Restored to old state that doesn't leak

This commit is contained in:
Maix0 2024-08-18 21:46:29 +02:00
parent 1a74bb38d3
commit 7329c95ba0
11 changed files with 1028 additions and 328 deletions

View file

@ -1,14 +1,14 @@
#ifndef PARSE_STACK_H
#define PARSE_STACK_H
#include "me/types.h"
#include "parser/array.h"
#include "parser/subtree.h"
#include "me/types.h"
typedef struct Stack Stack;
typedef t_u32 StackVersion;
#define STACK_VERSION_NONE ((StackVersion) - 1)
#define STACK_VERSION_NONE ((StackVersion)-1)
typedef struct StackSlice
{
@ -29,7 +29,7 @@ typedef Array(StackSummaryEntry) StackSummary;
typedef void (*StackIterateCallback)(void *, TSStateId, t_u32);
// Create a stack.
Stack *ts_stack_new(void);
Stack *ts_stack_new(SubtreePool *);
// Release the memory reserved for a given stack.
void ts_stack_delete(Stack *);

View file

@ -1,11 +1,11 @@
#ifndef SUBTREE_H
#define SUBTREE_H
#include "me/types.h"
#include "parser/api.h"
#include "parser/array.h"
#include "parser/length.h"
#include "parser/parser.h"
#include "me/types.h"
#include <limits.h>
#include <stdbool.h>
#include <stdio.h>
@ -36,6 +36,37 @@ struct ExternalScannerState
// separately on the heap.
typedef struct ExternalScannerState ExternalScannerState;
// A compact representation of a subtree.
//
// This representation is used for small leaf nodes that are not
// errors, and were not created by an external scanner.
//
// The idea behind the layout of this struct is that the `is_inline`
// bit will fall exactly into the same location as the least significant
// bit of the pointer in `Subtree` or `MutableSubtree`, respectively.
// Because of alignment, for any valid pointer this will be 0, giving
// us the opportunity to make use of this bit to signify whether to use
// the pointer or the inline struct.
typedef struct SubtreeInlineData SubtreeInlineData;
struct SubtreeInlineData
{
bool is_inline : 1;
bool visible : 1;
bool named : 1;
bool extra : 1;
bool has_changes : 1;
bool is_missing : 1;
bool is_keyword : 1;
t_u8 symbol;
t_u16 parse_state;
t_u8 padding_columns;
t_u8 padding_rows : 4;
t_u8 lookahead_bytes : 4;
t_u8 padding_bytes;
t_u8 size_bytes;
};
// A heap-allocated representation of a subtree.
//
// This representation is used for parent nodes, external tokens,
@ -43,14 +74,14 @@ typedef struct ExternalScannerState ExternalScannerState;
// the inline representation.
typedef struct SubtreeHeapData
{
t_u32 ref_count;
Length padding;
Length size;
t_u32 lookahead_bytes;
t_u32 error_cost;
t_u32 child_count;
TSSymbol symbol;
TSStateId parse_state;
volatile t_u32 ref_count;
Length padding;
Length size;
t_u32 lookahead_bytes;
t_u32 error_cost;
t_u32 child_count;
TSSymbol symbol;
TSStateId parse_state;
bool visible : 1;
bool named : 1;
@ -91,83 +122,94 @@ typedef struct SubtreeHeapData
// The fundamental building block of a syntax tree.
typedef union Subtree {
SubtreeInlineData data;
const SubtreeHeapData *ptr;
} Subtree;
// Like Subtree, but mutable.
typedef union MutableSubtree {
SubtreeHeapData *ptr;
SubtreeInlineData data;
SubtreeHeapData *ptr;
} MutableSubtree;
typedef Array(Subtree) SubtreeArray;
typedef Array(MutableSubtree) MutableSubtreeArray;
typedef struct SubtreePool
{
MutableSubtreeArray free_trees;
MutableSubtreeArray tree_stack;
} SubtreePool;
void ts_external_scanner_state_init(ExternalScannerState *, const t_u8 *, t_u32);
const t_u8 *ts_external_scanner_state_data(const ExternalScannerState *);
bool ts_external_scanner_state_eq(const ExternalScannerState *self, const t_u8 *, t_u32);
void ts_external_scanner_state_delete(ExternalScannerState *self);
void ts_subtree_array_copy(SubtreeArray, SubtreeArray *);
void ts_subtree_array_clear(SubtreeArray *);
void ts_subtree_array_delete(SubtreeArray *);
void ts_subtree_array_clear(SubtreePool *, SubtreeArray *);
void ts_subtree_array_delete(SubtreePool *, SubtreeArray *);
void ts_subtree_array_remove_trailing_extras(SubtreeArray *, SubtreeArray *);
void ts_subtree_array_reverse(SubtreeArray *);
Subtree ts_subtree_new_leaf(TSSymbol, Length, Length, t_u32, TSStateId, bool, bool, bool, const TSLanguage *);
Subtree ts_subtree_new_error(t_i32, Length, Length, t_u32, TSStateId, const TSLanguage *);
MutableSubtree ts_subtree_new_node(TSSymbol, SubtreeArray *, t_u32, const TSLanguage *);
Subtree ts_subtree_new_error_node(SubtreeArray *, bool, const TSLanguage *);
Subtree ts_subtree_new_missing_leaf(TSSymbol, Length, t_u32, const TSLanguage *);
MutableSubtree ts_subtree_make_mut(Subtree);
void ts_subtree_retain(Subtree);
void ts_subtree_release(Subtree);
int ts_subtree_compare(Subtree, Subtree);
void ts_subtree_set_symbol(MutableSubtree *, TSSymbol, const TSLanguage *);
void ts_subtree_summarize(MutableSubtree, const Subtree *, t_u32, const TSLanguage *);
void ts_subtree_summarize_children(MutableSubtree, const TSLanguage *);
void ts_subtree_balance(Subtree, const TSLanguage *);
Subtree ts_subtree_edit(Subtree, const TSInputEdit *edit);
char *ts_subtree_string(Subtree, TSSymbol, bool, const TSLanguage *, bool include_all);
void ts_subtree_print_dot_graph(Subtree, const TSLanguage *, FILE *);
Subtree ts_subtree_last_external_token(Subtree);
SubtreePool ts_subtree_pool_new(t_u32 capacity);
void ts_subtree_pool_delete(SubtreePool *);
Subtree ts_subtree_new_leaf(SubtreePool *, TSSymbol, Length, Length, t_u32, TSStateId, bool, bool, bool, const TSLanguage *);
Subtree ts_subtree_new_error(SubtreePool *, t_i32, Length, Length, t_u32, TSStateId, const TSLanguage *);
MutableSubtree ts_subtree_new_node(TSSymbol, SubtreeArray *, t_u32, const TSLanguage *);
Subtree ts_subtree_new_error_node(SubtreeArray *, bool, const TSLanguage *);
Subtree ts_subtree_new_missing_leaf(SubtreePool *, TSSymbol, Length, t_u32, const TSLanguage *);
MutableSubtree ts_subtree_make_mut(SubtreePool *, Subtree);
void ts_subtree_retain(Subtree);
void ts_subtree_release(SubtreePool *, Subtree);
int ts_subtree_compare(Subtree, Subtree, SubtreePool *);
void ts_subtree_set_symbol(MutableSubtree *, TSSymbol, const TSLanguage *);
void ts_subtree_summarize(MutableSubtree, const Subtree *, t_u32, const TSLanguage *);
void ts_subtree_summarize_children(MutableSubtree, const TSLanguage *);
void ts_subtree_balance(Subtree, SubtreePool *, const TSLanguage *);
Subtree ts_subtree_edit(Subtree, const TSInputEdit *edit, SubtreePool *);
char *ts_subtree_string(Subtree, TSSymbol, bool, const TSLanguage *, bool include_all);
void ts_subtree_print_dot_graph(Subtree, const TSLanguage *, FILE *);
Subtree ts_subtree_last_external_token(Subtree);
const ExternalScannerState *ts_subtree_external_scanner_state(Subtree self);
bool ts_subtree_external_scanner_state_eq(Subtree, Subtree);
static inline TSSymbol ts_subtree_symbol(Subtree self)
{
return ((self).ptr->symbol);
return ((self).data.is_inline ? (self).data.symbol : (self).ptr->symbol);
}
static inline bool ts_subtree_visible(Subtree self)
{
return ((self).ptr->visible);
return ((self).data.is_inline ? (self).data.visible : (self).ptr->visible);
}
static inline bool ts_subtree_named(Subtree self)
{
return ((self).ptr->named);
return ((self).data.is_inline ? (self).data.named : (self).ptr->named);
}
static inline bool ts_subtree_extra(Subtree self)
{
return ((self).ptr->extra);
return ((self).data.is_inline ? (self).data.extra : (self).ptr->extra);
}
static inline bool ts_subtree_has_changes(Subtree self)
{
return ((self).ptr->has_changes);
return ((self).data.is_inline ? (self).data.has_changes : (self).ptr->has_changes);
}
static inline bool ts_subtree_missing(Subtree self)
{
return ((self).ptr->is_missing);
return ((self).data.is_inline ? (self).data.is_missing : (self).ptr->is_missing);
}
static inline bool ts_subtree_is_keyword(Subtree self)
{
return ((self).ptr->is_keyword);
return ((self).data.is_inline ? (self).data.is_keyword : (self).ptr->is_keyword);
}
static inline TSStateId ts_subtree_parse_state(Subtree self)
{
return ((self).ptr->parse_state);
return ((self).data.is_inline ? (self).data.parse_state : (self).ptr->parse_state);
}
static inline t_u32 ts_subtree_lookahead_bytes(Subtree self)
{
return ((self).ptr->lookahead_bytes);
return ((self).data.is_inline ? (self).data.lookahead_bytes : (self).ptr->lookahead_bytes);
}
// Get the size needed to store a heap-allocated subtree with the given
@ -179,15 +221,20 @@ static inline size_t ts_subtree_alloc_size(t_u32 child_count)
// Get a subtree's children, which are allocated immediately before the
// tree's own heap data.
#define ts_subtree_children(self) ((Subtree *)((self).ptr) - (self).ptr->child_count)
#define ts_subtree_children(self) ((self).data.is_inline ? NULL : (Subtree *)((self).ptr) - (self).ptr->child_count)
static inline void ts_subtree_set_extra(MutableSubtree *self, bool is_extra)
{
self->ptr->extra = is_extra;
if (self->data.is_inline)
self->data.extra = is_extra;
else
self->ptr->extra = is_extra;
}
static inline TSSymbol ts_subtree_leaf_symbol(Subtree self)
{
if (self.data.is_inline)
return self.data.symbol;
if (self.ptr->child_count == 0)
return self.ptr->symbol;
return self.ptr->first_leaf.symbol;
@ -195,6 +242,8 @@ static inline TSSymbol ts_subtree_leaf_symbol(Subtree self)
static inline TSStateId ts_subtree_leaf_parse_state(Subtree self)
{
if (self.data.is_inline)
return self.data.parse_state;
if (self.ptr->child_count == 0)
return self.ptr->parse_state;
return self.ptr->first_leaf.parse_state;
@ -202,12 +251,18 @@ static inline TSStateId ts_subtree_leaf_parse_state(Subtree self)
static inline Length ts_subtree_padding(Subtree self)
{
return self.ptr->padding;
if (self.data.is_inline)
return ((Length){self.data.padding_bytes, {self.data.padding_rows, self.data.padding_columns}});
else
return self.ptr->padding;
}
static inline Length ts_subtree_size(Subtree self)
{
return self.ptr->size;
if (self.data.is_inline)
return ((Length){self.data.size_bytes, {0, self.data.size_bytes}});
else
return self.ptr->size;
}
static inline Length ts_subtree_total_size(Subtree self)
@ -222,22 +277,22 @@ static inline t_u32 ts_subtree_total_bytes(Subtree self)
static inline t_u32 ts_subtree_child_count(Subtree self)
{
return (self.ptr->child_count);
return (self.data.is_inline ? 0 : self.ptr->child_count);
}
static inline t_u32 ts_subtree_repeat_depth(Subtree self)
{
return (self.ptr->repeat_depth);
return (self.data.is_inline ? 0 : self.ptr->repeat_depth);
}
static inline t_u32 ts_subtree_is_repetition(Subtree self)
{
return (!self.ptr->named && !self.ptr->visible && self.ptr->child_count != 0);
return (self.data.is_inline ? 0 : !self.ptr->named && !self.ptr->visible && self.ptr->child_count != 0);
}
static inline t_u32 ts_subtree_visible_descendant_count(Subtree self)
{
return ((self.ptr->child_count == 0) ? 0 : self.ptr->visible_descendant_count);
return ((self.data.is_inline || self.ptr->child_count == 0) ? 0 : self.ptr->visible_descendant_count);
}
static inline t_u32 ts_subtree_visible_child_count(Subtree self)
@ -253,12 +308,12 @@ static inline t_u32 ts_subtree_error_cost(Subtree self)
if (ts_subtree_missing(self))
return (ERROR_COST_PER_MISSING_TREE + ERROR_COST_PER_RECOVERY);
else
return (self.ptr->error_cost);
return (self.data.is_inline ? 0 : self.ptr->error_cost);
}
static inline t_i32 ts_subtree_dynamic_precedence(Subtree self)
{
return ((self.ptr->child_count == 0) ? 0 : self.ptr->dynamic_precedence);
return ((self.data.is_inline || self.ptr->child_count == 0) ? 0 : self.ptr->dynamic_precedence);
}
static inline t_u16 ts_subtree_production_id(Subtree self)
@ -271,32 +326,32 @@ static inline t_u16 ts_subtree_production_id(Subtree self)
static inline bool ts_subtree_fragile_left(Subtree self)
{
return (self.ptr->fragile_left);
return (self.data.is_inline ? false : self.ptr->fragile_left);
}
static inline bool ts_subtree_fragile_right(Subtree self)
{
return (self.ptr->fragile_right);
return (self.data.is_inline ? false : self.ptr->fragile_right);
}
static inline bool ts_subtree_has_external_tokens(Subtree self)
{
return (self.ptr->has_external_tokens);
return (self.data.is_inline ? false : self.ptr->has_external_tokens);
}
static inline bool ts_subtree_has_external_scanner_state_change(Subtree self)
{
return (self.ptr->has_external_scanner_state_change);
return (self.data.is_inline ? false : self.ptr->has_external_scanner_state_change);
}
static inline bool ts_subtree_depends_on_column(Subtree self)
{
return (self.ptr->depends_on_column);
return (self.data.is_inline ? false : self.ptr->depends_on_column);
}
static inline bool ts_subtree_is_fragile(Subtree self)
{
return ((self.ptr->fragile_left || self.ptr->fragile_right));
return (self.data.is_inline ? false : (self.ptr->fragile_left || self.ptr->fragile_right));
}
static inline bool ts_subtree_is_error(Subtree self)
@ -313,7 +368,7 @@ static inline Subtree ts_subtree_from_mut(MutableSubtree self)
{
Subtree result;
result.ptr = self.ptr;
result.data = self.data;
return (result);
}
@ -321,7 +376,7 @@ static inline MutableSubtree ts_subtree_to_mut_unsafe(Subtree self)
{
MutableSubtree result;
result.ptr = (void *)self.ptr;
result.data = self.data;
return (result);
}

