* +:+ +:+ +:+ */
/* By: maiboyer <maiboyer@student.42.fr> +#+ +:+ +#+ */
/* +#+#+#+#+#+ +#+ */
/* Created: 2024/04/25 16:13:52 by maiboyer #+# #+# */
/* Updated: 2024/06/09 21:46:14 by maiboyer ### ########.fr */
/* */
/* ************************************************************************** */
#include "../parse_types.h"
#include "../static/headers/constants.h"
#include "../static/headers/symbols.h"
bool lex_keywords_main(t_lexer *lexer, t_state_id state);
bool lex_normal_main(t_lexer *lexer, t_state_id state);
bool tree_sitter_sh_external_scanner_scan(void *ctx, t_lexer *lexer, const bool *ret);
const bool *create_external_scanner_states(void);
const char *const *create_field_names(void);
const char *const *create_symbols_names(void);
const t_field_map_entry *create_field_map_entries(void);
const t_field_map_slice *create_field_map_slices(void);
const t_lex_modes *create_lex_modes(void);
const t_parse_action_entry *create_parse_actions_entries(void);
const t_state_id *create_primary_state_ids(void);
const t_symbol *create_alias_sequences(void);
const t_symbol *create_external_scanner_symbol_map(void);
const t_symbol *create_non_terminal_alias_map(void);
const t_symbol *create_unique_symbols_map(void);
const t_symbol_metadata *create_symbols_metadata(void);
const uint16_t *create_parse_table(void);
const uint16_t *create_small_parse_table(void);
const uint32_t *create_small_parse_table_map(void);
uint32_t tree_sitter_sh_external_scanner_serialize(void *ctx, char *s);
void tree_sitter_sh_external_scanner_deserialize(void *ctx, const char *s, uint32_t val);
void tree_sitter_sh_external_scanner_destroy(void *ctx);
void *tree_sitter_sh_external_scanner_create(void);
static t_scanner init_scanner(void)
{
return ((t_scanner){
create_external_scanner_states(),
create_external_scanner_symbol_map(),
tree_sitter_sh_external_scanner_create,
tree_sitter_sh_external_scanner_destroy,
tree_sitter_sh_external_scanner_scan,
tree_sitter_sh_external_scanner_serialize,
tree_sitter_sh_external_scanner_deserialize,
});
}
static void init_language(t_language *language)
{
language->parse_table = create_parse_table();
language->small_parse_table = create_small_parse_table();
language->small_parse_table_map = create_small_parse_table_map();
language->parse_actions = create_parse_actions_entries();
language->symbol_names = create_symbols_names();
language->field_names = create_field_names();
language->field_map_slices = create_field_map_slices();
language->field_map_entries = create_field_map_entries();
language->symbol_metadata = create_symbols_metadata();
language->public_symbol_map = create_unique_symbols_map();
language->alias_map = create_non_terminal_alias_map();
language->alias_sequences = create_alias_sequences();
language->lex_modes = create_lex_modes();
language->primary_state_ids = create_primary_state_ids();
language->lex_fn = lex_normal_main;
language->keyword_lex_fn = lex_keywords_main;
language->keyword_capture_token = sym_word;
language->external_scanner = init_scanner();
}
const t_language *tree_sitter_bash(void)
{
static bool init = false;
static t_language language = {
.version = LANGUAGE_VERSION,
.symbol_count = SYMBOL_COUNT,
.alias_count = ALIAS_COUNT,
.token_count = TOKEN_COUNT,
.external_token_count = EXTERNAL_TOKEN_COUNT,
.state_count = STATE_COUNT,
.large_state_count = LARGE_STATE_COUNT,
.production_id_count = PRODUCTION_ID_COUNT,
.field_count = FIELD_COUNT,
.max_alias_sequence_length = MAX_ALIAS_SEQUENCE_LENGTH,
};
if (!init)
{
init_language(&language);
init = true;
}
return ((t_language *)&language);
}

View file

@ -1,711 +0,0 @@
/* ************************************************************************** */
/* */
/* ::: :::::::: */
/* funcs.c :+: :+: :+: */
/* +:+ +:+ +:+ */
/* By: maiboyer <maiboyer@student.42.fr> +#+ +:+ +#+ */
/* +#+#+#+#+#+ +#+ */
/* Created: 2024/05/30 19:21:01 by maiboyer #+# #+# */
/* Updated: 2024/05/30 19:22:53 by maiboyer ### ########.fr */
/* */
/* ************************************************************************** */
#include "./api.h"
size_t atomic_load(const volatile size_t *p)
{
return (*p);
}
uint32_t atomic_inc(volatile uint32_t *p)
{
return (++(*p));
}
uint32_t atomic_dec(volatile uint32_t *p)
{
return (--(*p));
}
bool ts_language_is_symbol_external(const t_language *self, t_symbol symbol)
{
return 0 < symbol && symbol < self->external_token_count + 1;
}
const t_parse_action *ts_language_actions(const t_language *self, t_state_id state, t_symbol symbol, uint32_t *count)
{
t_table_entry entry;
ts_language_table_entry(self, state, symbol, &entry);
*count = entry.action_count;
return entry.actions;
}
bool ts_language_has_reduce_action(const t_language *self, t_state_id state, t_symbol symbol)
{
t_table_entry entry;
ts_language_table_entry(self, state, symbol, &entry);
return entry.action_count > 0 && entry.actions[0].type == TSParseActionTypeReduce;
}
uint16_t ts_language_lookup(const t_language *self, t_state_id state, t_symbol symbol)
{
if (state >= self->large_state_count)
{
uint32_t index = self->small_parse_table_map[state - self->large_state_count];
const uint16_t *data = &self->small_parse_table[index];
uint16_t group_count = *(data++);
for (unsigned i = 0; i < group_count; i++)
{
uint16_t section_value = *(data++);
uint16_t symbol_count = *(data++);
for (unsigned j = 0; j < symbol_count; j++)
{
if (*(data++) == symbol)
return section_value;
}
}
return 0;
}
else
{
return self->parse_table[state * self->symbol_count + symbol];
}
}
bool ts_language_has_actions(const t_language *self, t_state_id state, t_symbol symbol)
{
return ts_language_lookup(self, state, symbol) != 0;
}
t_lookahead_iterator ts_language_lookaheads(const t_language *self, t_state_id state)
{
bool is_small_state = state >= self->large_state_count;
const uint16_t *data;
const uint16_t *group_end = NULL;
uint16_t group_count = 0;
if (is_small_state)
{
uint32_t index = self->small_parse_table_map[state - self->large_state_count];
data = &self->small_parse_table[index];
group_end = data + 1;
group_count = *data;
}
else
{
data = &self->parse_table[state * self->symbol_count] - 1;
}
return (t_lookahead_iterator){
.language = self,
.data = data,
.group_end = group_end,
.group_count = group_count,
.is_small_state = is_small_state,
.symbol = UINT16_MAX,
.next_state = 0,
};
}
bool ts_lookahead_iterator__next(t_lookahead_iterator *self)
{
// For small parse states, valid symbols are listed explicitly,
// grouped by their value. There's no need to look up the actions
// again until moving to the next group.
