diff --git a/parser/Makefile b/parser/Makefile index d0a4931c..9e9612e0 100644 --- a/parser/Makefile +++ b/parser/Makefile @@ -6,7 +6,7 @@ # By: maiboyer +#+ +:+ +#+ # # +#+#+#+#+#+ +#+ # # Created: 2023/11/03 13:20:01 by maiboyer #+# #+# # -# Updated: 2024/04/30 17:20:27 by maiboyer ### ########.fr # +# Updated: 2024/04/30 22:23:58 by maiboyer ### ########.fr # # # # **************************************************************************** # @@ -22,7 +22,7 @@ CFLAGS = -Wall -Wextra -Werror -MMD -I./includes -I../includes -I../output/inc include ./Filelist.mk -SRC_FILES += ./src/lib ./src/scanner +SRC_FILES += ./combined SRC = $(addsuffix .c,$(addprefix $(SRC_DIR)/,$(SRC_FILES))) OBJ = $(addsuffix .o,$(addprefix $(BUILD_DIR)/,$(SRC_FILES))) DEPS = $(addsuffix .d,$(addprefix $(BUILD_DIR)/,$(SRC_FILES))) diff --git a/parser/combined.c b/parser/combined.c new file mode 100644 index 00000000..5791ec0f --- /dev/null +++ b/parser/combined.c @@ -0,0 +1,12273 @@ +#include "./src/alloc.h" +#include "src/api.h" +#include + +static void *ts_malloc_default(size_t size) { + void *result = malloc(size); + if (size > 0 && !result) { + fprintf(stderr, "tree-sitter failed to allocate %zu bytes", size); + abort(); + } + return result; +} + +static void *ts_calloc_default(size_t count, size_t size) { + void *result = calloc(count, size); + if (count > 0 && !result) { + fprintf(stderr, "tree-sitter failed to allocate %zu bytes", count * size); + abort(); + } + return result; +} + +static void *ts_realloc_default(void *buffer, size_t size) { + void *result = realloc(buffer, size); + if (size > 0 && !result) { + fprintf(stderr, "tree-sitter failed to reallocate %zu bytes", size); + abort(); + } + return result; +} + +// Allow clients to override allocation functions dynamically +TS_PUBLIC void *(*ts_current_malloc)(size_t) = ts_malloc_default; +TS_PUBLIC void *(*ts_current_calloc)(size_t, size_t) = ts_calloc_default; +TS_PUBLIC void *(*ts_current_realloc)(void *, size_t) = ts_realloc_default; +TS_PUBLIC void (*ts_current_free)(void *) = free; + +void ts_set_allocator( + void *(*new_malloc)(size_t size), + void *(*new_calloc)(size_t count, size_t size), + void *(*new_realloc)(void *ptr, size_t size), + void (*new_free)(void *ptr) +) { + ts_current_malloc = new_malloc ? new_malloc : ts_malloc_default; + ts_current_calloc = new_calloc ? new_calloc : ts_calloc_default; + ts_current_realloc = new_realloc ? new_realloc : ts_realloc_default; + ts_current_free = new_free ? new_free : free; +} + +#include "src/get_changed_ranges.h" +#include "src/subtree.h" +#include "src/language.h" +#include "src/error_costs.h" +#include "src/tree_cursor.h" +#include + +// #define DEBUG_GET_CHANGED_RANGES + +static void ts_range_array_add( + TSRangeArray *self, + Length start, + Length end +) { + if (self->size > 0) { + t_range *last_range = array_back(self); + if (start.bytes <= last_range->end_byte) { + last_range->end_byte = end.bytes; + last_range->end_point = end.extent; + return; + } + } + + if (start.bytes < end.bytes) { + t_range range = { start.extent, end.extent, start.bytes, end.bytes }; + array_push(self, range); + } +} + +bool ts_range_array_intersects( + const TSRangeArray *self, + unsigned start_index, + uint32_t start_byte, + uint32_t end_byte +) { + for (unsigned i = start_index; i < self->size; i++) { + t_range *range = &self->contents[i]; + if (range->end_byte > start_byte) { + if (range->start_byte >= end_byte) break; + return true; + } + } + return false; +} + +void ts_range_array_get_changed_ranges( + const t_range *old_ranges, unsigned old_range_count, + const t_range *new_ranges, unsigned