View file

@ -54,7 +54,7 @@ static struct ExternalScannerDefinition init_scanner(void)
});
}
/*R static R*/ void init_language(TSLanguage *language)
static void init_language(TSLanguage *language)
{
static uint32_t empty_map[] = {0, 0 ,0};
@ -80,7 +80,7 @@ static struct ExternalScannerDefinition init_scanner(void)
const TSLanguage *tree_sitter_sh(void)
{
/*R static R*/ bool init = false;
static bool init = false;
static TSLanguage language = {
.version = LANGUAGE_VERSION,
.symbol_count = SYMBOL_COUNT,

View file

@ -1,7 +1,7 @@
#include "parser/language.h"
#include "me/types.h"
#include "parser/api.h"
#include "parser/parser.h"
#include "me/types.h"
#include <assert.h>
#include <string.h>

View file

@ -1,10 +1,12 @@
#include "parser/lexer.h"
#include "parser/length.h"
#include "parser/input.h"
#include "me/mem/mem.h"
#include "me/types.h"
#include "parser/input.h"
#include "parser/length.h"
#include <string.h>
#define LOG(...)
static const t_i32 BYTE_ORDER_MARK = 0xFEFF;
static const TSRange DEFAULT_RANGE = {.start_point =
@ -23,7 +25,7 @@ static const TSRange DEFAULT_RANGE = {.start_point =
// Check if the lexer has reached EOF. This state is stored
// by setting the lexer's `current_included_range_index` such that
// it has consumed all of its available ranges.
/*R static R*/ bool ts_lexer__eof(const TSLexer *_self)
static bool ts_lexer__eof(const TSLexer *_self)
{
Lexer *self = (Lexer *)_self;
return self->current_included_range_index == self->included_range_count;
@ -31,7 +33,7 @@ static const TSRange DEFAULT_RANGE = {.start_point =
// Clear the currently stored chunk of source code, because the lexer's
// position has changed.
/*R static R*/ void ts_lexer__clear_chunk(Lexer *self)
static void ts_lexer__clear_chunk(Lexer *self)
{
self->chunk = NULL;
self->chunk_size = 0;
@ -40,7 +42,7 @@ static const TSRange DEFAULT_RANGE = {.start_point =
// Call the lexer's input callback to obtain a new chunk of source code
// for the current position.
/*R static R*/ void ts_lexer__get_chunk(Lexer *self)
static void ts_lexer__get_chunk(Lexer *self)
{
self->chunk_start = self->current_position.bytes;
self->chunk = self->input.read(self->input.payload, self->current_position.bytes, self->current_position.extent, &self->chunk_size);
@ -54,7 +56,7 @@ static const TSRange DEFAULT_RANGE = {.start_point =
// Decode the next unicode character in the current chunk of source code.
// This assumes that the lexer has already retrieved a chunk of source
// code that spans the current position.
/*R static R*/ void ts_lexer__get_lookahead(Lexer *self)
static void ts_lexer__get_lookahead(Lexer *self)
{
t_u32 position_in_chunk = self->current_position.bytes - self->chunk_start;
t_u32 size = self->chunk_size - position_in_chunk;
@ -87,7 +89,7 @@ static const TSRange DEFAULT_RANGE = {.start_point =
}
}
/*R static R*/ void ts_lexer_goto(Lexer *self, Length position)
static void ts_lexer_goto(Lexer *self, Length position)
{
self->current_position = position;
@ -143,7 +145,7 @@ static const TSRange DEFAULT_RANGE = {.start_point =
}
// Intended to be called only from functions that control logging.
/*R static R*/ void ts_lexer__do_advance(Lexer *self, bool skip)
static void ts_lexer__do_advance(Lexer *self, bool skip)
{
if (self->lookahead_size)
{
@ -202,17 +204,27 @@ static const TSRange DEFAULT_RANGE = {.start_point =
// Advance to the next character in the source code, retrieving a new
// chunk of source code if needed.
/*R static R*/ void ts_lexer__advance(TSLexer *_self, bool skip)
static void ts_lexer__advance(TSLexer *_self, bool skip)
{
Lexer *self = (Lexer *)_self;
if (!self->chunk)
return;
if (skip)
{
LOG("skip", self->data.lookahead)
}
else
{
LOG("consume", self->data.lookahead)
}
ts_lexer__do_advance(self, skip);
}
// Mark that a token match has completed. This can be called multiple
// times if a longer match is found later.
/*R static R*/ void ts_lexer__mark_end(TSLexer *_self)
static void ts_lexer__mark_end(TSLexer *_self)
{
Lexer *self = (Lexer *)_self;
if (!ts_lexer__eof(&self->data))
@ -234,7 +246,7 @@ static const TSRange DEFAULT_RANGE = {.start_point =
self->token_end_position = self->current_position;
}
/*R static R*/ t_u32 ts_lexer__get_column(TSLexer *_self)
static t_u32 ts_lexer__get_column(TSLexer *_self)
{
Lexer *self = (Lexer *)_self;
@ -268,7 +280,7 @@ static const TSRange DEFAULT_RANGE = {.start_point =
// Is the lexer at a boundary between two disjoint included ranges of
// source code? This is exposed as an API because some languages' external
// scanners need to perform custom actions at these boundaries.
/*R static R*/ bool ts_lexer__is_at_included_range_start(const TSLexer *_self)
static bool ts_lexer__is_at_included_range_start(const TSLexer *_self)
{
const Lexer *self = (const Lexer *)_self;
if (self->current_included_range_index < self->included_range_count)
@ -426,3 +438,5 @@ TSRange *ts_lexer_included_ranges(const Lexer *self, t_u32 *count)
*count = self->included_range_count;
return self->included_ranges;
}
#undef LOG

View file

@ -1,9 +1,9 @@
#include "me/types.h"
#include "parser/api.h"
#include "parser/language.h"
#include "parser/point.h"
#include "parser/subtree.h"
#include "parser/tree.h"
#include "parser/point.h"
#include "me/types.h"
typedef struct NodeChildIterator
{
@ -26,7 +26,7 @@ TSNode ts_node_new(const TSTree *tree, const Subtree *subtree, Length position,
};
}
/*R static inline R*/ TSNode ts_node__null(void)
static inline TSNode ts_node__null(void)
{
return ts_node_new(NULL, NULL, length_zero(), 0);
}
@ -43,19 +43,19 @@ TSPoint ts_node_start_point(TSNode self)
return (TSPoint){self.context[1], self.context[2]};
}
/*R static inline R*/ t_u32 ts_node__alias(const TSNode *self)
static inline t_u32 ts_node__alias(const TSNode *self)
{
return self->context[3];
}
/*R static inline R*/ Subtree ts_node__subtree(TSNode self)
static inline Subtree ts_node__subtree(TSNode self)
{
return *(const Subtree *)self.id;
}
// NodeChildIterator
/*R static inline R*/ NodeChildIterator ts_node_iterate_children(const TSNode *node)
static inline NodeChildIterator ts_node_iterate_children(const TSNode *node)
{
Subtree subtree = ts_node__subtree(*node);
if (ts_subtree_child_count(subtree) == 0)
@ -73,19 +73,17 @@ TSPoint ts_node_start_point(TSNode self)
};
}
/*R static inline R*/ bool ts_node_child_iterator_done(NodeChildIterator *self)
static inline bool ts_node_child_iterator_done(NodeChildIterator *self)
{
return self->child_index == self->parent.ptr->child_count;
}
/*R static inline R*/ bool ts_node_child_iterator_next(NodeChildIterator *self, TSNode *result)
static inline bool ts_node_child_iterator_next(NodeChildIterator *self, TSNode *result)
{
if (!self->parent.ptr || ts_node_child_iterator_done(self))
return false;
const Subtree *child = &ts_subtree_children(self->parent)[self->child_index];
TSSymbol alias_symbol = 0;
if (child == NULL)
return (false);
if (!ts_subtree_extra(*child))
{
if (self->alias_sequence)
@ -106,7 +104,7 @@ TSPoint ts_node_start_point(TSNode self)
// TSNode - private
/*R static inline R*/ bool ts_node__is_relevant(TSNode self, bool include_anonymous)
static inline bool ts_node__is_relevant(TSNode self, bool include_anonymous)
{
Subtree tree = ts_node__subtree(self);
if (include_anonymous)
@ -127,7 +125,7 @@ TSPoint ts_node_start_point(TSNode self)
}
}
/*R static inline R*/ t_u32 ts_node__relevant_child_count(TSNode self, bool include_anonymous)
static inline t_u32 ts_node__relevant_child_count(TSNode self, bool include_anonymous)
{
Subtree tree = ts_node__subtree(self);
if (ts_subtree_child_count(tree) > 0)
@ -147,7 +145,7 @@ TSPoint ts_node_start_point(TSNode self)
}
}
/*R static inline R*/ TSNode ts_node__child(TSNode self, t_u32 child_index, bool include_anonymous)
static inline TSNode ts_node__child(TSNode self, t_u32 child_index, bool include_anonymous)
{
TSNode result = self;
bool did_descend = true;
@ -188,7 +186,7 @@ TSPoint ts_node_start_point(TSNode self)
return ts_node__null();
}
/*R static R*/ bool ts_subtree_has_trailing_empty_descendant(Subtree self, Subtree other)
static bool ts_subtree_has_trailing_empty_descendant(Subtree self, Subtree other)
{
for (t_u32 i = ts_subtree_child_count(self) - 1; i + 1 > 0; i--)
{
@ -203,7 +201,7 @@ TSPoint ts_node_start_point(TSNode self)
return false;
}
/*R static inline R*/ TSNode ts_node__prev_sibling(TSNode self, bool include_anonymous)
static inline TSNode ts_node__prev_sibling(TSNode self, bool include_anonymous)
{
Subtree self_subtree = ts_node__subtree(self);
bool self_is_empty = ts_subtree_total_bytes(self_subtree) == 0;
@ -282,7 +280,7 @@ TSPoint ts_node_start_point(TSNode self)
return ts_node__null();
}
/*R static inline R*/ TSNode ts_node__next_sibling(TSNode self, bool include_anonymous)
static inline TSNode ts_node__next_sibling(TSNode self, bool include_anonymous)
{
t_u32 target_end_byte = ts_node_end_byte(self);
@ -353,7 +351,7 @@ TSPoint ts_node_start_point(TSNode self)
return ts_node__null();
}
/*R static inline R*/ TSNode ts_node__first_child_for_byte(TSNode self, t_u32 goal, bool include_anonymous)
static inline TSNode ts_node__first_child_for_byte(TSNode self, t_u32 goal, bool include_anonymous)
{
TSNode node = self;
bool did_descend = true;
@ -385,7 +383,7 @@ TSPoint ts_node_start_point(TSNode self)
return ts_node__null();
}
/*R static inline R*/ TSNode ts_node__descendant_for_byte_range(TSNode self, t_u32 range_start, t_u32 range_end, bool include_anonymous)
static inline TSNode ts_node__descendant_for_byte_range(TSNode self, t_u32 range_start, t_u32 range_end, bool include_anonymous)
{
TSNode node = self;
TSNode last_visible_node = self;
@ -426,7 +424,7 @@ TSPoint ts_node_start_point(TSNode self)
return last_visible_node;
}
/*R static inline R*/ TSNode ts_node__descendant_for_point_range(TSNode self, TSPoint range_start, TSPoint range_end, bool include_anonymous)
static inline TSNode ts_node__descendant_for_point_range(TSNode self, TSPoint range_start, TSPoint range_end, bool include_anonymous)
{
TSNode node = self;
TSNode last_visible_node = self;
@ -511,14 +509,12 @@ t_const_str ts_node_grammar_type(TSNode self)
return ts_language_symbol_name(self.tree->language, symbol);
}
/*
char *ts_node_string(TSNode self)
{
TSSymbol alias_symbol = ts_node__alias(&self);
return ts_subtree_string(ts_node__subtree(self), alias_symbol, ts_language_symbol_metadata(self.tree->language, alias_symbol).visible,
self.tree->language, false);
}
*/
bool ts_node_eq(TSNode self, TSNode other)
{
@ -717,7 +713,7 @@ recur:
return ts_node__null();
}
/*R static inline R*/ t_const_str ts_node__field_name_from_language(TSNode self, t_u32 structural_child_index)
static inline t_const_str ts_node__field_name_from_language(TSNode self, t_u32 structural_child_index)
{
const TSFieldMapEntry *field_map, *field_map_end;
ts_language_field_map(self.tree->language, ts_node__subtree(self).ptr->production_id, &field_map, &field_map_end);
@ -807,9 +803,84 @@ t_u32 ts_node_named_child_count(TSNode self)
{
Subtree tree = ts_node__subtree(self);
if (ts_subtree_child_count(tree) > 0)
{
return tree.ptr->named_child_count;
}
else
{
return 0;
}
}
TSNode ts_node_next_sibling(TSNode self)
{
return ts_node__next_sibling(self, true);
}
TSNode ts_node_next_named_sibling(TSNode self)
{
return ts_node__next_sibling(self, false);
}
TSNode ts_node_prev_sibling(TSNode self)
{
return ts_node__prev_sibling(self, true);
}
TSNode ts_node_prev_named_sibling(TSNode self)
{
return ts_node__prev_sibling(self, false);
}
TSNode ts_node_first_child_for_byte(TSNode self, t_u32 byte)
{
return ts_node__first_child_for_byte(self, byte, true);
}
TSNode ts_node_first_named_child_for_byte(TSNode self, t_u32 byte)
{
return ts_node__first_child_for_byte(self, byte, false);
}
TSNode ts_node_descendant_for_byte_range(TSNode self, t_u32 start, t_u32 end)
{
return ts_node__descendant_for_byte_range(self, start, end, true);
}
TSNode ts_node_named_descendant_for_byte_range(TSNode self, t_u32 start, t_u32 end)
{
return ts_node__descendant_for_byte_range(self, start, end, false);
}
TSNode ts_node_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end)
{
return ts_node__descendant_for_point_range(self, start, end, true);
}
TSNode ts_node_named_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end)
{
return ts_node__descendant_for_point_range(self, start, end, false);
}
void ts_node_edit(TSNode *self, const TSInputEdit *edit)
{
t_u32 start_byte = ts_node_start_byte(*self);
TSPoint start_point = ts_node_start_point(*self);
if (start_byte >= edit->old_end_byte)
{
start_byte = edit->new_end_byte + (start_byte - edit->old_end_byte);
start_point = point_add(edit->new_end_point, point_sub(start_point, edit->old_end_point));
}
else if (start_byte > edit->start_byte)
{
start_byte = edit->new_end_byte;
start_point = edit->new_end_point;
}
self->context[0] = start_byte;
self->context[1] = start_point.row;
self->context[2] = start_point.column;
}
TSSymbol ts_node_field_id_for_child(TSNode self, t_u32 child_index)