if (self->is_small_state)
{
self->data++;
if (self->data == self->group_end)
{
if (self->group_count == 0)
return false;
self->group_count--;
self->table_value = *(self->data++);
unsigned symbol_count = *(self->data++);
self->group_end = self->data + symbol_count;
self->symbol = *self->data;
}
else
{
self->symbol = *self->data;
return true;
}
}
// For large parse states, iterate through every symbol until one
// is found that has valid actions.
else
{
do
{
self->data++;
self->symbol++;
if (self->symbol >= self->language->symbol_count)
return false;
self->table_value = *self->data;
} while (!self->table_value);
}
// Depending on if the symbols is terminal or non-terminal, the table value
// either represents a list of actions or a successor state.
if (self->symbol < self->language->token_count)
{
const t_parse_action_entry *entry = &self->language->parse_actions[self->table_value];
self->action_count = entry->entry.count;
self->actions = (const t_parse_action *)(entry + 1);
self->next_state = 0;
}
else
{
self->action_count = 0;
self->next_state = self->table_value;
}
return true;
}
bool ts_language_state_is_primary(const t_language *self, t_state_id state)
{
if (self->version >= LANGUAGE_VERSION_WITH_PRIMARY_STATES)
{
return state == self->primary_state_ids[state];
}
else
{
return true;
}
}
const bool *ts_language_enabled_external_tokens(const t_language *self, unsigned external_scanner_state)
{
if (external_scanner_state == 0)
{
return NULL;
}
else
{
return self->external_scanner.states + self->external_token_count * external_scanner_state;
}
}
const t_symbol *ts_language_alias_sequence(const t_language *self, uint32_t production_id)
{
return production_id ? &self->alias_sequences[production_id * self->max_alias_sequence_length] : NULL;
}
t_symbol ts_language_alias_at(const t_language *self, uint32_t production_id, uint32_t child_index)
{
return production_id ? self->alias_sequences[production_id * self->max_alias_sequence_length + child_index] : 0;
}
void ts_language_field_map(const t_language *self, uint32_t production_id, const t_field_map_entry **start, const t_field_map_entry **end)
{
if (self->field_count == 0)
{
*start = NULL;
*end = NULL;
return;
}
t_field_map_slice slice = self->field_map_slices[production_id];
*start = &self->field_map_entries[slice.index];
*end = &self->field_map_entries[slice.index] + slice.length;
}
void ts_language_aliases_for_symbol(const t_language *self, t_symbol original_symbol, const t_symbol **start, const t_symbol **end)
{
*start = &self->public_symbol_map[original_symbol];
*end = *start + 1;
unsigned idx = 0;
for (;;)
{
t_symbol symbol = self->alias_map[idx++];
if (symbol == 0 || symbol > original_symbol)
break;
uint16_t count = self->alias_map[idx++];
if (symbol == original_symbol)
{
*start = &self->alias_map[idx];
*end = &self->alias_map[idx + count];
break;
}
idx += count;
}
}
bool length_is_undefined(t_length length)
{
return length.bytes == 0 && length.extent.column != 0;
}
t_length length_min(t_length len1, t_length len2)
{
return (len1.bytes < len2.bytes) ? len1 : len2;
}
t_length length_add(t_length len1, t_length len2)
{
t_length result;
result.bytes = len1.bytes + len2.bytes;
result.extent = point_add(len1.extent, len2.extent);
return result;
}
t_length length_sub(t_length len1, t_length len2)
{
t_length result;
result.bytes = len1.bytes - len2.bytes;
result.extent = point_sub(len1.extent, len2.extent);
return result;
}
t_length length_zero(void)
{
t_length result = {0, {0, 0}};
return result;
}
t_length length_saturating_sub(t_length len1, t_length len2)
{
if (len1.bytes > len2.bytes)
{
return length_sub(len1, len2);
}
else
{
return length_zero();
}
}
bool set_contains(t_char_range *ranges, uint32_t len, int32_t lookahead)
{
uint32_t index = 0;
uint32_t size = len - index;
while (size > 1)
{
uint32_t half_size = size / 2;
uint32_t mid_index = index + half_size;
t_char_range *range = &ranges[mid_index];
if (lookahead >= range->start && lookahead <= range->end)
{
return true;
}
else if (lookahead > range->end)
{
index = mid_index;
}
size -= half_size;
}
t_char_range *range = &ranges[index];
return (lookahead >= range->start && lookahead <= range->end);
}
t_point point__new(unsigned row, unsigned column)
{
t_point result = {row, column};
return result;
}
t_point point_add(t_point a, t_point b)
{
if (b.row > 0)
return point__new(a.row + b.row, b.column);
else
return point__new(a.row, a.column + b.column);
}
t_point point_sub(t_point a, t_point b)
{
if (a.row > b.row)
return point__new(a.row - b.row, a.column);
else
return point__new(0, a.column - b.column);
}
bool point_lte(t_point a, t_point b)
{
return (a.row < b.row) || (a.row == b.row && a.column <= b.column);
}
bool point_lt(t_point a, t_point b)
{
return (a.row < b.row) || (a.row == b.row && a.column < b.column);
}
bool point_gt(t_point a, t_point b)
{
return (a.row > b.row) || (a.row == b.row && a.column > b.column);
}
bool point_gte(t_point a, t_point b)
{
return (a.row > b.row) || (a.row == b.row && a.column >= b.column);
}
bool point_eq(t_point a, t_point b)
{
return a.row == b.row && a.column == b.column;
}
t_point point_min(t_point a, t_point b)
{
if (a.row < b.row || (a.row == b.row && a.column < b.column))
return a;
else
return b;
}
t_point point_max(t_point a, t_point b)
{
if (a.row > b.row || (a.row == b.row && a.column > b.column))
return a;
else
return b;
}
void ts_reduce_action_set_add(t_reduce_action_set *self, t_reduce_action new_action)
{
for (uint32_t i = 0; i < self->size; i++)
{