new_range_count, + TSRangeArray *differences +) { + unsigned new_index = 0; + unsigned old_index = 0; + Length current_position = length_zero(); + bool in_old_range = false; + bool in_new_range = false; + + while (old_index < old_range_count || new_index < new_range_count) { + const t_range *old_range = &old_ranges[old_index]; + const t_range *new_range = &new_ranges[new_index]; + + Length next_old_position; + if (in_old_range) { + next_old_position = (Length) {old_range->end_byte, old_range->end_point}; + } else if (old_index < old_range_count) { + next_old_position = (Length) {old_range->start_byte, old_range->start_point}; + } else { + next_old_position = LENGTH_MAX; + } + + Length next_new_position; + if (in_new_range) { + next_new_position = (Length) {new_range->end_byte, new_range->end_point}; + } else if (new_index < new_range_count) { + next_new_position = (Length) {new_range->start_byte, new_range->start_point}; + } else { + next_new_position = LENGTH_MAX; + } + + if (next_old_position.bytes < next_new_position.bytes) { + if (in_old_range != in_new_range) { + ts_range_array_add(differences, current_position, next_old_position); + } + if (in_old_range) old_index++; + current_position = next_old_position; + in_old_range = !in_old_range; + } else if (next_new_position.bytes < next_old_position.bytes) { + if (in_old_range != in_new_range) { + ts_range_array_add(differences, current_position, next_new_position); + } + if (in_new_range) new_index++; + current_position = next_new_position; + in_new_range = !in_new_range; + } else { + if (in_old_range != in_new_range) { + ts_range_array_add(differences, current_position, next_new_position); + } + if (in_old_range) old_index++; + if (in_new_range) new_index++; + in_old_range = !in_old_range; + in_new_range = !in_new_range; + current_position = next_new_position; + } + } +} + +typedef struct { + TreeCursor cursor; + const t_language *language; + unsigned visible_depth; + bool in_padding; +} Iterator; + +static Iterator iterator_new( + TreeCursor *cursor, + const Subtree *tree, + const t_language *language +) { + array_clear(&cursor->stack); + array_push(&cursor->stack, ((TreeCursorEntry) { + .subtree = tree, + .position = length_zero(), + .child_index = 0, + .structural_child_index = 0, + })); + return (Iterator) { + .cursor = *cursor, + .language = language, + .visible_depth = 1, + .in_padding = false, + }; +} + +static bool iterator_done(Iterator *self) { + return self->cursor.stack.size == 0; +} + +static Length iterator_start_position(Iterator *self) { + TreeCursorEntry entry = *array_back(&self->cursor.stack); + if (self->in_padding) { + return entry.position; + } else { + return length_add(entry.position, ts_subtree_padding(*entry.subtree)); + } +} + +static Length iterator_end_position(Iterator *self) { + TreeCursorEntry entry = *array_back(&self->cursor.stack); + Length result = length_add(entry.position, ts_subtree_padding(*entry.subtree)); + if (self->in_padding) { + return result; + } else { + return length_add(result, ts_subtree_size(*entry.subtree)); + } +} + +static bool iterator_tree_is_visible(const Iterator *self) { + TreeCursorEntry entry = *array_back(&self->cursor.stack); + if (ts_subtree_visible(*entry.subtree)) return true; + if (self->cursor.stack.size > 1) { + Subtree parent = *self->cursor.stack.contents[self->cursor.stack.size - 2].subtree; + return ts_language_alias_at( + self->language, + parent.ptr->production_id, + entry.structural_child_index + ) != 0; + } + return false; +} + +static void iterator_get_visible_state( + const Iterator *self, + Subtree *tree, + t_symbol *alias_symbol, + uint32_t *start_byte +) { + uint32_t i = self->cursor.stack.size - 1; + + if (self->in_padding) { + if (i == 0) return; + i--; + } + + for (; i + 1 > 0; i--) { + TreeCursorEntry entry = self->cursor.stack.contents[i]; + + if (i > 0) { + const Subtree *parent = self->cursor.stack.contents[i - 1].subtree; + *alias_symbol = ts_language_alias_at( + self->language, + parent->ptr->production_id, + entry.structural_child_index + ); + } + + if (ts_subtree_visible(*entry.subtree) || *alias_symbol) { + *tree = *entry.subtree; + *start_byte = entry.position.bytes; + break; + } + } +} + +static void iterator_ascend(Iterator *self) { + if (iterator_done(self)) return; + if (iterator_tree_is_visible(self) && !self->in_padding) self->visible_depth--; + if (array_back(&self->cursor.stack)->child_index > 0) self->in_padding = false; + self->cursor.stack.size--; +} + +static bool iterator_descend(Iterator *self, uint32_t goal_position) { + if (self->in_padding) return false; + + bool did_descend = false; + do { + did_descend = false; + TreeCursorEntry entry = *array_back(&self->cursor.stack); + Length position = entry.position; + uint32_t structural_child_index = 0; + for (uint32_t i = 0, n = ts_subtree_child_count(*entry.subtree); i < n; i++) { + const Subtree *child = &ts_subtree_children(*entry.subtree)[i]; + Length child_left = length_add(position, ts_subtree_padding(*child)); + Length child_right = length_add(child_left, ts_subtree_size(*child)); + + if (child_right.bytes > goal_position) { + array_push(&self->cursor.stack, ((TreeCursorEntry) { + .subtree = child, + .position = position, + .child_index = i, + .structural_child_index = structural_child_index, + })); + + if (iterator_tree_is_visible(self)) { + if (child_left.bytes > goal_position) { + self->in_padding = true; + } else { + self->visible_depth++; + } + return true; + } + + did_descend = true; + break; + } + + position = child_right; + if (!ts_subtree_extra(*child)) structural_child_index++; + } + } while (did_descend); + + return false; +} + +static void iterator_advance(Iterator *self) { + if (self->in_padding) { + self->in_padding = false; + if (iterator_tree_is_visible(self)) { + self->visible_depth++; + } else { + iterator_descend(self, 0); + } + return; + } + + for (;;) { + if (iterator_tree_is_visible(self)) self->visible_depth--; + TreeCursorEntry entry = array_pop(&self->cursor.stack); + if (iterator_done(self)) return; + + const Subtree *parent = array_back(&self->cursor.stack)->subtree; + uint32_t child_index = entry.child_index + 1; + if (ts_subtree_child_count(*parent) > child_index) { + Length position = length_add(entry.position, ts_subtree_total_size(*entry.subtree)); + uint32_t structural_child_index = entry.structural_child_index; + if (!ts_subtree_extra(*entry.subtree)) structural_child_index++; + const Subtree *next_child = &ts_subtree_children(*parent)[child_index]; + + array_push(&self->cursor.stack, ((TreeCursorEntry) { + .subtree = next_child, + .position = position, + .child_index = child_index, + .structural_child_index = structural_child_index, + })); + + if (iterator_tree_is_visible(self)) { + if (ts_subtree_padding(*next_child).bytes > 0) { + self->in_padding = true; + } else { + self->visible_depth++; + } + } else { + iterator_descend(self, 0); + } + break; + } + } +} + +typedef enum { + IteratorDiffers, + IteratorMayDiffer, + IteratorMatches, +} IteratorComparison; + +static IteratorComparison iterator_compare( + const Iterator *old_iter, + const Iterator *new_iter +) { + Subtree old_tree = NULL_SUBTREE; + Subtree new_tree = NULL_SUBTREE; + uint32_t old_start = 0; + uint32_t new_start = 0; + t_symbol old_alias_symbol = 