View file

@ -1,7 +1,5 @@
#define _POSIX_C_SOURCE 200112L
#include "me/mem/mem.h"
#include "me/types.h"
#include "parser/api.h"
#include "parser/array.h"
#include "parser/language.h"
@ -11,6 +9,8 @@
#include "parser/stack.h"
#include "parser/subtree.h"
#include "parser/tree.h"
#include "me/mem/mem.h"
#include "me/types.h"
#include <assert.h>
#include <stdio.h>
@ -40,6 +40,7 @@ struct TSParser
{
Lexer lexer;
Stack *stack;
SubtreePool tree_pool;
const TSLanguage *language;
ReduceActionSet reduce_actions;
Subtree finished_tree;
@ -81,7 +82,7 @@ typedef struct TSStringInput
// StringInput
/*R static R*/ const t_u8 *ts_string_input_read(void *_self, t_u32 byte, TSPoint point, t_u32 *length)
static const t_u8 *ts_string_input_read(void *_self, t_u32 byte, TSPoint point, t_u32 *length)
{
(void)point;
TSStringInput *self = (TSStringInput *)_self;
@ -98,8 +99,28 @@ typedef struct TSStringInput
}
// Parser - Private
/*
static void ts_parser__log(TSParser *self)
{
if (self->lexer.logger.log)
{
self->lexer.logger.log(self->lexer.logger.payload, TSLogTypeParse, self->lexer.debug_buffer);
}
/*R static R*/ bool ts_parser__breakdown_top_of_stack(TSParser *self, StackVersion version)
if (self->dot_graph_file)
{
fprintf(self->dot_graph_file, "graph {\nlabel=\"");
for (char *chr = &self->lexer.debug_buffer[0]; *chr != 0; chr++)
{
if (*chr == '"' || *chr == '\\')
fputc('\\', self->dot_graph_file);
fputc(*chr, self->dot_graph_file);
}
fprintf(self->dot_graph_file, "\"\n}\n\n");
}
}
*/
static bool ts_parser__breakdown_top_of_stack(TSParser *self, StackVersion version)
{
bool did_break_down = false;
bool pending = false;
@ -142,7 +163,7 @@ typedef struct TSStringInput
ts_stack_push(self->stack, slice.version, tree, false, state);
}
ts_subtree_release(parent);
ts_subtree_release(&self->tree_pool, parent);
array_delete(&slice.subtrees);
LOG("breakdown_top_of_stack tree:%s", TREE_NAME(parent));
@ -153,7 +174,7 @@ typedef struct TSStringInput
return did_break_down;
}
/*R static R*/ ErrorComparison ts_parser__compare_versions(TSParser *self, ErrorStatus a, ErrorStatus b)
static ErrorComparison ts_parser__compare_versions(TSParser *self, ErrorStatus a, ErrorStatus b)
{
(void)self;
if (!a.is_in_error && b.is_in_error)
@ -211,7 +232,7 @@ typedef struct TSStringInput
return ErrorComparisonNone;
}
/*R static R*/ ErrorStatus ts_parser__version_status(TSParser *self, StackVersion version)
static ErrorStatus ts_parser__version_status(TSParser *self, StackVersion version)
{
t_u32 cost = ts_stack_error_cost(self->stack, version);
bool is_paused = ts_stack_is_paused(self->stack, version);
@ -223,7 +244,7 @@ typedef struct TSStringInput
.is_in_error = is_paused || ts_stack_state(self->stack, version) == ERROR_STATE};
}
/*R static R*/ bool ts_parser__better_version_exists(TSParser *self, StackVersion version, bool is_in_error, t_u32 cost)
static bool ts_parser__better_version_exists(TSParser *self, StackVersion version, bool is_in_error, t_u32 cost)
{
if (self->finished_tree.ptr && ts_subtree_error_cost(self->finished_tree) <= cost)
{
@ -259,19 +280,19 @@ typedef struct TSStringInput
return false;
}
/*R static R*/ bool ts_parser__call_main_lex_fn(TSParser *self, TSLexMode lex_mode)
static bool ts_parser__call_main_lex_fn(TSParser *self, TSLexMode lex_mode)
{
return self->language->lex_fn(&self->lexer.data, lex_mode.lex_state);
}
/*R static R*/ bool ts_parser__call_keyword_lex_fn(TSParser *self, TSLexMode lex_mode)
static bool ts_parser__call_keyword_lex_fn(TSParser *self, TSLexMode lex_mode)
{
(void)(lex_mode);
return self->language->keyword_lex_fn(&self->lexer.data, 0);
}
/*R static R*/ void ts_parser__external_scanner_create(TSParser *self)
static void ts_parser__external_scanner_create(TSParser *self)
{
if (self->language && self->language->external_scanner.states)
{
@ -283,7 +304,7 @@ typedef struct TSStringInput
}
}
/*R static R*/ void ts_parser__external_scanner_destroy(TSParser *self)
static void ts_parser__external_scanner_destroy(TSParser *self)
{
if (self->language && self->external_scanner_payload && self->language->external_scanner.destroy)
{
@ -292,7 +313,7 @@ typedef struct TSStringInput
self->external_scanner_payload = NULL;
}
/*R static R*/ t_u32 ts_parser__external_scanner_serialize(TSParser *self)
static t_u32 ts_parser__external_scanner_serialize(TSParser *self)
{
t_u32 length = self->language->external_scanner.serialize(self->external_scanner_payload, self->lexer.debug_buffer);
@ -300,7 +321,7 @@ typedef struct TSStringInput
return length;
}
/*R static R*/ void ts_parser__external_scanner_deserialize(TSParser *self, Subtree external_token)
static void ts_parser__external_scanner_deserialize(TSParser *self, Subtree external_token)
{
const t_u8 *data = NULL;
t_u32 length = 0;
@ -313,13 +334,13 @@ typedef struct TSStringInput
self->language->external_scanner.deserialize(self->external_scanner_payload, data, length);
}
/*R static R*/ bool ts_parser__external_scanner_scan(TSParser *self, TSStateId external_lex_state)
static bool ts_parser__external_scanner_scan(TSParser *self, TSStateId external_lex_state)
{
const bool *valid_external_tokens = ts_language_enabled_external_tokens(self->language, external_lex_state);
return self->language->external_scanner.scan(self->external_scanner_payload, &self->lexer.data, valid_external_tokens);
}
/*R static R*/ bool ts_parser__can_reuse_first_leaf(TSParser *self, TSStateId state, Subtree tree, TableEntry *table_entry)
static bool ts_parser__can_reuse_first_leaf(TSParser *self, TSStateId state, Subtree tree, TableEntry *table_entry)
{
TSLexMode current_lex_mode = self->language->lex_modes[state];
TSSymbol leaf_symbol = ts_subtree_leaf_symbol(tree);
@ -347,7 +368,7 @@ typedef struct TSStringInput
return current_lex_mode.external_lex_state == 0 && table_entry->is_reusable;
}
/*R static R*/ Subtree ts_parser__lex(TSParser *self, StackVersion version, TSStateId parse_state)
static Subtree ts_parser__lex(TSParser *self, StackVersion version, TSStateId parse_state)
{
TSLexMode lex_mode = self->language->lex_modes[parse_state];
if (lex_mode.lex_state == (t_u16)-1)
@ -466,7 +487,7 @@ typedef struct TSStringInput
Length padding = length_sub(error_start_position, start_position);
Length size = length_sub(error_end_position, error_start_position);
t_u32 lookahead_bytes = lookahead_end_byte - error_end_position.bytes;
result = ts_subtree_new_error(first_error_character, padding, size, lookahead_bytes, parse_state, self->language);
result = ts_subtree_new_error(&self->tree_pool, first_error_character, padding, size, lookahead_bytes, parse_state, self->language);
}
else
{
@ -495,8 +516,8 @@ typedef struct TSStringInput
}
}
result = ts_subtree_new_leaf(symbol, padding, size, lookahead_bytes, parse_state, found_external_token, called_get_column,
is_keyword, self->language);
result = ts_subtree_new_leaf(&self->tree_pool, symbol, padding, size, lookahead_bytes, parse_state, found_external_token,
called_get_column, is_keyword, self->language);
if (found_external_token)
{
@ -510,8 +531,8 @@ typedef struct TSStringInput
return result;
}
/*R static R*/ Subtree ts_parser__get_cached_token(TSParser *self, TSStateId state, size_t position, Subtree last_external_token,
TableEntry *table_entry)
static Subtree ts_parser__get_cached_token(TSParser *self, TSStateId state, size_t position, Subtree last_external_token,
TableEntry *table_entry)
{
TokenCache *cache = &self->token_cache;
if (cache->token.ptr && cache->byte_index == position &&
@ -527,7 +548,7 @@ typedef struct TSStringInput
return NULL_SUBTREE;
}
/*R static R*/ void ts_parser__set_cached_token(TSParser *self, t_u32 byte_index, Subtree last_external_token, Subtree token)
static void ts_parser__set_cached_token(TSParser *self, t_u32 byte_index, Subtree last_external_token, Subtree token)
{
TokenCache *cache = &self->token_cache;
if (token.ptr)
@ -535,9 +556,9 @@ typedef struct TSStringInput
if (last_external_token.ptr)
ts_subtree_retain(last_external_token);
if (cache->token.ptr)
ts_subtree_release(cache->token);
ts_subtree_release(&self->tree_pool, cache->token);
if (cache->last_external_token.ptr)
ts_subtree_release(cache->last_external_token);
ts_subtree_release(&self->tree_pool, cache->last_external_token);
cache->token = token;
cache->byte_index = byte_index;
cache->last_external_token = last_external_token;
@ -547,9 +568,8 @@ typedef struct TSStringInput
//
// The decision is based on the trees' error costs (if any), their dynamic precedence,
// and finally, as a default, by a recursive comparison of the trees' symbols.
/*R static R*/ bool ts_parser__select_tree(TSParser *self, Subtree left, Subtree right)
static bool ts_parser__select_tree(TSParser *self, Subtree left, Subtree right)
{
(void)(self);
if (!left.ptr)
return true;
if (!right.ptr)
@ -584,7 +604,7 @@ typedef struct TSStringInput
if (ts_subtree_error_cost(left) > 0)
return true;
int comparison = ts_subtree_compare(left, right);
int comparison = ts_subtree_compare(left, right, &self->tree_pool);
switch (comparison)
{
case -1:
@ -602,7 +622,7 @@ typedef struct TSStringInput
// Determine if a given tree's children should be replaced by an alternative
// array of children.
/*R static R*/ bool ts_parser__select_children(TSParser *self, Subtree left, const SubtreeArray *children)
static bool ts_parser__select_children(TSParser *self, Subtree left, const SubtreeArray *children)
{
array_assign(&self->scratch_trees, children);
@ -615,13 +635,13 @@ typedef struct TSStringInput
return ts_parser__select_tree(self, left, ts_subtree_from_mut(scratch_tree));
}
/*R static R*/ void ts_parser__shift(TSParser *self, StackVersion version, TSStateId state, Subtree lookahead, bool extra)
static void ts_parser__shift(TSParser *self, StackVersion version, TSStateId state, Subtree lookahead, bool extra)
{
bool is_leaf = ts_subtree_child_count(lookahead) == 0;
Subtree subtree_to_push = lookahead;
if (extra != ts_subtree_extra(lookahead) && is_leaf)
{
MutableSubtree result = ts_subtree_make_mut(lookahead);
MutableSubtree result = ts_subtree_make_mut(&self->tree_pool, lookahead);
ts_subtree_set_extra(&result, extra);
subtree_to_push = ts_subtree_from_mut(result);
}
@ -633,8 +653,8 @@ typedef struct TSStringInput
}
}
/*R static R*/ StackVersion ts_parser__reduce(TSParser *self, StackVersion version, TSSymbol symbol, t_u32 count, int dynamic_precedence,
t_u16 production_id, bool is_fragile, bool end_of_non_terminal_extra)
static StackVersion ts_parser__reduce(TSParser *self, StackVersion version, TSSymbol symbol, t_u32 count, int dynamic_precedence,
t_u16 production_id, bool is_fragile, bool end_of_non_terminal_extra)
{
t_u32 initial_version_count = ts_stack_version_count(self->stack);
@ -657,14 +677,14 @@ typedef struct TSStringInput
if (slice_version > MAX_VERSION_COUNT + MAX_VERSION_COUNT_OVERFLOW)
{
ts_stack_remove_version(self->stack, slice_version);
ts_subtree_array_delete(&slice.subtrees);
ts_subtree_array_delete(&self->tree_pool, &slice.subtrees);
removed_version_count++;
while (i + 1 < pop.size)
{
StackSlice next_slice = pop.contents[i + 1];
if (next_slice.version != slice.version)
break;
ts_subtree_array_delete(&next_slice.subtrees);
ts_subtree_array_delete(&self->tree_pool, &next_slice.subtrees);
i++;
}
continue;
@ -694,15 +714,15 @@ typedef struct TSStringInput
if (ts_parser__select_children(self, ts_subtree_from_mut(parent), &next_slice_children))
{
ts_subtree_array_clear(&self->trailing_extras);
ts_subtree_release(ts_subtree_from_mut(parent));
ts_subtree_array_clear(&self->tree_pool, &self->trailing_extras);
ts_subtree_release(&self->tree_pool, ts_subtree_from_mut(parent));
array_swap(&self->trailing_extras, &self->trailing_extras2);
parent = ts_subtree_new_node(symbol, &next_slice_children, production_id, self->language);
}
else
{
array_clear(&self->trailing_extras2);
ts_subtree_array_delete(&next_slice.subtrees);
ts_subtree_array_delete(&self->tree_pool, &next_slice.subtrees);
}
}
@ -748,7 +768,7 @@ typedef struct TSStringInput
return ts_stack_version_count(self->stack) > initial_version_count ? initial_version_count : STACK_VERSION_NONE;
}
/*R static R*/ void ts_parser__accept(TSParser *self, StackVersion version, Subtree lookahead)
static void ts_parser__accept(TSParser *self, StackVersion version, Subtree lookahead)
{
assert(ts_subtree_is_eof(lookahead));
ts_stack_push(self->stack, version, lookahead, false, 1);
@ -764,6 +784,7 @@ typedef struct TSStringInput
Subtree tree = trees.contents[j];
if (!ts_subtree_extra(tree))
{
assert(!tree.data.is_inline);
t_u32 child_count = ts_subtree_child_count(tree);
const Subtree *children = ts_subtree_children(tree);
for (t_u32 k = 0; k < child_count; k++)
@ -772,7 +793,7 @@ typedef struct TSStringInput
}
array_splice(&trees, j, 1, child_count, children);
root = ts_subtree_from_mut(ts_subtree_new_node(ts_subtree_symbol(tree), &trees, tree.ptr->production_id, self->language));
ts_subtree_release(tree);
ts_subtree_release(&self->tree_pool, tree);
break;
}
}
@ -784,12 +805,12 @@ typedef struct TSStringInput
{
if (ts_parser__select_tree(self, self->finished_tree, root))
{
ts_subtree_release(self->finished_tree);
ts_subtree_release(&self->tree_pool, self->finished_tree);
self->finished_tree = root;
}
else
{
ts_subtree_release(root);
ts_subtree_release(&self->tree_pool, root);
}
}
else
@ -802,7 +823,7 @@ typedef struct TSStringInput
ts_stack_halt(self->stack, version);
}
/*R static R*/ bool ts_parser__do_all_potential_reductions(TSParser *self, StackVersion starting_version, TSSymbol lookahead_symbol)
static bool ts_parser__do_all_potential_reductions(TSParser *self, StackVersion starting_version, TSSymbol lookahead_symbol)
{
t_u32 initial_version_count = ts_stack_version_count(self->stack);
@ -907,7 +928,7 @@ typedef struct TSStringInput
return can_shift_lookahead_symbol;
}
/*R static R*/ bool ts_parser__recover_to_state(TSParser *self, StackVersion version, t_u32 depth, TSStateId goal_state)
static bool ts_parser__recover_to_state(TSParser *self, StackVersion version, t_u32 depth, TSStateId goal_state)
{
StackSliceArray pop = ts_stack_pop_count(self->stack, version, depth);
StackVersion previous_version = STACK_VERSION_NONE;
@ -918,7 +939,7 @@ typedef struct TSStringInput
if (slice.version == previous_version)
{
ts_subtree_array_delete(&slice.subtrees);
ts_subtree_array_delete(&self->tree_pool, &slice.subtrees);
array_erase(&pop, i--);
continue;
}
@ -926,7 +947,7 @@ typedef struct TSStringInput
if (ts_stack_state(self->stack, slice.version) != goal_state)
{
ts_stack_halt(self->stack, slice.version);
ts_subtree_array_delete(&slice.subtrees);
ts_subtree_array_delete(&self->tree_pool, &slice.subtrees);
array_erase(&pop, i--);
continue;
}
@ -945,7 +966,7 @@ typedef struct TSStringInput
ts_subtree_retain(slice.subtrees.contents[j]);
}
}
ts_subtree_array_delete(&error_trees);
ts_subtree_array_delete(&self->tree_pool, &error_trees);
}
ts_subtree_array_remove_trailing_extras(&slice.subtrees, &self->trailing_extras);
@ -972,7 +993,7 @@ typedef struct TSStringInput
return previous_version != STACK_VERSION_NONE;
}
/*R static R*/ void ts_parser__recover(TSParser *self, StackVersion version, Subtree lookahead)
static void ts_parser__recover(TSParser *self, StackVersion version, Subtree lookahead)
{
bool did_recover = false;
t_u32 previous_version_count = ts_stack_version_count(self->stack);
@ -1060,14 +1081,14 @@ typedef struct TSStringInput
if (did_recover && ts_stack_version_count(self->stack) > MAX_VERSION_COUNT)
{
ts_stack_halt(self->stack, version);
ts_subtree_release(lookahead);
ts_subtree_release(&self->tree_pool, lookahead);
return;
}
if (did_recover && ts_subtree_has_external_scanner_state_change(lookahead))
{
ts_stack_halt(self->stack, version);
ts_subtree_release(lookahead);
ts_subtree_release(&self->tree_pool, lookahead);
return;
}
@ -1089,7 +1110,7 @@ typedef struct TSStringInput
if (ts_parser__better_version_exists(self, version, false, new_cost))
{
ts_stack_halt(self->stack, version);
ts_subtree_release(lookahead);
ts_subtree_release(&self->tree_pool, lookahead);
return;
}
@ -1099,7 +1120,7 @@ typedef struct TSStringInput
const TSParseAction *actions = ts_language_actions(self->language, 1, ts_subtree_symbol(lookahead), &n);
if (n > 0 && actions[n - 1].type == TSParseActionTypeShift && actions[n - 1].shift.extra)
{
MutableSubtree mutable_lookahead = ts_subtree_make_mut(lookahead);
MutableSubtree mutable_lookahead = ts_subtree_make_mut(&self->tree_pool, lookahead);
ts_subtree_set_extra(&mutable_lookahead, true);
lookahead = ts_subtree_from_mut(mutable_lookahead);
}
@ -1126,7 +1147,7 @@ typedef struct TSStringInput
{
for (t_u32 i = 1; i < pop.size; i++)
{
ts_subtree_array_delete(&pop.contents[i].subtrees);
ts_subtree_array_delete(&self->tree_pool, &pop.contents[i].subtrees);
}
while (ts_stack_version_count(self->stack) > pop.contents[0].version + 1)
{
@ -1147,7 +1168,7 @@ typedef struct TSStringInput
}
}
/*R static R*/ void ts_parser__handle_error(TSParser *self, StackVersion version, Subtree lookahead)
static void ts_parser__handle_error(TSParser *self, StackVersion version, Subtree lookahead)
{
t_u32 previous_version_count = ts_stack_version_count(self->stack);
@ -1185,7 +1206,8 @@ typedef struct TSStringInput
t_u32 lookahead_bytes = ts_subtree_total_bytes(lookahead) + ts_subtree_lookahead_bytes(lookahead);
StackVersion version_with_missing_tree = ts_stack_copy_version(self->stack, v);
Subtree missing_tree = ts_subtree_new_missing_leaf(missing_symbol, padding, lookahead_bytes, self->language);
Subtree missing_tree =
ts_subtree_new_missing_leaf(&self->tree_pool, missing_symbol, padding, lookahead_bytes, self->language);
ts_stack_push(self->stack, version_with_missing_tree, missing_tree, false, state_after_missing_symbol);
if (ts_parser__do_all_potential_reductions(self, version_with_missing_tree, ts_subtree_leaf_symbol(lookahead)))
@ -1222,7 +1244,7 @@ typedef struct TSStringInput
LOG_STACK();
}
/*R static R*/ bool ts_parser__advance(TSParser *self, StackVersion version, bool allow_node_reuse)
static bool ts_parser__advance(TSParser *self, StackVersion version, bool allow_node_reuse)
{
(void)(allow_node_reuse);
TSStateId state = ts_stack_state(self->stack, version);
@ -1275,7 +1297,7 @@ typedef struct TSStringInput
{
if (lookahead.ptr)
{
ts_subtree_release(lookahead);
ts_subtree_release(&self->tree_pool, lookahead);
}
return false;
}
@ -1391,7 +1413,7 @@ typedef struct TSStringInput
{
LOG("switch from_keyword:%s, to_word_token:%s", TREE_NAME(lookahead), SYM_NAME(self->language->keyword_capture_token));
MutableSubtree mutable_lookahead = ts_subtree_make_mut(lookahead);
MutableSubtree mutable_lookahead = ts_subtree_make_mut(&self->tree_pool, lookahead);
ts_subtree_set_symbol(&mutable_lookahead, self->language->keyword_capture_token, self->language);
lookahead = ts_subtree_from_mut(mutable_lookahead);
continue;
@ -1415,7 +1437,7 @@ typedef struct TSStringInput
if (ts_parser__breakdown_top_of_stack(self, version))
{
state = ts_stack_state(self->stack, version);
ts_subtree_release(lookahead);
ts_subtree_release(&self->tree_pool, lookahead);
needs_lex = true;
continue;
}
@ -1431,7 +1453,7 @@ typedef struct TSStringInput
}
}
/*R static R*/ t_u32 ts_parser__condense_stack(TSParser *self)
static t_u32 ts_parser__condense_stack(TSParser *self)
{
bool made_changes = false;
t_u32 min_error_cost = UINT_MAX;
@ -1551,7 +1573,7 @@ typedef struct TSStringInput
return min_error_cost;
}
/*R static R*/ bool ts_parser_has_outstanding_parse(TSParser *self)
static bool ts_parser_has_outstanding_parse(TSParser *self)
{
return (self->external_scanner_payload || ts_stack_state(self->stack, 0) != 1 || ts_stack_node_count_since_error(self->stack, 0) != 0);
}
@ -1564,7 +1586,8 @@ TSParser *ts_parser_new(void)
ts_lexer_init(&self->lexer);
array_init(&self->reduce_actions);
array_reserve(&self->reduce_actions, 4);
self->stack = ts_stack_new();
self->tree_pool = ts_subtree_pool_new(32);
self->stack = ts_stack_new(&self->tree_pool);
self->finished_tree = NULL_SUBTREE;
self->cancellation_flag = NULL;
self->language = NULL;
@ -1590,11 +1613,12 @@ void ts_parser_delete(TSParser *self)
}
if (self->old_tree.ptr)
{
ts_subtree_release(self->old_tree);
ts_subtree_release(&self->tree_pool, self->old_tree);
self->old_tree = NULL_SUBTREE;
}
ts_lexer_delete(&self->lexer);
ts_parser__set_cached_token(self, 0, NULL_SUBTREE, NULL_SUBTREE);
ts_subtree_pool_delete(&self->tree_pool);
array_delete(&self->trailing_extras);
array_delete(&self->trailing_extras2);
array_delete(&self->scratch_trees);
@ -1627,7 +1651,7 @@ void ts_parser_reset(TSParser *self)
ts_parser__external_scanner_destroy(self);
if (self->old_tree.ptr)
{
ts_subtree_release(self->old_tree);
ts_subtree_release(&self->tree_pool, self->old_tree);
self->old_tree = NULL_SUBTREE;
}
@ -1636,7 +1660,7 @@ void ts_parser_reset(TSParser *self)
ts_parser__set_cached_token(self, 0, NULL_SUBTREE, NULL_SUBTREE);
if (self->finished_tree.ptr)
{
ts_subtree_release(self->finished_tree);
ts_subtree_release(&self->tree_pool, self->finished_tree);
self->finished_tree = NULL_SUBTREE;
}
self->accept_count = 0;
@ -1715,7 +1739,7 @@ TSTree *ts_parser_parse(TSParser *self, const TSTree *old_tree, TSInput input)
} while (version_count != 0);
assert(self->finished_tree.ptr);
ts_subtree_balance(self->finished_tree, self->language);
ts_subtree_balance(self->finished_tree, &self->tree_pool, self->language);
LOG("done");
LOG_TREE(self->finished_tree);