t_reduce_action action = self->contents[i];
if (action.symbol == new_action.symbol && action.count == new_action.count)
return;
}
array_push(self, new_action);
}
t_reusable_node reusable_node_new(void)
{
return (t_reusable_node){array_new(), NULL_SUBTREE};
}
void reusable_node_clear(t_reusable_node *self)
{
array_clear(&self->stack);
self->last_external_token = NULL_SUBTREE;
}
t_subtree reusable_node_tree(t_reusable_node *self)
{
return self->stack.size > 0 ? self->stack.contents[self->stack.size - 1].tree : NULL_SUBTREE;
}
uint32_t reusable_node_byte_offset(t_reusable_node *self)
{
return self->stack.size > 0 ? self->stack.contents[self->stack.size - 1].byte_offset : UINT32_MAX;
}
void reusable_node_delete(t_reusable_node *self)
{
array_delete(&self->stack);
}
void reusable_node_advance(t_reusable_node *self)
{
t_stack_entry last_entry = *array_back(&self->stack);
uint32_t byte_offset = last_entry.byte_offset + ts_subtree_total_bytes(last_entry.tree);
if (ts_subtree_has_external_tokens(last_entry.tree))
{
self->last_external_token = ts_subtree_last_external_token(last_entry.tree);
}
t_subtree tree;
uint32_t next_index;
do
{
t_stack_entry popped_entry = array_pop(&self->stack);
next_index = popped_entry.child_index + 1;
if (self->stack.size == 0)
return;
tree = array_back(&self->stack)->tree;
} while (ts_subtree_child_count(tree) <= next_index);
array_push(&self->stack, ((t_stack_entry){
.tree = ts_subtree_children(tree)[next_index],
.child_index = next_index,
.byte_offset = byte_offset,
}));
}
bool reusable_node_descend(t_reusable_node *self)
{
t_stack_entry last_entry = *array_back(&self->stack);
if (ts_subtree_child_count(last_entry.tree) > 0)
{
array_push(&self->stack, ((t_stack_entry){
.tree = ts_subtree_children(last_entry.tree)[0],
.child_index = 0,
.byte_offset = last_entry.byte_offset,
}));
return true;
}
else
{
return false;
}
}
void reusable_node_advance_past_leaf(t_reusable_node *self)
{
while (reusable_node_descend(self))
{
}
reusable_node_advance(self);
}
void reusable_node_reset(t_reusable_node *self, t_subtree tree)
{
reusable_node_clear(self);
array_push(&self->stack, ((t_stack_entry){
.tree = tree,
.child_index = 0,
.byte_offset = 0,
}));
// Never reuse the root node, because it has a non-standard internal
// structure due to transformations that are applied when it is accepted:
// adding the EOF child and any extra children.
if (!reusable_node_descend(self))
{
reusable_node_clear(self);
}
}
#define SUBTREE_GET(self, name) ((self).data.is_inline ? (self).data.name : (self).ptr->name)
t_symbol ts_subtree_symbol(t_subtree self)
{
return SUBTREE_GET(self, symbol);
}
bool ts_subtree_visible(t_subtree self)
{
return SUBTREE_GET(self, visible);
}
bool ts_subtree_named(t_subtree self)
{
return SUBTREE_GET(self, named);
}
bool ts_subtree_extra(t_subtree self)
{
return SUBTREE_GET(self, extra);
}
bool ts_subtree_has_changes(t_subtree self)
{
return SUBTREE_GET(self, has_changes);
}
bool ts_subtree_missing(t_subtree self)
{
return SUBTREE_GET(self, is_missing);
}
bool ts_subtree_is_keyword(t_subtree self)
{
return SUBTREE_GET(self, is_keyword);
}
t_state_id ts_subtree_parse_state(t_subtree self)
{
return SUBTREE_GET(self, parse_state);
}
uint32_t ts_subtree_lookahead_bytes(t_subtree self)
{
return SUBTREE_GET(self, lookahead_bytes);
}
size_t ts_subtree_alloc_size(uint32_t child_count)
{
return child_count * sizeof(t_subtree) + sizeof(t_subtree_heap_data);
}
void ts_subtree_set_extra(t_mutable_subtree *self, bool is_extra)
{
if (self->data.is_inline)
{
self->data.extra = is_extra;
}
else
{
self->ptr->extra = is_extra;
}
}
t_symbol ts_subtree_leaf_symbol(t_subtree self)
{
if (self.data.is_inline)
return self.data.symbol;
if (self.ptr->child_count == 0)
return self.ptr->symbol;
return self.ptr->first_leaf.symbol;
}
t_state_id ts_subtree_leaf_parse_state(t_subtree self)
{
if (self.data.is_inline)
return self.data.parse_state;
if (self.ptr->child_count == 0)
return self.ptr->parse_state;
return self.ptr->first_leaf.parse_state;
}
t_length ts_subtree_padding(t_subtree self)
{
if (self.data.is_inline)
{
t_length result = {self.data.padding_bytes, {self.data.padding_rows, self.data.padding_columns}};
return result;
}
else
{
return self.ptr->padding;
}
}
t_length ts_subtree_size(t_subtree self)
{
if (self.data.is_inline)
{
t_length result = {self.data.size_bytes, {0, self.data.size_bytes}};
return result;
}
else
{
return self.ptr->size;
}
}
t_length ts_subtree_total_size(t_subtree self)
{
return length_add(ts_subtree_padding(self), ts_subtree_size(self));
}
uint32_t ts_subtree_total_bytes(t_subtree self)
{
return ts_subtree_total_size(self).bytes;
}
uint32_t ts_subtree_child_count(t_subtree self)
{
return self.data.is_inline ? 0 : self.ptr->child_count;
}
uint32_t ts_subtree_repeat_depth(t_subtree self)
{
return self.data.is_inline ? 0 : self.ptr->repeat_depth;
}
uint32_t ts_subtree_is_repetition(t_subtree self)
{
return self.data.is_inline ? 0 : !self.ptr->named && !self.ptr->visible && self.ptr->child_count != 0;
}
uint32_t ts_subtree_visible_descendant_count(t_subtree self)
{
return (self.data.is_inline || self.ptr->child_count == 0) ? 0 : self.ptr->visible_descendant_count;
}
uint32_t ts_subtree_visible_child_count(t_subtree self)
{
if (ts_subtree_child_count(self) > 0)
{
return self.ptr->visible_child_count;
}
else
{
return 0;
}
}
uint32_t ts_subtree_error_cost(t_subtree self)
{
if (ts_subtree_missing(self))
{
return ERROR_COST_PER_MISSING_TREE + ERROR_COST_PER_RECOVERY;
}
else
{
return self.data.is_inline ? 0 : self.ptr->error_cost;