View file

@ -57,22 +57,22 @@ typedef struct Scanner
Array(Heredoc) heredocs;
} Scanner;
/*R static inline R*/ void advance(TSLexer *lexer)
static inline void advance(TSLexer *lexer)
{
lexer->advance(lexer, false);
}
/*R static inline R*/ void skip(TSLexer *lexer)
static inline void skip(TSLexer *lexer)
{
lexer->advance(lexer, true);
}
/*R static inline R*/ bool in_error_recovery(const bool *valid_symbols)
static inline bool in_error_recovery(const bool *valid_symbols)
{
return valid_symbols[ERROR_RECOVERY];
}
/*R static inline R*/ void reset_string(String *string)
static inline void reset_string(String *string)
{
if (string->size > 0)
{
@ -81,7 +81,7 @@ typedef struct Scanner
}
}
/*R static inline R*/ void reset_heredoc(Heredoc *heredoc)
static inline void reset_heredoc(Heredoc *heredoc)
{
heredoc->is_raw = false;
heredoc->started = false;
@ -89,7 +89,7 @@ typedef struct Scanner
reset_string(&heredoc->delimiter);
}
/*R static inline R*/ void reset(Scanner *scanner)
static inline void reset(Scanner *scanner)
{
for (t_u32 i = 0; i < scanner->heredocs.size; i++)
{
@ -129,7 +129,7 @@ static t_u32 serialize(Scanner *scanner, t_u8 *buffer)
return size;
}
/*R static R*/ void deserialize(Scanner *scanner, const t_u8 *buffer, t_u32 length)
static void deserialize(Scanner *scanner, const t_u8 *buffer, t_u32 length)
{
if (length == 0)
{
@ -181,7 +181,7 @@ static t_u32 serialize(Scanner *scanner, t_u8 *buffer)
* POSIX-mandated substitution, and assumes the default value for
* IFS.
*/
/*R static R*/ bool advance_word(TSLexer *lexer, String *unquoted_word)
static bool advance_word(TSLexer *lexer, String *unquoted_word)
{
bool empty = true;
t_i32 quote = 0;
@ -213,7 +213,7 @@ static t_u32 serialize(Scanner *scanner, t_u8 *buffer)
return !empty;
}
/*R static inline R*/ bool scan_bare_dollar(TSLexer *lexer)
static inline bool scan_bare_dollar(TSLexer *lexer)
{
while (iswspace(lexer->lookahead) && lexer->lookahead != '\n' && !lexer->eof(lexer))
skip(lexer);
@ -229,7 +229,7 @@ static t_u32 serialize(Scanner *scanner, t_u8 *buffer)
return false;
}
/*R static R*/ bool scan_heredoc_start(Heredoc *heredoc, TSLexer *lexer)
static bool scan_heredoc_start(Heredoc *heredoc, TSLexer *lexer)
{
while (iswspace(lexer->lookahead))
{
@ -248,7 +248,7 @@ static t_u32 serialize(Scanner *scanner, t_u8 *buffer)
return found_delimiter;
}
/*R static R*/ bool scan_heredoc_end_identifier(Heredoc *heredoc, TSLexer *lexer)
static bool scan_heredoc_end_identifier(Heredoc *heredoc, TSLexer *lexer)
{
reset_string(&heredoc->current_leading_word);
// Scan the first 'n' characters on this line, to see if they match the
@ -268,7 +268,7 @@ static t_u32 serialize(Scanner *scanner, t_u8 *buffer)
return heredoc->delimiter.size == 0 ? false : strcmp(heredoc->current_leading_word.contents, heredoc->delimiter.contents) == 0;
}
/*R static R*/ bool scan_heredoc_content(Scanner *scanner, TSLexer *lexer, enum TokenType middle_type, enum TokenType end_type)
static bool scan_heredoc_content(Scanner *scanner, TSLexer *lexer, enum TokenType middle_type, enum TokenType end_type)
{
bool did_advance = false;
Heredoc *heredoc = array_back(&scanner->heredocs);
@ -394,7 +394,7 @@ static t_u32 serialize(Scanner *scanner, t_u8 *buffer)
}
}
/*R static R*/ bool scan(Scanner *scanner, TSLexer *lexer, const bool *valid_symbols)
static bool scan(Scanner *scanner, TSLexer *lexer, const bool *valid_symbols)
{
if (valid_symbols[CONCAT] && !in_error_recovery(valid_symbols))
{