}
}
int32_t ts_subtree_dynamic_precedence(t_subtree self)
{
return (self.data.is_inline || self.ptr->child_count == 0) ? 0 : self.ptr->dynamic_precedence;
}
uint16_t ts_subtree_production_id(t_subtree self)
{
if (ts_subtree_child_count(self) > 0)
{
return self.ptr->production_id;
}
else
{
return 0;
}
}
bool ts_subtree_fragile_left(t_subtree self)
{
return self.data.is_inline ? false : self.ptr->fragile_left;
}
bool ts_subtree_fragile_right(t_subtree self)
{
return self.data.is_inline ? false : self.ptr->fragile_right;
}
bool ts_subtree_has_external_tokens(t_subtree self)
{
return self.data.is_inline ? false : self.ptr->has_external_tokens;
}
bool ts_subtree_has_external_scanner_state_change(t_subtree self)
{
return self.data.is_inline ? false : self.ptr->has_external_scanner_state_change;
}
bool ts_subtree_depends_on_column(t_subtree self)
{
return self.data.is_inline ? false : self.ptr->depends_on_column;
}
bool ts_subtree_is_fragile(t_subtree self)
{
return self.data.is_inline ? false : (self.ptr->fragile_left || self.ptr->fragile_right);
}
bool ts_subtree_is_error(t_subtree self)
{
return ts_subtree_symbol(self) == ts_builtin_sym_error;
}
bool ts_subtree_is_eof(t_subtree self)
{
return ts_subtree_symbol(self) == ts_builtin_sym_end;
}
t_subtree ts_subtree_from_mut(t_mutable_subtree self)
{
t_subtree result;
result.data = self.data;
return result;
}
t_mutable_subtree ts_subtree_to_mut_unsafe(t_subtree self)
{
t_mutable_subtree result;
result.data = self.data;
return result;
}
t_subtree ts_tree_cursor_current_subtree(const t_tree_cursor *_self)
{
const t_tree_cursor *self = (const t_tree_cursor *)_self;
t_tree_cursor_entry *last_entry = array_back(&self->stack);
return *last_entry->subtree;
}

View file

@ -1,173 +0,0 @@
#ifndef FUNCS_H
#define FUNCS_H
#include "./api_structs.h"
bool length_is_undefined(t_length length);
bool point_eq(t_point a, t_point b);
bool point_gt(t_point a, t_point b);
bool point_gte(t_point a, t_point b);
bool point_lt(t_point a, t_point b);
bool point_lte(t_point a, t_point b);
bool reusable_node_descend(t_reusable_node *self);
bool set_contains(t_char_range *ranges, uint32_t len, int32_t lookahead);
bool ts_external_scanner_state_eq(const t_external_scanner_state *self, const char *, uint32_t);
bool ts_language_has_actions(const t_language *self, t_state_id state, t_symbol symbol);
bool ts_language_has_reduce_action(const t_language *self, t_state_id state, t_symbol symbol);
bool ts_language_is_symbol_external(const t_language *self, t_symbol symbol);
bool ts_language_state_is_primary(const t_language *self, t_state_id state);
bool ts_lexer_set_included_ranges(t_lexer *self, const t_parse_range *ranges, uint32_t count);
bool ts_lookahead_iterator__next(t_lookahead_iterator *self);
bool ts_range_array_intersects(const t_range_array *self, uint32_t start_index, uint32_t start_byte, uint32_t end_byte);
bool ts_stack_can_merge(t_stack *, t_stack_version, t_stack_version);
bool ts_stack_has_advanced_since_error(const t_stack *, t_stack_version);
bool ts_stack_is_active(const t_stack *, t_stack_version);
bool ts_stack_is_halted(const t_stack *, t_stack_version);
bool ts_stack_is_paused(const t_stack *, t_stack_version);
bool ts_stack_merge(t_stack *, t_stack_version, t_stack_version);
bool ts_subtree_depends_on_column(t_subtree self);
bool ts_subtree_external_scanner_state_eq(t_subtree, t_subtree);
bool ts_subtree_extra(t_subtree self);
bool ts_subtree_fragile_left(t_subtree self);
bool ts_subtree_fragile_right(t_subtree self);
bool ts_subtree_has_changes(t_subtree self);
bool ts_subtree_has_external_scanner_state_change(t_subtree self);
bool ts_subtree_has_external_tokens(t_subtree self);
bool ts_subtree_has_external_tokens(t_subtree self);
bool ts_subtree_is_eof(t_subtree self);
bool ts_subtree_is_error(t_subtree self);
bool ts_subtree_is_fragile(t_subtree self);
bool ts_subtree_is_keyword(t_subtree self);
bool ts_subtree_missing(t_subtree self);
bool ts_subtree_named(t_subtree self);
bool ts_subtree_visible(t_subtree self);
char *ts_subtree_string(t_subtree, t_symbol, bool, const t_language *, bool include_all);
const bool *ts_language_enabled_external_tokens(const t_language *self, uint32_t external_scanner_state);
const char *ts_external_scanner_state_data(const t_external_scanner_state *);
const t_external_scanner_state *ts_subtree_external_scanner_state(t_subtree self);
const t_parse_action *ts_language_actions(const t_language *self, t_state_id state, t_symbol symbol, uint32_t *count);
const t_symbol *ts_language_alias_sequence(const t_language *self, uint32_t production_id);
int ts_stack_dynamic_precedence(t_stack *, t_stack_version);
int ts_subtree_compare(t_subtree, t_subtree, t_subtree_pool *);
int32_t ts_subtree_dynamic_precedence(t_subtree self);
size_t atomic_load(const volatile size_t *p);
size_t ts_subtree_alloc_size(uint32_t child_count);
t_first_tree *ts_tree_new(t_subtree root, const t_language *language, const t_parse_range *, uint32_t);
t_length length_add(t_length len1, t_length len2);
t_length length_min(t_length len1, t_length len2);
t_length length_saturating_sub(t_length len1, t_length len2);
t_length length_sub(t_length len1, t_length len2);
t_length length_zero(void);
t_length ts_stack_position(const t_stack *, t_stack_version);
t_length ts_subtree_padding(t_subtree self);
t_length ts_subtree_size(t_subtree self);
t_length ts_subtree_total_size(t_subtree self);
t_lookahead_iterator ts_language_lookaheads(const t_language *self, t_state_id state);