View file

@ -1,11 +1,11 @@
#include "parser/stack.h"
#include "me/mem/mem.h"
#include "me/types.h"
#include "parser/array.h"
#include "parser/language.h"
#include "parser/length.h"
#include "parser/subtree.h"
#include "me/mem/mem.h"
#include "me/types.h"
#include <assert.h>
#include <stdio.h>
@ -24,14 +24,14 @@ typedef struct StackLink
struct StackNode
{
TSStateId state;
Length position;
StackLink links[MAX_LINK_COUNT];
t_u16 link_count;
t_u32 ref_count;
t_u32 error_cost;
t_u32 node_count;
int dynamic_precedence;
TSStateId state;
Length position;
StackLink links[MAX_LINK_COUNT];
t_u16 link_count;
t_u32 ref_count;
t_u32 error_cost;
t_u32 node_count;
int dynamic_precedence;
};
typedef struct StackIterator
@ -55,7 +55,7 @@ typedef struct StackHead
{
StackNode *node;
StackSummary *summary;
t_u32 node_count_at_last_error;
t_u32 node_count_at_last_error;
Subtree last_external_token;
Subtree lookahead_when_paused;
StackStatus status;
@ -66,7 +66,9 @@ struct Stack
Array(StackHead) heads;
StackSliceArray slices;
Array(StackIterator) iterators;
StackNode *base_node;
StackNodeArray node_pool;
StackNode *base_node;
SubtreePool *subtree_pool;
};
typedef t_u32 StackAction;
@ -79,7 +81,7 @@ enum StackAction
typedef StackAction (*StackCallback)(void *, const StackIterator *);
/*R static R*/ void stack_node_retain(StackNode *self)
static void stack_node_retain(StackNode *self)
{
if (!self)
return;
@ -88,7 +90,7 @@ typedef StackAction (*StackCallback)(void *, const StackIterator *);
assert(self->ref_count != 0);
}
/*R static R*/ void stack_node_release(StackNode *self)
static void stack_node_release(StackNode *self, StackNodeArray *pool, SubtreePool *subtree_pool)
{
recur:
assert(self->ref_count != 0);
@ -103,15 +105,24 @@ recur:
{
StackLink link = self->links[i];
if (link.subtree.ptr)
ts_subtree_release(link.subtree);
stack_node_release(link.node);
ts_subtree_release(subtree_pool, link.subtree);
stack_node_release(link.node, pool, subtree_pool);
}
StackLink link = self->links[0];
if (link.subtree.ptr)
ts_subtree_release(link.subtree);
ts_subtree_release(subtree_pool, link.subtree);
first_predecessor = self->links[0].node;
}
mem_free(self);
if (pool->size < MAX_NODE_POOL_SIZE)
{
array_push(pool, self);
}
else
{
mem_free(self);
}
if (first_predecessor)
{
self = first_predecessor;
@ -121,7 +132,7 @@ recur:
/// Get the number of nodes in the subtree, for the purpose of measuring
/// how much progress has been made by a given version of the stack.
/*R static R*/ t_u32 stack__subtree_node_count(Subtree subtree)
static t_u32 stack__subtree_node_count(Subtree subtree)
{
t_u32 count = ts_subtree_visible_descendant_count(subtree);
if (ts_subtree_visible(subtree))
@ -136,9 +147,9 @@ recur:
return count;
}
/*R static R*/ StackNode *stack_node_new(StackNode *previous_node, Subtree subtree, bool is_pending, TSStateId state)
static StackNode *stack_node_new(StackNode *previous_node, Subtree subtree, bool is_pending, TSStateId state, StackNodeArray *pool)
{
StackNode *node = mem_alloc(sizeof(*node));
StackNode *node = pool->size > 0 ? array_pop(pool) : mem_alloc(sizeof(StackNode));
*node = (StackNode){.ref_count = 1, .link_count = 0, .state = state};
if (previous_node)
@ -172,7 +183,7 @@ recur:
return node;
}
/*R static R*/ bool stack__subtree_is_equivalent(Subtree left, Subtree right)
static bool stack__subtree_is_equivalent(Subtree left, Subtree right)
{
if (left.ptr == right.ptr)
return true;
@ -192,7 +203,7 @@ recur:
ts_subtree_extra(left) == ts_subtree_extra(right) && ts_subtree_external_scanner_state_eq(left, right));
}
/*R static R*/ void stack_node_add_link(StackNode *self, StackLink link)
static void stack_node_add_link(StackNode *self, StackLink link, SubtreePool *subtree_pool)
{
if (link.node == self)
return;
@ -211,7 +222,7 @@ recur:
if (ts_subtree_dynamic_precedence(link.subtree) > ts_subtree_dynamic_precedence(existing_link->subtree))
{
ts_subtree_retain(link.subtree);
ts_subtree_release(existing_link->subtree);
ts_subtree_release(subtree_pool, existing_link->subtree);
existing_link->subtree = link.subtree;
self->dynamic_precedence = link.node->dynamic_precedence + ts_subtree_dynamic_precedence(link.subtree);
}
@ -224,7 +235,7 @@ recur:
{
for (int j = 0; j < link.node->link_count; j++)
{
stack_node_add_link(existing_link->node, link.node->links[j]);
stack_node_add_link(existing_link->node, link.node->links[j], subtree_pool);
}
t_i32 dynamic_precedence = link.node->dynamic_precedence;
if (link.subtree.ptr)
@ -245,7 +256,7 @@ recur:
stack_node_retain(link.node);
t_u32 node_count = link.node->node_count;
int dynamic_precedence = link.node->dynamic_precedence;
int dynamic_precedence = link.node->dynamic_precedence;
self->links[self->link_count++] = link;
if (link.subtree.ptr)
@ -261,28 +272,28 @@ recur:
self->dynamic_precedence = dynamic_precedence;
}
/*R static R*/ void stack_head_delete(StackHead *self)
static void stack_head_delete(StackHead *self, StackNodeArray *pool, SubtreePool *subtree_pool)
{
if (self->node)
{
if (self->last_external_token.ptr)
{
ts_subtree_release(self->last_external_token);
ts_subtree_release(subtree_pool, self->last_external_token);
}
if (self->lookahead_when_paused.ptr)
{
ts_subtree_release(self->lookahead_when_paused);
ts_subtree_release(subtree_pool, self->lookahead_when_paused);
}
if (self->summary)
{
array_delete(self->summary);
mem_free(self->summary);
}
stack_node_release(self->node);
stack_node_release(self->node, pool, subtree_pool);
}
}
/*R static R*/ StackVersion ts_stack__add_version(Stack *self, StackVersion original_version, StackNode *node)
static StackVersion ts_stack__add_version(Stack *self, StackVersion original_version, StackNode *node)
{
StackHead head = {
.node = node,
@ -298,7 +309,7 @@ recur:
return (StackVersion)(self->heads.size - 1);
}
/*R static R*/ void ts_stack__add_slice(Stack *self, StackVersion original_version, StackNode *node, SubtreeArray *subtrees)
static void ts_stack__add_slice(Stack *self, StackVersion original_version, StackNode *node, SubtreeArray *subtrees)
{
for (t_u32 i = self->slices.size - 1; i + 1 > 0; i--)
{
@ -316,7 +327,7 @@ recur:
array_push(&self->slices, slice);
}
/*R static R*/ StackSliceArray stack__iter(Stack *self, StackVersion version, StackCallback callback, void *payload, int goal_subtree_count)
static StackSliceArray stack__iter(Stack *self, StackVersion version, StackCallback callback, void *payload, int goal_subtree_count)
{
array_clear(&self->slices);
array_clear(&self->iterators);
@ -364,7 +375,7 @@ recur:
{
if (!should_pop)
{
ts_subtree_array_delete(&iterator->subtrees);
ts_subtree_array_delete(self->subtree_pool, &iterator->subtrees);
}
array_erase(&self->iterators, i);
i--, size--;
@ -421,18 +432,21 @@ recur:
return self->slices;
}
Stack *ts_stack_new(void)
Stack *ts_stack_new(SubtreePool *subtree_pool)
{
Stack *self = mem_alloc(sizeof(*self));
Stack *self = mem_alloc_array(1, sizeof(Stack));
array_init(&self->heads);
array_init(&self->slices);
array_init(&self->iterators);
array_init(&self->node_pool);
array_reserve(&self->heads, 4);
array_reserve(&self->slices, 4);
array_reserve(&self->iterators, 4);
array_reserve(&self->node_pool, MAX_NODE_POOL_SIZE);
self->base_node = stack_node_new(NULL, NULL_SUBTREE, false, 1);
self->subtree_pool = subtree_pool;
self->base_node = stack_node_new(NULL, NULL_SUBTREE, false, 1, &self->node_pool);
ts_stack_clear(self);
return self;
@ -444,12 +458,18 @@ void ts_stack_delete(Stack *self)
array_delete(&self->slices);
if (self->iterators.contents)
array_delete(&self->iterators);
stack_node_release(self->base_node);
stack_node_release(self->base_node, &self->node_pool, self->subtree_pool);
for (t_u32 i = 0; i < self->heads.size; i++)
{
stack_head_delete(&self->heads.contents[i]);
stack_head_delete(&self->heads.contents[i], &self->node_pool, self->subtree_pool);
}
array_clear(&self->heads);
if (self->node_pool.contents)
{
for (t_u32 i = 0; i < self->node_pool.size; i++)
mem_free(self->node_pool.contents[i]);
array_delete(&self->node_pool);
}
array_delete(&self->heads);
mem_free(self);
}
@ -480,14 +500,14 @@ void ts_stack_set_last_external_token(Stack *self, StackVersion version, Subtree
if (token.ptr)
ts_subtree_retain(token);
if (head->last_external_token.ptr)
ts_subtree_release(head->last_external_token);
ts_subtree_release(self->subtree_pool, head->last_external_token);
head->last_external_token = token;
}
t_u32 ts_stack_error_cost(const Stack *self, StackVersion version)
{
StackHead *head = array_get(&self->heads, version);
t_u32 result = head->node->error_cost;
t_u32 result = head->node->error_cost;
if (head->status == StackStatusPaused || (head->node->state == ERROR_STATE && !head->node->links[0].subtree.ptr))
{
result += ERROR_COST_PER_RECOVERY;
@ -508,7 +528,7 @@ t_u32 ts_stack_node_count_since_error(const Stack *self, StackVersion version)
void ts_stack_push(Stack *self, StackVersion version, Subtree subtree, bool pending, TSStateId state)
{
StackHead *head = array_get(&self->heads, version);
StackNode *new_node = stack_node_new(head->node, subtree, pending, state);
StackNode *new_node = stack_node_new(head->node, subtree, pending, state, &self->node_pool);
if (!subtree.ptr)
head->node_count_at_last_error = new_node->node_count;
head->node = new_node;
@ -619,14 +639,14 @@ StackSliceArray ts_stack_pop_all(Stack *self, StackVersion version)
typedef struct SummarizeStackSession
{
StackSummary *summary;
t_u32 max_depth;
t_u32 max_depth;
} SummarizeStackSession;
StackAction summarize_stack_callback(void *payload, const StackIterator *iterator)
{
SummarizeStackSession *session = payload;
TSStateId state = iterator->node->state;
t_u32 depth = iterator->subtree_count;
t_u32 depth = iterator->subtree_count;
if (depth > session->max_depth)
return StackActionStop;
for (t_u32 i = session->summary->size - 1; i + 1 > 0; i--)
@ -700,7 +720,7 @@ bool ts_stack_has_advanced_since_error(const Stack *self, StackVersion version)
void ts_stack_remove_version(Stack *self, StackVersion version)
{
stack_head_delete(array_get(&self->heads, version));
stack_head_delete(array_get(&self->heads, version), &self->node_pool, self->subtree_pool);
array_erase(&self->heads, version);
}
@ -717,7 +737,7 @@ void ts_stack_renumber_version(Stack *self, StackVersion v1, StackVersion v2)
source_head->summary = target_head->summary;
target_head->summary = NULL;
}
stack_head_delete(target_head);
stack_head_delete(target_head, &self->node_pool, self->subtree_pool);
*target_head = *source_head;
array_erase(&self->heads, v1);
}
@ -749,7 +769,7 @@ bool ts_stack_merge(Stack *self, StackVersion version1, StackVersion version2)
StackHead *head2 = &self->heads.contents[version2];
for (t_u32 i = 0; i < head2->node->link_count; i++)
{
stack_node_add_link(head1->node, head2->node->links[i]);
stack_node_add_link(head1->node, head2->node->links[i], self->subtree_pool);
}
if (head1->node->state == ERROR_STATE)
{
@ -810,7 +830,9 @@ void ts_stack_clear(Stack *self)
{
stack_node_retain(self->base_node);
for (t_u32 i = 0; i < self->heads.size; i++)
stack_head_delete(&self->heads.contents[i]);
{
stack_head_delete(&self->heads.contents[i], &self->node_pool, self->subtree_pool);
}
array_clear(&self->heads);
array_push(&self->heads, ((StackHead){
.node = self->base_node,
@ -819,3 +841,5 @@ void ts_stack_clear(Stack *self)
.lookahead_when_paused = NULL_SUBTREE,
}));
}
#undef forceinline