t_mutable_subtree ts_subtree_make_mut(t_subtree_pool *, t_subtree);
t_mutable_subtree ts_subtree_new_node(t_symbol, t_subtree_array *, uint32_t, const t_language *);
t_mutable_subtree ts_subtree_to_mut_unsafe(t_subtree self);
t_parse_node ts_node_new(const t_first_tree *, const t_subtree *, t_length, t_symbol);
t_parse_node ts_tree_cursor_parent_node(const t_tree_cursor *);
t_parse_range *ts_lexer_included_ranges(const t_lexer *self, uint32_t *count);
t_point point__new(uint32_t row, uint32_t column);
t_point point_add(t_point a, t_point b);
t_point point_max(t_point a, t_point b);
t_point point_min(t_point a, t_point b);
t_point point_sub(t_point a, t_point b);
t_reusable_node reusable_node_new(void);
t_stack *ts_stack_new(t_subtree_pool *);
t_stack_slice_array ts_stack_pop_all(t_stack *, t_stack_version);
t_stack_slice_array ts_stack_pop_count(t_stack *, t_stack_version, uint32_t count);
t_stack_slice_array ts_stack_pop_pending(t_stack *, t_stack_version);
t_stack_summary *ts_stack_get_summary(t_stack *, t_stack_version);
t_stack_version ts_stack_copy_version(t_stack *, t_stack_version);
t_state_id ts_language_next_state(const t_language *self, t_state_id state, t_symbol symbol);
t_state_id ts_stack_state(const t_stack *, t_stack_version);
t_state_id ts_subtree_leaf_parse_state(t_subtree self);
t_state_id ts_subtree_parse_state(t_subtree self);
t_subtree reusable_node_tree(t_reusable_node *self);
t_subtree ts_stack_last_external_token(const t_stack *, t_stack_version);
t_subtree ts_stack_resume(t_stack *, t_stack_version);
t_subtree ts_subtree_edit(t_subtree, const t_input_edit *edit, t_subtree_pool *);
t_subtree ts_subtree_from_mut(t_mutable_subtree self);
t_subtree ts_subtree_last_external_token(t_subtree);
t_subtree ts_subtree_new_error(t_subtree_pool *, int32_t, t_length, t_length, uint32_t, t_state_id, const t_language *);
t_subtree ts_subtree_new_error_node(t_subtree_array *, bool, const t_language *);
t_subtree ts_subtree_new_leaf(t_subtree_pool *, t_symbol, t_length, t_length, uint32_t, t_state_id, bool, bool, bool, const t_language *);
t_subtree ts_subtree_new_missing_leaf(t_subtree_pool *, t_symbol, t_length, uint32_t, const t_language *);
t_subtree ts_tree_cursor_current_subtree(const t_tree_cursor *_self);
t_subtree_array ts_stack_pop_error(t_stack *, t_stack_version);
t_subtree_pool ts_subtree_pool_new(uint32_t capacity);
t_symbol ts_language_alias_at(const t_language *self, uint32_t production_id, uint32_t child_index);
t_symbol ts_language_public_symbol(const t_language *, t_symbol);
t_symbol ts_subtree_leaf_symbol(t_subtree self);
t_symbol ts_subtree_symbol(t_subtree self);
t_symbol_metadata ts_language_symbol_metadata(const t_language *, t_symbol);
t_tree_cursor_step ts_tree_cursor_goto_first_child_internal(t_tree_cursor *);
t_tree_cursor_step ts_tree_cursor_goto_next_sibling_internal(t_tree_cursor *);
uint16_t ts_language_lookup(const t_language *self, t_state_id state, t_symbol symbol);
uint16_t ts_subtree_production_id(t_subtree self);
uint32_t atomic_dec(volatile uint32_t *p);
uint32_t atomic_inc(volatile uint32_t *p);
uint32_t reusable_node_byte_offset(t_reusable_node *self);
uint32_t ts_stack_version_count(const t_stack *);
uint32_t ts_subtree_child_count(t_subtree self);
uint32_t ts_subtree_child_count(t_subtree self);
uint32_t ts_subtree_error_cost(t_subtree self);
uint32_t ts_subtree_is_repetition(t_subtree self);
uint32_t ts_subtree_lookahead_bytes(t_subtree self);
uint32_t ts_subtree_repeat_depth(t_subtree self);
uint32_t ts_subtree_total_bytes(t_subtree self);
uint32_t ts_subtree_total_bytes(t_subtree self);
uint32_t ts_subtree_visible_child_count(t_subtree self);
uint32_t ts_subtree_visible_descendant_count(t_subtree self);
uint32_t ts_stack_error_cost(const t_stack *, t_stack_version version);
uint32_t ts_stack_node_count_since_error(const t_stack *, t_stack_version);
uint32_t ts_subtree_get_changed_ranges(const t_subtree *old_tree, const t_subtree *new_tree, t_tree_cursor *cursor1, t_tree_cursor *cursor2, const t_language *language, const t_range_array *included_range_differences, t_parse_range **ranges);
void reusable_node_advance(t_reusable_node *self);
void reusable_node_advance_past_leaf(t_reusable_node *self);
void reusable_node_clear(t_reusable_node *self);
void reusable_node_delete(t_reusable_node *self);
void reusable_node_reset(t_reusable_node *self, t_subtree tree);
void ts_external_scanner_state_delete(t_external_scanner_state *self);
void ts_external_scanner_state_init(t_external_scanner_state *, const char *, uint32_t);
void ts_language_aliases_for_symbol(const t_language *self, t_symbol original_symbol, const t_symbol **start, const t_symbol **end);
void ts_language_field_map(const t_language *self, uint32_t production_id, const t_field_map_entry **start, const t_field_map_entry **end);
void ts_language_table_entry(const t_language *, t_state_id, t_symbol, t_table_entry *);
void ts_lexer_advance_to_end(t_lexer *lexer);
void ts_lexer_delete(t_lexer *lexer);
void ts_lexer_finish(t_lexer *lexer, uint32_t *);
void ts_lexer_init(t_lexer *lexer);
void ts_lexer_mark_end(t_lexer *lexer);
void ts_lexer_reset(t_lexer *lexer, t_length);
void ts_lexer_set_input(t_lexer *lexer, t_parse_input);
void ts_lexer_start(t_lexer *lexer);
void ts_range_array_get_changed_ranges(const t_parse_range *old_ranges, uint32_t old_range_count, const t_parse_range *new_ranges, uint32_t new_range_count, t_range_array *differences);
void ts_reduce_action_set_add(t_reduce_action_set *self, t_reduce_action new_action);