View file

@ -1,51 +1,59 @@
#include <assert.h>
#include <ctype.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <stddef.h>
#include "me/mem/mem.h"
#include "me/types.h"
#include "parser/array.h"
#include "parser/language.h"
#include "parser/length.h"
#include "parser/subtree.h"
#include "me/mem/mem.h"
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Wunknown-pragmas"
#pragma clang diagnostic ignored "-Wunused-parameter"
typedef struct s_edit Edit;
struct s_edit
typedef struct
{
Length start;
Length old_end;
Length new_end;
};
} Edit;
#define TS_MAX_INLINE_TREE_LENGTH UINT8_MAX
#define TS_MAX_TREE_POOL_SIZE 0
#define TS_MAX_TREE_POOL_SIZE 32
// ExternalScannerState
void ts_external_scanner_state_init(ExternalScannerState *self, const t_u8 *data, t_u32 length)
{
self->length = length;
self->long_data = mem_alloc(length);
memcpy(self->long_data, data, length);
if (length > sizeof(self->short_data))
{
self->long_data = mem_alloc(length);
memcpy(self->long_data, data, length);
}
else
{
memcpy(self->short_data, data, length);
}
}
ExternalScannerState ts_external_scanner_state_copy(const ExternalScannerState *self)
{
ExternalScannerState result = *self;
result.long_data = mem_alloc(self->length);
memcpy(result.long_data, self->long_data, self->length);
if (self->length > sizeof(self->short_data))
{
result.long_data = mem_alloc(self->length);
memcpy(result.long_data, self->long_data, self->length);
}
return result;
}
void ts_external_scanner_state_delete(ExternalScannerState *self)
{
mem_free(self->long_data);
if (self->length > sizeof(self->short_data))
{
mem_free(self->long_data);
}
}
const t_u8 *ts_external_scanner_state_data(const ExternalScannerState *self)
@ -83,18 +91,18 @@ void ts_subtree_array_copy(SubtreeArray self, SubtreeArray *dest)
}
}
void ts_subtree_array_clear(SubtreeArray *self)
void ts_subtree_array_clear(SubtreePool *pool, SubtreeArray *self)
{
for (t_u32 i = 0; i < self->size; i++)
{
ts_subtree_release(self->contents[i]);
ts_subtree_release(pool, self->contents[i]);
}
array_clear(self);
}
void ts_subtree_array_delete(SubtreeArray *self)
void ts_subtree_array_delete(SubtreePool *pool, SubtreeArray *self)
{
ts_subtree_array_clear(self);
ts_subtree_array_clear(pool, self);
array_delete(self);
}
@ -128,60 +136,139 @@ void ts_subtree_array_reverse(SubtreeArray *self)
}
}
/*R static R*/ SubtreeHeapData *ts_subtree_pool_allocate()
// SubtreePool
SubtreePool ts_subtree_pool_new(t_u32 capacity)
{
return mem_alloc(sizeof(SubtreeHeapData));
SubtreePool self = {array_new(), array_new()};
array_reserve(&self.free_trees, capacity);
return self;
}
// /*R static R*/ void ts_subtree_pool_free(SubtreeHeapData *tree)
//{
// mem_free(tree);
// }
void ts_subtree_pool_delete(SubtreePool *self)
{
if (self->free_trees.contents)
{
for (t_u32 i = 0; i < self->free_trees.size; i++)
{
mem_free(self->free_trees.contents[i].ptr);
}
array_delete(&self->free_trees);
}
if (self->tree_stack.contents)
array_delete(&self->tree_stack);
}
static SubtreeHeapData *ts_subtree_pool_allocate(SubtreePool *self)
{
if (self->free_trees.size > 0)
{
return array_pop(&self->free_trees).ptr;
}
else
{
return mem_alloc(sizeof(SubtreeHeapData));
}
}
static void ts_subtree_pool_free(SubtreePool *self, SubtreeHeapData *tree)
{
if (self->free_trees.capacity > 0 && self->free_trees.size + 1 <= TS_MAX_TREE_POOL_SIZE)
{
array_push(&self->free_trees, (MutableSubtree){.ptr = tree});
}
else
{
mem_free(tree);
}
}
// Subtree
Subtree ts_subtree_new_leaf(TSSymbol symbol, Length padding, Length size, t_u32 lookahead_bytes, TSStateId parse_state,
bool has_external_tokens, bool depends_on_column, bool is_keyword, const TSLanguage *language)
static inline bool ts_subtree_can_inline(Length padding, Length size, t_u32 lookahead_bytes)
{
return padding.bytes < TS_MAX_INLINE_TREE_LENGTH && padding.extent.row < 16 && padding.extent.column < TS_MAX_INLINE_TREE_LENGTH &&
size.extent.row == 0 && size.extent.column < TS_MAX_INLINE_TREE_LENGTH && lookahead_bytes < 16;
}
Subtree ts_subtree_new_leaf(SubtreePool *pool, TSSymbol symbol, Length padding, Length size, t_u32 lookahead_bytes,
TSStateId parse_state, bool has_external_tokens, bool depends_on_column, bool is_keyword,
const TSLanguage *language)
{
TSSymbolMetadata metadata = ts_language_symbol_metadata(language, symbol);
bool extra = symbol == ts_builtin_sym_end;
SubtreeHeapData *data = ts_subtree_pool_allocate();
*data = (SubtreeHeapData){.ref_count = 1,
.padding = padding,
.size = size,
.lookahead_bytes = lookahead_bytes,
.error_cost = 0,
.child_count = 0,
.symbol = symbol,
.parse_state = parse_state,
.visible = metadata.visible,
.named = metadata.named,
.extra = extra,
.fragile_left = false,
.fragile_right = false,
.has_changes = false,
.has_external_tokens = has_external_tokens,
.has_external_scanner_state_change = false,
.depends_on_column = depends_on_column,
.is_missing = false,
.is_keyword = is_keyword,
{{.first_leaf = {.symbol = 0, .parse_state = 0}}}};
return (Subtree){.ptr = data};
bool is_inline = (symbol <= UINT8_MAX && !has_external_tokens && ts_subtree_can_inline(padding, size, lookahead_bytes));
if (is_inline)
{
return (Subtree){{
.parse_state = parse_state,
.symbol = symbol,
.padding_bytes = padding.bytes,
.padding_rows = padding.extent.row,
.padding_columns = padding.extent.column,
.size_bytes = size.bytes,
.lookahead_bytes = lookahead_bytes,
.visible = metadata.visible,
.named = metadata.named,
.extra = extra,
.has_changes = false,
.is_missing = false,
.is_keyword = is_keyword,
.is_inline = true,
}};
}
else
{
SubtreeHeapData *data = ts_subtree_pool_allocate(pool);
*data = (SubtreeHeapData){.ref_count = 1,
.padding = padding,
.size = size,
.lookahead_bytes = lookahead_bytes,
.error_cost = 0,
.child_count = 0,
.symbol = symbol,
.parse_state = parse_state,
.visible = metadata.visible,
.named = metadata.named,
.extra = extra,
.fragile_left = false,
.fragile_right = false,
.has_changes = false,
.has_external_tokens = has_external_tokens,
.has_external_scanner_state_change = false,
.depends_on_column = depends_on_column,
.is_missing = false,
.is_keyword = is_keyword,
{{.first_leaf = {.symbol = 0, .parse_state = 0}}}};
return (Subtree){.ptr = data};
}
}
void ts_subtree_set_symbol(MutableSubtree *self, TSSymbol symbol, const TSLanguage *language)
{
TSSymbolMetadata metadata = ts_language_symbol_metadata(language, symbol);
self->ptr->symbol = symbol;
self->ptr->named = metadata.named;
self->ptr->visible = metadata.visible;
if (self->data.is_inline)
{
assert(symbol < UINT8_MAX);
self->data.symbol = symbol;
self->data.named = metadata.named;
self->data.visible = metadata.visible;
}
else
{
self->ptr->symbol = symbol;
self->ptr->named = metadata.named;
self->ptr->visible = metadata.visible;
}
}
Subtree ts_subtree_new_error(t_i32 lookahead_char, Length padding, Length size, t_u32 bytes_scanned, TSStateId parse_state,
const TSLanguage *language)
Subtree ts_subtree_new_error(SubtreePool *pool, t_i32 lookahead_char, Length padding, Length size, t_u32 bytes_scanned,
TSStateId parse_state, const TSLanguage *language)
{
Subtree result = ts_subtree_new_leaf(ts_builtin_sym_error, padding, size, bytes_scanned, parse_state, false, false, false, language);
Subtree result =
ts_subtree_new_leaf(pool, ts_builtin_sym_error, padding, size, bytes_scanned, parse_state, false, false, false, language);
SubtreeHeapData *data = (SubtreeHeapData *)result.ptr;
data->fragile_left = true;
data->fragile_right = true;
@ -217,17 +304,18 @@ MutableSubtree ts_subtree_clone(Subtree self)
// This takes ownership of the subtree. If the subtree has only one owner,
// this will directly convert it into a mutable version. Otherwise, it will
// perform a copy.
MutableSubtree ts_subtree_make_mut(Subtree self)
MutableSubtree ts_subtree_make_mut(SubtreePool *pool, Subtree self)
{
if (self.data.is_inline)
return (MutableSubtree){self.data};
if (self.ptr->ref_count == 1)
return ts_subtree_to_mut_unsafe(self);
MutableSubtree result = ts_subtree_clone(self);
ts_subtree_release(self);
ts_subtree_release(pool, self);
return result;
}
/*
static void ts_subtree__compress(MutableSubtree self, t_u32 count, const TSLanguage *language, MutableSubtreeArray *stack)
static void ts_subtree__compress(MutableSubtree self, t_u32 count, const TSLanguage *language, MutableSubtreeArray *stack)
{
t_u32 initial_stack_size = stack->size;
@ -239,11 +327,12 @@ static void ts_subtree__compress(MutableSubtree self, t_u32 count, const TSLang
break;
MutableSubtree child = ts_subtree_to_mut_unsafe(ts_subtree_children(tree)[0]);
if (child.ptr->child_count < 2 || child.ptr->ref_count > 1 || child.ptr->symbol != symbol)
if (child.data.is_inline || child.ptr->child_count < 2 || child.ptr->ref_count > 1 || child.ptr->symbol != symbol)
break;
MutableSubtree grandchild = ts_subtree_to_mut_unsafe(ts_subtree_children(child)[0]);
if (grandchild.ptr->child_count < 2 || grandchild.ptr->ref_count > 1 || grandchild.ptr->symbol != symbol)
if (grandchild.data.is_inline || grandchild.ptr->child_count < 2 || grandchild.ptr->ref_count > 1 ||
grandchild.ptr->symbol != symbol)
break;
ts_subtree_children(tree)[0] = ts_subtree_from_mut(grandchild);
@ -263,12 +352,11 @@ static void ts_subtree__compress(MutableSubtree self, t_u32 count, const TSLang
ts_subtree_summarize_children(tree, language);
}
}
*/
void ts_subtree_balance(Subtree self, const TSLanguage *language)
void ts_subtree_balance(Subtree self, SubtreePool *pool, const TSLanguage *language)
{
printf("BALANCING TREES\n");
/*
array_clear(&pool->tree_stack);
if (ts_subtree_child_count(self) > 0 && self.ptr->ref_count == 1)
{
array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(self));
@ -303,12 +391,13 @@ void ts_subtree_balance(Subtree self, const TSLanguage *language)
}
}
}
*/
}
// Assign all of the node's properties that depend on its children.
void ts_subtree_summarize_children(MutableSubtree self, const TSLanguage *language)
{
assert(!self.data.is_inline);
self.ptr->named_child_count = 0;
self.ptr->visible_child_count = 0;
self.ptr->error_cost = 0;
@ -319,9 +408,9 @@ void ts_subtree_summarize_children(MutableSubtree self, const TSLanguage *langua
self.ptr->has_external_scanner_state_change = false;
self.ptr->dynamic_precedence = 0;
t_u32 structural_index = 0;
t_u32 structural_index = 0;
const TSSymbol *alias_sequence = ts_language_alias_sequence(language, self.ptr->production_id);
t_u32 lookahead_end_byte = 0;
t_u32 lookahead_end_byte = 0;
const Subtree *children = ts_subtree_children(self);
for (t_u32 i = 0; i < self.ptr->child_count; i++)
@ -500,49 +589,38 @@ Subtree ts_subtree_new_error_node(SubtreeArray *children, bool extra, const TSLa
//
// This node is treated as 'extra'. Its children are prevented from having
// having any effect on the parse state.
Subtree ts_subtree_new_missing_leaf(TSSymbol symbol, Length padding, t_u32 lookahead_bytes, const TSLanguage *language)
Subtree ts_subtree_new_missing_leaf(SubtreePool *pool, TSSymbol symbol, Length padding, t_u32 lookahead_bytes,
const TSLanguage *language)
{
Subtree result = ts_subtree_new_leaf(symbol, padding, length_zero(), lookahead_bytes, 0, false, false, false, language);
((SubtreeHeapData *)result.ptr)->is_missing = true;
Subtree result = ts_subtree_new_leaf(pool, symbol, padding, length_zero(), lookahead_bytes, 0, false, false, false, language);
if (result.data.is_inline)
{
result.data.is_missing = true;
}
else
{
((SubtreeHeapData *)result.ptr)->is_missing = true;
}
return result;
}
void ts_subtree_retain(Subtree self)
{
if (self.data.is_inline)
return;
assert(self.ptr->ref_count > 0);
(*(t_u32 *)(&self.ptr->ref_count))++;
assert(self.ptr->ref_count != 0);
}
void ts_subtree_release(Subtree self)
void ts_subtree_release(SubtreePool *pool, Subtree self)
{
t_usize i;
Subtree *children;
if (self.ptr->ref_count > 0 && --(*(t_u32 *)(&self.ptr->ref_count)) == 0)
{
if (self.ptr->child_count > 0)
{
children = ts_subtree_children(self);
i = 0;
while (i < self.ptr->child_count)
ts_subtree_release(children[i++]);
mem_free(children);
}
else
{
if (self.ptr->has_external_tokens)
ts_external_scanner_state_delete((void *)&self.ptr->external_scanner_state);
mem_free((void *)self.ptr);
}
}
/*
if (self.data.is_inline)
return;
array_clear(&pool->tree_stack);
assert(self.ptr->ref_count > 0);
if ()
if (--(*(t_u32 *)(&self.ptr->ref_count)) == 0)
{
array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(self));
}
@ -556,6 +634,8 @@ void ts_subtree_release(Subtree self)
for (t_u32 i = 0; i < tree.ptr->child_count; i++)
{
Subtree child = children[i];
if (child.data.is_inline)
continue;
assert(child.ptr->ref_count > 0);
if (--(*(t_u32 *)(&child.ptr->ref_count)) == 0)
{
@ -573,13 +653,10 @@ void ts_subtree_release(Subtree self)
ts_subtree_pool_free(pool, tree.ptr);
}
}
*/
}
int ts_subtree_compare(Subtree left, Subtree right)
int ts_subtree_compare(Subtree left, Subtree right, SubtreePool *pool)
{
printf("SUBTREE COMPARE\n");
/*
array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(left));
array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(right));
@ -610,14 +687,183 @@ int ts_subtree_compare(Subtree left, Subtree right)
array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(left_child));
array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(right_child));
}
}*/
}
return 0;
}
/*R static inline R*/ void ts_subtree_set_has_changes(MutableSubtree *self)
static inline void ts_subtree_set_has_changes(MutableSubtree *self)
{
self->ptr->has_changes = true;
if (self->data.is_inline)
{
self->data.has_changes = true;
}
else
{
self->ptr->has_changes = true;
}
}
Subtree ts_subtree_edit(Subtree self, const TSInputEdit *input_edit, SubtreePool *pool)
{
typedef struct
{
Subtree *tree;
Edit edit;
} EditEntry;
Array(EditEntry) stack = array_new();
array_push(&stack, ((EditEntry){
.tree = &self,
.edit =
(Edit){
.start = {input_edit->start_byte, input_edit->start_point},
.old_end = {input_edit->old_end_byte, input_edit->old_end_point},
.new_end = {input_edit->new_end_byte, input_edit->new_end_point},
},
}));
while (stack.size)
{
EditEntry entry = array_pop(&stack);
Edit edit = entry.edit;
bool is_noop = edit.old_end.bytes == edit.start.bytes && edit.new_end.bytes == edit.start.bytes;
bool is_pure_insertion = edit.old_end.bytes == edit.start.bytes;
bool invalidate_first_row = ts_subtree_depends_on_column(*entry.tree);
Length size = ts_subtree_size(*entry.tree);
Length padding = ts_subtree_padding(*entry.tree);
Length total_size = length_add(padding, size);
t_u32 lookahead_bytes = ts_subtree_lookahead_bytes(*entry.tree);
t_u32 end_byte = total_size.bytes + lookahead_bytes;
if (edit.start.bytes > end_byte || (is_noop && edit.start.bytes == end_byte))
continue;
// If the edit is entirely within the space before this subtree, then shift this
// subtree over according to the edit without changing its size.
if (edit.old_end.bytes <= padding.bytes)
{
padding = length_add(edit.new_end, length_sub(padding, edit.old_end));
}
// If the edit starts in the space before this subtree and extends into this subtree,
// shrink the subtree's content to compensate for the change in the space before it.
else if (edit.start.bytes < padding.bytes)
{
size = length_saturating_sub(size, length_sub(edit.old_end, padding));
padding = edit.new_end;
}
// If the edit is a pure insertion right at the start of the subtree,
// shift the subtree over according to the insertion.
else if (edit.start.bytes == padding.bytes && is_pure_insertion)
{
padding = edit.new_end;
}
// If the edit is within this subtree, resize the subtree to reflect the edit.
else if (edit.start.bytes < total_size.bytes || (edit.start.bytes == total_size.bytes && is_pure_insertion))
{
size = length_add(length_sub(edit.new_end, padding), length_saturating_sub(total_size, edit.old_end));
}
MutableSubtree result = ts_subtree_make_mut(pool, *entry.tree);
if (result.data.is_inline)
{
if (ts_subtree_can_inline(padding, size, lookahead_bytes))
{
result.data.padding_bytes = padding.bytes;
result.data.padding_rows = padding.extent.row;
result.data.padding_columns = padding.extent.column;
result.data.size_bytes = size.bytes;
}
else
{
SubtreeHeapData *data = ts_subtree_pool_allocate(pool);
data->ref_count = 1;
data->padding = padding;
data->size = size;
data->lookahead_bytes = lookahead_bytes;
data->error_cost = 0;
data->child_count = 0;
data->symbol = result.data.symbol;
data->parse_state = result.data.parse_state;
data->visible = result.data.visible;
data->named = result.data.named;
data->extra = result.data.extra;
data->fragile_left = false;
data->fragile_right = false;
data->has_changes = false;
data->has_external_tokens = false;
data->depends_on_column = false;
data->is_missing = result.data.is_missing;
data->is_keyword = result.data.is_keyword;
result.ptr = data;
}
}
else
{
result.ptr->padding = padding;
result.ptr->size = size;
}
ts_subtree_set_has_changes(&result);
*entry.tree = ts_subtree_from_mut(result);
Length child_left, child_right = length_zero();
for (t_u32 i = 0, n = ts_subtree_child_count(*entry.tree); i < n; i++)
{
Subtree *child = &ts_subtree_children(*entry.tree)[i];
Length child_size = ts_subtree_total_size(*child);
child_left = child_right;
child_right = length_add(child_left, child_size);
// If this child ends before the edit, it is not affected.
if (child_right.bytes + ts_subtree_lookahead_bytes(*child) < edit.start.bytes)
continue;
// Keep editing child nodes until a node is reached that starts after the edit.
// Also, if this node's validity depends on its column position, then continue
// invaliditing child nodes until reaching a line break.
if (((child_left.bytes > edit.old_end.bytes) || (child_left.bytes == edit.old_end.bytes && child_size.bytes > 0 && i > 0)) &&
(!invalidate_first_row || child_left.extent.row > entry.tree->ptr->padding.extent.row))
{
break;
}
// Transform edit into the child's coordinate space.
Edit child_edit = {
.start = length_saturating_sub(edit.start, child_left),
.old_end = length_saturating_sub(edit.old_end, child_left),
.new_end = length_saturating_sub(edit.new_end, child_left),
};
// Interpret all inserted text as applying to the *first* child that touches the edit.
// Subsequent children are only never have any text inserted into them; they are only
// shrunk to compensate for the edit.
if (child_right.bytes > edit.start.bytes || (child_right.bytes == edit.start.bytes && is_pure_insertion))
{
edit.new_end = edit.start;
}
// Children that occur before the edit are not reshaped by the edit.
else
{
child_edit.old_end = child_edit.start;
child_edit.new_end = child_edit.start;
}
// Queue processing of this child's subtree.
array_push(&stack, ((EditEntry){
.tree = child,
.edit = child_edit,
}));
}
}
array_delete(&stack);
return self;
}
Subtree ts_subtree_last_external_token(Subtree tree)
@ -639,13 +885,222 @@ Subtree ts_subtree_last_external_token(Subtree tree)
return tree;
}
static size_t ts_subtree__write_char_to_string(char *str, size_t n, t_i32 chr)
{
if (chr == -1)
return snprintf(str, n, "INVALID");
else if (chr == '\0')
return snprintf(str, n, "'\\0'");
else if (chr == '\n')
return snprintf(str, n, "'\\n'");
else if (chr == '\t')
return snprintf(str, n, "'\\t'");
else if (chr == '\r')
return snprintf(str, n, "'\\r'");
else if (0 < chr && chr < 128 && isprint(chr))
return snprintf(str, n, "'%c'", chr);
else
return snprintf(str, n, "%d", chr);
}
static t_const_str const ROOT_FIELD = "__ROOT__";
static size_t ts_subtree__write_to_string(Subtree self, char *string, size_t limit, const TSLanguage *language, bool include_all,
TSSymbol alias_symbol, bool alias_is_named, t_const_str field_name)
{
if (!self.ptr)
return snprintf(string, limit, "(NULL)");
char *cursor = string;
char **writer = (limit > 1) ? &cursor : &string;
bool is_root = field_name == ROOT_FIELD;
bool is_visible =
include_all || ts_subtree_missing(self) || (alias_symbol ? alias_is_named : ts_subtree_visible(self) && ts_subtree_named(self));
if (is_visible)
{
if (!is_root)
{
cursor += snprintf(*writer, limit, " ");
if (field_name)
{
cursor += snprintf(*writer, limit, "%s: ", field_name);
}
}
if (ts_subtree_is_error(self) && ts_subtree_child_count(self) == 0 && self.ptr->size.bytes > 0)
{
cursor += snprintf(*writer, limit, "(UNEXPECTED ");
cursor += ts_subtree__write_char_to_string(*writer, limit, self.ptr->lookahead_char);
}
else
{
TSSymbol symbol = alias_symbol ? alias_symbol : ts_subtree_symbol(self);
t_const_str symbol_name = ts_language_symbol_name(language, symbol);
if (ts_subtree_missing(self))
{
cursor += snprintf(*writer, limit, "(MISSING ");
if (alias_is_named || ts_subtree_named(self))
{
cursor += snprintf(*writer, limit, "%s", symbol_name);
}
else
{
cursor += snprintf(*writer, limit, "\"%s\"", symbol_name);
}
}
else
{
cursor += snprintf(*writer, limit, "(%s", symbol_name);
}
}
}
else if (is_root)
{
TSSymbol symbol = alias_symbol ? alias_symbol : ts_subtree_symbol(self);
t_const_str symbol_name = ts_language_symbol_name(language, symbol);
if (ts_subtree_child_count(self) > 0)
{
cursor += snprintf(*writer, limit, "(%s", symbol_name);
}
else if (ts_subtree_named(self))
{
cursor += snprintf(*writer, limit, "(%s)", symbol_name);
}
else
{
cursor += snprintf(*writer, limit, "(\"%s\")", symbol_name);
}
}
if (ts_subtree_child_count(self))
{
const TSSymbol *alias_sequence = ts_language_alias_sequence(language, self.ptr->production_id);
const TSFieldMapEntry *field_map, *field_map_end;
ts_language_field_map(language, self.ptr->production_id, &field_map, &field_map_end);
t_u32 structural_child_index = 0;
for (t_u32 i = 0; i < self.ptr->child_count; i++)
{
Subtree child = ts_subtree_children(self)[i];
if (ts_subtree_extra(child))
{
cursor += ts_subtree__write_to_string(child, *writer, limit, language, include_all, 0, false, NULL);
}
else
{
TSSymbol subtree_alias_symbol = alias_sequence ? alias_sequence[structural_child_index] : 0;
bool subtree_alias_is_named =
subtree_alias_symbol ? ts_language_symbol_metadata(language, subtree_alias_symbol).named : false;
t_const_str child_field_name = is_visible ? NULL : field_name;
for (const TSFieldMapEntry *map = field_map; map < field_map_end; map++)
{
if (!map->inherited && map->child_index == structural_child_index)
{
child_field_name = language->field_names[map->field_id];
break;
}
}
cursor += ts_subtree__write_to_string(child, *writer, limit, language, include_all, subtree_alias_symbol,
subtree_alias_is_named, child_field_name);
structural_child_index++;
}
}
}
if (is_visible)
cursor += snprintf(*writer, limit, ")");
return cursor - string;
}
char *ts_subtree_string(Subtree self, TSSymbol alias_symbol, bool alias_is_named, const TSLanguage *language, bool include_all)
{
char scratch_string[1];
size_t size = ts_subtree__write_to_string(self, scratch_string, 1, language, include_all, alias_symbol, alias_is_named, ROOT_FIELD) + 1;
char *result = mem_alloc(size * sizeof(char));
ts_subtree__write_to_string(self, result, size, language, include_all, alias_symbol, alias_is_named, ROOT_FIELD);
return result;
}
/*
void ts_subtree__print_dot_graph(const Subtree *self, t_u32 start_offset, const TSLanguage *language, TSSymbol alias_symbol, FILE *f)
{
TSSymbol subtree_symbol = ts_subtree_symbol(*self);
TSSymbol symbol = alias_symbol ? alias_symbol : subtree_symbol;
t_u32 end_offset = start_offset + ts_subtree_total_bytes(*self);
fprintf(f, "tree_%p [label=\"", (void *)self);
ts_language_write_symbol_as_dot_string(language, f, symbol);
fprintf(f, "\"");
if (ts_subtree_child_count(*self) == 0)
fprintf(f, ", shape=plaintext");
if (ts_subtree_extra(*self))
fprintf(f, ", fontcolor=gray");
fprintf(f,
", tooltip=\""
"range: %u - %u\n"
"state: %d\n"
"error-cost: %u\n"
"has-changes: %u\n"
"depends-on-column: %u\n"
"descendant-count: %u\n"
"repeat-depth: %u\n"
"lookahead-bytes: %u",
start_offset, end_offset, ts_subtree_parse_state(*self), ts_subtree_error_cost(*self), ts_subtree_has_changes(*self),
ts_subtree_depends_on_column(*self), ts_subtree_visible_descendant_count(*self), ts_subtree_repeat_depth(*self),
ts_subtree_lookahead_bytes(*self));
if (ts_subtree_is_error(*self) && ts_subtree_child_count(*self) == 0 && self->ptr->lookahead_char != 0)
{
fprintf(f, "\ncharacter: '%c'", self->ptr->lookahead_char);
}
fprintf(f, "\"]\n");
t_u32 child_start_offset = start_offset;
t_u32 child_info_offset = language->max_alias_sequence_length * ts_subtree_production_id(*self);
for (t_u32 i = 0, n = ts_subtree_child_count(*self); i < n; i++)
{
const Subtree *child = &ts_subtree_children(*self)[i];
TSSymbol subtree_alias_symbol = 0;
if (!ts_subtree_extra(*child) && child_info_offset)
{
subtree_alias_symbol = language->alias_sequences[child_info_offset];
child_info_offset++;
}
ts_subtree__print_dot_graph(child, child_start_offset, language, subtree_alias_symbol, f);
fprintf(f, "tree_%p -> tree_%p [tooltip=%u]\n", (void *)self, (void *)child, i);
child_start_offset += ts_subtree_total_bytes(*child);
}
}
*/
/*
void ts_subtree_print_dot_graph(Subtree self, const TSLanguage *language, FILE *f)
{
fprintf(f, "digraph tree {\n");
fprintf(f, "edge [arrowhead=none]\n");
ts_subtree__print_dot_graph(&self, 0, language, 0, f);
fprintf(f, "}\n");
}
*/
const ExternalScannerState *ts_subtree_external_scanner_state(Subtree self)
{
static const ExternalScannerState empty_state = {{.short_data = {0}}, .length = 0};
if (self.ptr && self.ptr->has_external_tokens && self.ptr->child_count == 0)
if (self.ptr && !self.data.is_inline && self.ptr->has_external_tokens && self.ptr->child_count == 0)
{
return &self.ptr->external_scanner_state;
}
else
{
return &empty_state;
}
}
bool ts_subtree_external_scanner_state_eq(Subtree self, Subtree other)