void ts_stack_clear(t_stack *);
void ts_stack_delete(t_stack *);
void ts_stack_halt(t_stack *, t_stack_version);
void ts_stack_pause(t_stack *, t_stack_version, t_subtree);
void ts_stack_push(t_stack *, t_stack_version, t_subtree, bool, t_state_id);
void ts_stack_record_summary(t_stack *, t_stack_version, uint32_t max_depth);
void ts_stack_remove_version(t_stack *, t_stack_version);
void ts_stack_renumber_version(t_stack *, t_stack_version, t_stack_version);
void ts_stack_set_last_external_token(t_stack *, t_stack_version, t_subtree);
void ts_stack_swap_versions(t_stack *, t_stack_version, t_stack_version);
void ts_subtree_array_clear(t_subtree_pool *, t_subtree_array *);
void ts_subtree_array_copy(t_subtree_array, t_subtree_array *);
void ts_subtree_array_delete(t_subtree_pool *, t_subtree_array *);
void ts_subtree_array_remove_trailing_extras(t_subtree_array *, t_subtree_array *);
void ts_subtree_array_reverse(t_subtree_array *);
void ts_subtree_balance(t_subtree, t_subtree_pool *, const t_language *);
void ts_subtree_pool_delete(t_subtree_pool *);
void ts_subtree_release(t_subtree_pool *, t_subtree);
void ts_subtree_retain(t_subtree);
void ts_subtree_set_extra(t_mutable_subtree *self, bool is_extra);
void ts_subtree_set_symbol(t_mutable_subtree *, t_symbol, const t_language *);
void ts_subtree_summarize(t_mutable_subtree, const t_subtree *, uint32_t, const t_language *);
void ts_subtree_summarize_children(t_mutable_subtree, const t_language *);
void ts_tree_cursor_current_status(const t_tree_cursor *, t_field_id *, bool *, bool *, bool *, t_symbol *, uint32_t *);
void ts_tree_cursor_init(t_tree_cursor *, t_parse_node);
#endif // FUNCS_H

File diff suppressed because it is too large Load diff

View file

@ -1,543 +0,0 @@
#ifndef STRUCTS_H
#define STRUCTS_H
#include "./api.h"
typedef unsigned t_stack_action;
typedef struct s_analysis_state t_analysis_state;
typedef struct s_analysis_state_entry t_analysis_state_entry;
typedef struct s_analysis_subgraph t_analysis_subgraph;
typedef struct s_analysis_subgraph_node t_analysis_subgraph_node;
typedef struct s_capture_list_pool t_capture_list_pool;
typedef struct s_cursor_child_iterator t_cursor_child_iterator;
typedef struct s_edit t_edit;
typedef struct s_edit_entry t_edit_entry;
typedef struct s_error_status t_error_status;
typedef struct s_first_parser t_first_parser;
typedef struct s_iterator t_iterator;
typedef struct s_node_child_iterator t_node_child_iterator;
typedef struct s_parse_query t_parse_query;
typedef struct s_pattern_entry t_pattern_entry;
typedef struct s_query_analysis t_query_analysis;
typedef struct s_query_cursor t_query_cursor;
typedef struct s_query_pattern t_query_pattern;
typedef struct s_query_state t_query_state;
typedef struct s_query_step t_query_step;
typedef struct s_slice t_slice;
typedef struct s_stack t_stack;
typedef struct s_stack_head t_stack_head;
typedef struct s_stack_iterator t_stack_iterator;
typedef struct s_stack_link t_stack_link;
typedef struct s_stack_node t_stack_node;
typedef struct s_state_predecessor_map t_state_predecessor_map;
typedef struct s_step_offset t_step_offset;
typedef struct s_stream t_stream;
typedef struct s_string_input t_string_input;
typedef struct s_summarize_stack_session t_summarize_stack_session;
typedef struct s_symbol_table t_symbol_table;
typedef struct s_token_cache t_token_cache;
typedef t_stack_action (*t_stack_callback)(void *, const t_stack_iterator *);
typedef uint32_t (*t_unicode_decode_function)(const uint8_t *chunk,
uint32_t size,
int32_t *codepoint);
typedef Array(t_analysis_state *) t_analysis_state_set;
typedef Array(t_analysis_subgraph) t_analysis_subgraph_array;
typedef Array(t_query_capture) t_capture_list;
typedef Array(t_stack_node *) t_stack_node_array;
typedef Array(uint8_t) t_capture_quantifiers;
typedef enum e_stack_status t_stack_status;
typedef enum e_error_comparaison t_error_comparaison;
typedef enum e_iterator_comparison t_iterator_comparison;
struct s_iterator
{
t_tree_cursor cursor;
const t_language *language;
unsigned visible_depth;
bool in_padding;
};
enum e_iterator_comparison
{
IteratorDiffers,
IteratorMayDiffer,
IteratorMatches,
};
struct s_node_child_iterator
{
t_subtree parent;
const t_first_tree *tree;
t_length position;
uint32_t child_index;
uint32_t structural_child_index;
const t_symbol *alias_sequence;
};
struct s_token_cache
{
t_subtree token;
t_subtree last_external_token;
uint32_t byte_index;
};
struct s_first_parser
{
t_lexer lexer;
t_stack *stack;
t_subtree_pool tree_pool;
const t_language *language;
t_reduce_action_set reduce_actions;
t_subtree finished_tree;
t_subtree_array trailing_extras;
t_subtree_array trailing_extras2;
t_subtree_array scratch_trees;
t_token_cache token_cache;
t_reusable_node reusable_node;
void *external_scanner_payload;
t_parser_clock end_clock;
t_parser_duration timeout_duration;
unsigned accept_count;
unsigned operation_count;
const volatile size_t *cancellation_flag;
t_subtree old_tree;
t_range_array included_range_differences;
unsigned included_range_difference_index;
bool has_scanner_error;
};
struct s_error_status
{
unsigned cost;
unsigned node_count;
int dynamic_precedence;
bool is_in_error;
};
enum e_error_comparaison
{
ErrorComparisonTakeLeft,
ErrorComparisonPreferLeft,
ErrorComparisonNone,
ErrorComparisonPreferRight,
ErrorComparisonTakeRight,
};
struct s_string_input
{
const char *string;
uint32_t length;
};
/*
* t_stream - A sequence of unicode characters derived from a UTF8 string.
* This struct is used in parsing queries from S-expressions.
*/
struct s_stream
{
const char *input;
const char *start;
const char *end;
int32_t next;
uint8_t next_size;
};
/*
* t_query_step - A step in the process of matching a query. Each node within
* a query S-expression corresponds to one of these steps. An entire pattern
* is represented as a sequence of these steps. The basic properties of a
* node are represented by these fields:
* - `symbol` - The grammar symbol to match. A zero value represents the
* wildcard symbol, '_'.
* - `field` - The field name to match. A zero value means that a field name
* was not specified.
* - `capture_ids` - An array of integers representing the names of captures
* associated with this node in the pattern, terminated by a `NONE` value.
* - `depth` - The depth where this node occurs in the pattern. The root node
* of the pattern has depth zero.
* - `negated_field_list_id` - An id representing a set of fields that must
* not be present on a node matching this step.
*
* Steps have some additional fields in order to handle the `.` (or "anchor")
* operator, which forbids additional child nodes:
* - `is_immediate` - Indicates that the node matching this step cannot be
* preceded by other sibling nodes that weren't specified in the pattern.
* - `is_last_child` - Indicates that the node matching this step cannot have
* any subsequent named siblings.
*
* For simple patterns, steps are matched in sequential order. But in order to
* handle alternative/repeated/optional sub-patterns, query steps are not always
* structured as a linear sequence; they sometimes need to split and merge. This
* is done using the following fields:
* - `alternative_index` - The index of a different query step that serves as
* an alternative to this step. A `NONE` value represents no alternative.
* When a query state reaches a step with an alternative index, the state
* is duplicated, with one copy remaining at the original step, and one copy
* moving to the alternative step. The alternative may have its own
* alternative step, so this splitting is an iterative process.
* - `is_dead_end` - Indicates that this state cannot be passed directly, and
* exists only in order to redirect to an alternative index, with no
* splitting.
* - `is_pass_through` - Indicates that state has no matching logic of its own,
* and exists only to split a state. One copy of the state advances
* immediately to the next step, and one moves to the alternative step.
* - `alternative_is_immediate` - Indicates that this step's alternative step
* should be treated as if `is_immediate` is true.
*
* Steps also store some derived state that summarizes how they relate to other
* steps within the same pattern. This is used to optimize the matching process:
* - `contains_captures` - Indicates that this step or one of its child steps
* has a non-empty `capture_ids` list.
* - `parent_pattern_guaranteed` - Indicates that if this step is reached, then
* it and all of its subsequent sibling steps within the same parent pattern
* are guaranteed to match.
* - `root_pattern_guaranteed` - Similar to `parent_pattern_guaranteed`, but
* for the entire top-level pattern. When iterating through a query's
* captures using `ts_query_cursor_next_capture`, this field is used to
* detect that a capture can safely be returned from a match that has not
* even completed yet.
*/
struct s_query_step
{
t_symbol symbol;
t_symbol supertype_symbol;
t_field_id field;
uint16_t capture_ids[MAX_STEP_CAPTURE_COUNT];
uint16_t depth;
uint16_t alternative_index;
uint16_t negated_field_list_id;
bool is_named : 1;
bool is_immediate : 1;
bool is_last_child : 1;
bool is_pass_through : 1;
bool is_dead_end : 1;
bool alternative_is_immediate : 1;
bool contains_captures : 1;
bool root_pattern_guaranteed : 1;
bool parent_pattern_guaranteed : 1;
};
/*
* t_slice - A slice of an external array. Within a query, capture names,
* literal string values, and predicate step information are stored in three
* contiguous arrays. Individual captures, string values, and predicates are
* represented as slices of these three arrays.
*/
struct s_slice
{
uint32_t offset;
uint32_t length;
};
/*
* t_symbol_table - a two-way mapping of strings to ids.
*/
struct s_symbol_table
{
Array(char) characters;
Array(t_slice) slices;
};
/**
* CaptureQuantififers - a data structure holding the quantifiers of pattern
* captures.
*/
/*
* t_pattern_entry - Information about the starting point for matching a
* particular pattern. These entries are stored in a 'pattern map' - a sorted
* array that makes it possible to efficiently lookup patterns based on the
* symbol for their first step. The entry consists of the following fields:
* - `pattern_index` - the index of the pattern within the query
* - `step_index` - the index of the pattern's first step in the shared `steps`
* array
* - `is_rooted` - whether or not the pattern has a single root node. This
* property affects decisions about whether or not to start the pattern for
* nodes outside of a QueryCursor's range restriction.
*/
struct s_pattern_entry
{
uint16_t step_index;
uint16_t pattern_index;
bool is_rooted;
};
struct s_query_pattern
{
t_slice steps;
t_slice predicate_steps;
uint32_t start_byte;
bool is_non_local;
};
struct s_step_offset
{
uint32_t byte_offset;
uint16_t step_index;
};
/*
* t_query_state - The state of an in-progress match of a particular pattern
* in a query. While executing, a `t_query_cursor` must keep track of a number
* of possible in-progress matches. Each of those possible matches is
* represented as one of these states. Fields:
* - `id` - A numeric id that is exposed to the public API. This allows the
* caller to remove a given match, preventing any more of its captures
* from being returned.
* - `start_depth` - The depth in the tree where the first step of the state's
* pattern was matched.
* - `pattern_index` - The pattern that the state is matching.