View file

@ -30,6 +30,10 @@ void ts_tree_delete(TSTree *self)
{
if (!self)
return;
SubtreePool pool = ts_subtree_pool_new(0);
ts_subtree_release(&pool, self->root);
ts_subtree_pool_delete(&pool);
ts_language_delete(self->language);
mem_free(self->included_ranges);
mem_free(self);
@ -50,3 +54,56 @@ const TSLanguage *ts_tree_language(const TSTree *self)
{
return self->language;
}
void ts_tree_edit(TSTree *self, const TSInputEdit *edit)
{
for (t_u32 i = 0; i < self->included_range_count; i++)
{
TSRange *range = &self->included_ranges[i];
if (range->end_byte >= edit->old_end_byte)
{
if (range->end_byte != UINT32_MAX)
{
range->end_byte = edit->new_end_byte + (range->end_byte - edit->old_end_byte);
range->end_point = point_add(edit->new_end_point, point_sub(range->end_point, edit->old_end_point));
if (range->end_byte < edit->new_end_byte)
{
range->end_byte = UINT32_MAX;
range->end_point = POINT_MAX;
}
}
}
else if (range->end_byte > edit->start_byte)
{
range->end_byte = edit->start_byte;
range->end_point = edit->start_point;
}
if (range->start_byte >= edit->old_end_byte)
{
range->start_byte = edit->new_end_byte + (range->start_byte - edit->old_end_byte);
range->start_point = point_add(edit->new_end_point, point_sub(range->start_point, edit->old_end_point));
if (range->start_byte < edit->new_end_byte)
{
range->start_byte = UINT32_MAX;
range->start_point = POINT_MAX;
}
}
else if (range->start_byte > edit->start_byte)
{
range->start_byte = edit->start_byte;
range->start_point = edit->start_point;
}
}
SubtreePool pool = ts_subtree_pool_new(0);
self->root = ts_subtree_edit(self->root, edit, &pool);
ts_subtree_pool_delete(&pool);
}
TSRange *ts_tree_included_ranges(const TSTree *self, t_u32 *length)
{
*length = self->included_range_count;
TSRange *ranges = mem_alloc_array(self->included_range_count, sizeof(TSRange));
memcpy(ranges, self->included_ranges, self->included_range_count * sizeof(TSRange));
return ranges;
}