* - `consumed_capture_count` - The number of captures from this match that
* have already been returned.
* - `capture_list_id` - A numeric id that can be used to retrieve the state's
* list of captures from the `t_capture_list_pool`.
* - `seeking_immediate_match` - A flag that indicates that the state's next
* step must be matched by the very next sibling. This is used when
* processing repetitions.
* - `has_in_progress_alternatives` - A flag that indicates that there is are
* other states that have the same captures as this state, but are at
* different steps in their pattern. This means that in order to obey the
* 'longest-match' rule, this state should not be returned as a match until
* it is clear that there can be no other alternative match with more
* captures.
*/
struct s_query_state
{
uint32_t id;
uint32_t capture_list_id;
uint16_t start_depth;
uint16_t step_index;
uint16_t pattern_index;
uint16_t consumed_capture_count : 12;
bool seeking_immediate_match : 1;
bool has_in_progress_alternatives : 1;
bool dead : 1;
bool needs_parent : 1;
};
/*
* t_capture_list_pool - A collection of *lists* of captures. Each query state
* needs to maintain its own list of captures. To avoid repeated allocations,
* this struct maintains a fixed set of capture lists, and keeps track of which
* ones are currently in use by a query state.
*/
struct s_capture_list_pool
{
Array(t_capture_list) list;
t_capture_list empty_list;
// The maximum number of capture lists that we are allowed to allocate. We
// never allow `list` to allocate more entries than this, dropping pending
// matches if needed to stay under the limit.
uint32_t max_capture_list_count;
// The number of capture lists allocated in `list` that are not currently in
// use. We reuse those existing-but-unused capture lists before trying to
// allocate any new ones. We use an invalid value (UINT32_MAX) for a capture
// list's length to indicate that it's not in use.
uint32_t free_capture_list_count;
};
/*
* t_analysis_state - The state needed for walking the parse table when
* analyzing a query pattern, to determine at which steps the pattern might fail
* to match.
*/
struct s_analysis_state_entry
{
t_state_id parse_state;
t_symbol parent_symbol;
uint16_t child_index;
t_field_id field_id : 15;
bool done : 1;
};
struct s_analysis_state
{
t_analysis_state_entry stack[MAX_ANALYSIS_STATE_DEPTH];
uint16_t depth;
uint16_t step_index;
t_symbol root_symbol;
};
struct s_query_analysis
{
t_analysis_state_set states;
t_analysis_state_set next_states;
t_analysis_state_set deeper_states;
t_analysis_state_set state_pool;
Array(uint16_t) final_step_indices;
Array(t_symbol) finished_parent_symbols;
bool did_abort;
};
/*
* t_analysis_subgraph - A subset of the states in the parse table that are used
* in constructing nodes with a certain symbol. Each state is accompanied by
* some information about the possible node that could be produced in
* downstream states.
*/
struct s_analysis_subgraph_node
{
t_state_id state;
uint16_t production_id;
uint8_t child_index : 7;
bool done : 1;
};
struct s_analysis_subgraph
{
t_symbol symbol;
Array(t_state_id) start_states;
Array(t_analysis_subgraph_node) nodes;
};
/*
* t_state_predecessor_map - A map that stores the predecessors of each parse
* state. This is used during query analysis to determine which parse states can
* lead to which reduce actions.
*/
struct s_state_predecessor_map
{
t_state_id *contents;
};
/*
* t_parse_query - A tree query, compiled from a string of S-expressions. The
* query itself is immutable. The mutable state used in the process of executing
* the query is stored in a `t_query_cursor`.
*/
struct s_parse_query
{
t_symbol_table captures;
t_symbol_table predicate_values;
Array(t_capture_quantifiers) capture_quantifiers;
Array(t_query_step) steps;
Array(t_pattern_entry) pattern_map;
Array(t_query_predicate_step) predicate_steps;
Array(t_query_pattern) patterns;
Array(t_step_offset) step_offsets;
Array(t_field_id) negated_fields;
Array(char) string_buffer;
Array(t_symbol) repeat_symbols_with_rootless_patterns;
const t_language *language;
uint16_t wildcard_root_pattern_count;
};
/*
* t_query_cursor - A stateful struct used to execute a query on a tree.
*/
struct s_query_cursor
{
const t_parse_query *query;
t_tree_cursor cursor;
Array(t_query_state) states;
Array(t_query_state) finished_states;
t_capture_list_pool capture_list_pool;
uint32_t depth;
uint32_t max_start_depth;
uint32_t start_byte;
uint32_t end_byte;
t_point start_point;
t_point end_point;
uint32_t next_state_id;
bool on_visible_node;
bool ascending;
bool halted;
bool did_exceed_match_limit;
};
struct s_stack_link
{
t_stack_node *node;
t_subtree subtree;
bool is_pending;
};
struct s_stack_node
{
t_state_id state;
t_length position;
t_stack_link links[MAX_LINK_COUNT];
short unsigned int link_count;
uint32_t ref_count;
unsigned error_cost;
unsigned node_count;
int dynamic_precedence;
};
struct s_stack_iterator
{
t_stack_node *node;
t_subtree_array subtrees;
uint32_t subtree_count;
bool is_pending;
};
enum e_stack_status
{
StackStatusActive,
StackStatusPaused,
StackStatusHalted,
};
struct s_stack_head
{
t_stack_node *node;
t_stack_summary *summary;
unsigned node_count_at_last_error;
t_subtree last_external_token;
t_subtree lookahead_when_paused;
t_stack_status status;
};
struct s_stack
{
Array(t_stack_head) heads;
t_stack_slice_array slices;
Array(t_stack_iterator) iterators;
t_stack_node_array node_pool;
t_stack_node *base_node;
t_subtree_pool *subtree_pool;
};
enum e_stack_action
{
StackActionNone,
StackActionStop = 1,
StackActionPop = 2,
};
struct s_summarize_stack_session
{
t_stack_summary *summary;
unsigned max_depth;
};
struct s_edit
{
t_length start;
t_length old_end;
t_length new_end;
};
struct s_edit_entry
{
t_subtree *tree;
t_edit edit;
};
struct s_cursor_child_iterator
{
t_subtree parent;
const t_first_tree *tree;
t_length position;
uint32_t child_index;
uint32_t structural_child_index;
uint32_t descendant_index;
const t_symbol *alias_sequence;
};
#endif // STRUCTS_H