0; + t_symbol new_alias_symbol = 0; + iterator_get_visible_state(old_iter, &old_tree, &old_alias_symbol, &old_start); + iterator_get_visible_state(new_iter, &new_tree, &new_alias_symbol, &new_start); + + if (!old_tree.ptr && !new_tree.ptr) return IteratorMatches; + if (!old_tree.ptr || !new_tree.ptr) return IteratorDiffers; + + if ( + old_alias_symbol == new_alias_symbol && + ts_subtree_symbol(old_tree) == ts_subtree_symbol(new_tree) + ) { + if (old_start == new_start && + !ts_subtree_has_changes(old_tree) && + ts_subtree_symbol(old_tree) != ts_builtin_sym_error && + ts_subtree_size(old_tree).bytes == ts_subtree_size(new_tree).bytes && + ts_subtree_parse_state(old_tree) != TS_TREE_STATE_NONE && + ts_subtree_parse_state(new_tree) != TS_TREE_STATE_NONE && + (ts_subtree_parse_state(old_tree) == ERROR_STATE) == + (ts_subtree_parse_state(new_tree) == ERROR_STATE)) { + return IteratorMatches; + } else { + return IteratorMayDiffer; + } + } + + return IteratorDiffers; +} + +#ifdef DEBUG_GET_CHANGED_RANGES +static inline void iterator_print_state(Iterator *self) { + TreeCursorEntry entry = *array_back(&self->cursor.stack); + TSPoint start = iterator_start_position(self).extent; + TSPoint end = iterator_end_position(self).extent; + const char *name = ts_language_symbol_name(self->language, ts_subtree_symbol(*entry.subtree)); + printf( + "(%-25s %s\t depth:%u [%u, %u] - [%u, %u])", + name, self->in_padding ? "(p)" : " ", + self->visible_depth, + start.row + 1, start.column, + end.row + 1, end.column + ); +} +#endif + +unsigned ts_subtree_get_changed_ranges( + const Subtree *old_tree, const Subtree *new_tree, + TreeCursor *cursor1, TreeCursor *cursor2, + const t_language *language, + const TSRangeArray *included_range_differences, + t_range **ranges +) { + TSRangeArray results = array_new(); + + Iterator old_iter = iterator_new(cursor1, old_tree, language); + Iterator new_iter = iterator_new(cursor2, new_tree, language); + + unsigned included_range_difference_index = 0; + + Length position = iterator_start_position(&old_iter); + Length next_position = iterator_start_position(&new_iter); + if (position.bytes < next_position.bytes) { + ts_range_array_add(&results, position, next_position); + position = next_position; + } else if (position.bytes > next_position.bytes) { + ts_range_array_add(&results, next_position, position); + next_position = position; + } + + do { + #ifdef DEBUG_GET_CHANGED_RANGES + printf("At [%-2u, %-2u] Compare ", position.extent.row + 1, position.extent.column); + iterator_print_state(&old_iter); + printf("\tvs\t"); + iterator_print_state(&new_iter); + puts(""); + #endif + + // Compare the old and new subtrees. + IteratorComparison comparison = iterator_compare(&old_iter, &new_iter); + + // Even if the two subtrees appear to be identical, they could differ + // internally if they contain a range of text that was previously + // excluded from the parse, and is now included, or vice-versa. + if (comparison == IteratorMatches && ts_range_array_intersects( + included_range_differences, + included_range_difference_index, + position.bytes, + iterator_end_position(&old_iter).bytes + )) { + comparison = IteratorMayDiffer; + } + + bool is_changed = false; + switch (comparison) { + // If the subtrees are definitely identical, move to the end + // of both subtrees. + case IteratorMatches: + next_position = iterator_end_position(&old_iter); + break; + + // If the subtrees might differ internally, descend into both + // subtrees, finding the first child that spans the current position. + case IteratorMayDiffer: + if (iterator_descend(&old_iter, position.bytes)) { + if (!iterator_descend(&new_iter, position.bytes)) { + is_changed = true; + next_position = iterator_end_position(&old_iter); + } + } else if (iterator_descend(&new_iter, position.bytes)) { + is_changed = true; + next_position = iterator_end_position(&new_iter); + } else { + next_position = length_min( + iterator_end_position(&old_iter), + iterator_end_position(&new_iter) + ); + } + break; + + // If the subtrees are different, record a change and then move + // to the end of both subtrees. + case IteratorDiffers: + is_changed = true; + next_position = length_min( + iterator_end_position(&old_iter), + iterator_end_position(&new_iter) + ); + break; + } + + // Ensure that both iterators are caught up to the current position. + while ( + !iterator_done(&old_iter) && + iterator_end_position(&old_iter).bytes <= next_position.bytes + ) iterator_advance(&old_iter); + while ( + !iterator_done(&new_iter) && + iterator_end_position(&new_iter).bytes <= next_position.bytes + ) iterator_advance(&new_iter); + + // Ensure that both iterators are at the same depth in the tree. + while (old_iter.visible_depth > new_iter.visible_depth) { + iterator_ascend(&old_iter); + } + while (new_iter.visible_depth > old_iter.visible_depth) { + iterator_ascend(&new_iter); + } + + if (is_changed) { + #ifdef DEBUG_GET_CHANGED_RANGES + printf( + " change: [[%u, %u] - [%u, %u]]\n", + position.extent.row + 1, position.extent.column, + next_position.extent.row + 1, next_position.extent.column + ); + #endif + + ts_range_array_add(&results, position, next_position); + } + + position = next_position; + + // Keep track of the current position in the included range differences + // array in order to avoid scanning the entire array on each iteration. + while (included_range_difference_index < included_range_differences->size) { + const t_range *range = &included_range_differences->contents[ + included_range_difference_index + ]; + if (range->end_byte <= position.bytes) { + included_range_difference_index++; + } else { + break; + } + } + } while (!iterator_done(&old_iter) && !iterator_done(&new_iter)); + + Length old_size = ts_subtree_total_size(*old_tree); + Length new_size = ts_subtree_total_size(*new_tree); + if (old_size.bytes < new_size.bytes) { + ts_range_array_add(&results, old_size, new_size); + } else if (new_size.bytes < old_size.bytes) { + ts_range_array_add(&results, new_size, old_size); + } + + *cursor1 = old_iter.cursor; + *cursor2 = new_iter.cursor; + *ranges = results.contents; + return results.size; +} +#include "src/language.h" + +#include "src/api.h" +#include + +const t_language *ts_language_copy(const t_language *self) { + return self; +} + +void ts_language_delete(const t_language *self) { + (void)(self); +} + +uint32_t ts_language_symbol_count(const t_language *self) { + return self->symbol_count + self->alias_count; +} + +uint32_t ts_language_state_count(const t_language *self) { + return self->state_count; +} + +uint32_t ts_language_version(const t_language *self) { + return self->version; +} + +uint32_t ts_language_field_count(const t_language *self) { + return self->field_count; +} + +void ts_language_table_entry( + const t_language *self, + t_state_id state, + t_symbol symbol, + TableEntry *result +) { + if (symbol == ts_builtin_sym_error || symbol == ts_builtin_sym_error_repeat) { + result->action_count = 0; + result->is_reusable = false; + result->actions = NULL; + } else { + assert(symbol < self->token_count); + uint32_t action_index = ts_language_lookup(self, state, symbol); + const TSParseActionEntry *entry = &self->parse_actions[action_index]; + result->action_count = entry->entry.count; + result->is_reusable = entry->entry.reusable; + result->actions = (const TSParseAction *)(entry + 1); + } +} + +TSSymbolMetadata ts_language_symbol_metadata( + const t_language *self, + t_symbol symbol +) { + if (symbol == ts_builtin_sym_error) { + return (TSSymbolMetadata) {.visible = true, .named = true}; + } else if (symbol == ts_builtin_sym_error_repeat) { + return (TSSymbolMetadata) {.visible = false, .named = false}; + } else { + return self->symbol_metadata[symbol]; + } +} + +t_symbol ts_language_public_symbol( + const t_language *self, + t_symbol symbol +) { + if (symbol == ts_builtin_sym_error) return symbol; + return self->public_symbol_map[symbol]; +} + +t_state_id ts_language_next_state( + const t_language *self, + t_state_id state, + t_symbol symbol +) { + if (symbol == ts_builtin_sym_error || symbol == ts_builtin_sym_error_repeat) { + return 0; + } else if (symbol < self->token_count) { + uint32_t count; + const TSParseAction *actions = ts_language_actions(self, state, symbol, &count); + if (count > 0) { + TSParseAction action = actions[count - 1]; + if (action.type == TSParseActionTypeShift) { + return action.shift.extra ? state : action.shift.state; + } + } + return 0; + } else { + return ts_language_lookup(self, state, symbol); + } +} + +const char *ts_language_symbol_name( + const t_language *self, + t_symbol symbol +) { + if (symbol == ts_builtin_sym_error) { + return "ERROR"; + } else if (symbol == ts_builtin_sym_error_repeat) { + return "_ERROR"; + } else if (symbol < ts_language_symbol_count(self)) { + return self->symbol_names[symbol]; + } else { + return NULL; + } +} + +t_symbol ts_language_symbol_for_name( + const t_language *self, + const char *string, + uint32_t length, + bool is_named +) { + if (!strncmp(string, "ERROR", length)) return ts_builtin_sym_error; + uint16_t count = (uint16_t)ts_language_symbol_count(self); + for (t_symbol i = 0; i < count; i++) { + TSSymbolMetadata metadata = ts_language_symbol_metadata(self, i); + if ((!metadata.visible && !metadata.supertype) || metadata.named != is_named) continue; + const char *symbol_name = self->symbol_names[i]; + if (!strncmp(symbol_name, string, length) && !symbol_name[length]) { + return self->public_symbol_map[i]; + } + } + return 0; +} + +t_symbol_type ts_language_symbol_type( + const t_language *self, + t_symbol symbol +) { + TSSymbolMetadata metadata = ts_language_symbol_metadata(self, symbol); + if (metadata.named && metadata.visible) { + return TSSymbolTypeRegular; + } else if (metadata.visible) { + return TSSymbolTypeAnonymous; + } else { + return TSSymbolTypeAuxiliary; + } +} + +const char *ts_language_field_name_for_id( + const t_language *self, + t_field_id id +) { + uint32_t count = ts_language_field_count(self); + if (count && id <= count) { + return self->field_names[id]; + } else { + return NULL; + } +} + +t_field_id ts_language_field_id_for_name( + const t_language *self, + const char *name, + uint32_t name_length +) { + uint16_t count = (uint16_t)ts_language_field_count(self); + for (t_symbol i = 1; i < count + 1; i++) { + switch (strncmp(name, self->field_names[i], name_length)) { + case 0: + if (self->field_names[i][name_length] == 0) return i; + break; + case -1: + return 0; + default: + break; + } + } + return 0; +} + +t_lookahead_iterator *ts_lookahead_iterator_new(const t_language *self, t_state_id state) { + if (state >= self->state_count) return NULL; + LookaheadIterator *iterator = ts_malloc(sizeof(LookaheadIterator)); + *iterator = ts_language_lookaheads(self, state); + return (t_lookahead_iterator *)iterator; +} + +void ts_lookahead_iterator_delete(t_lookahead_iterator *self) { + ts_free(self); +} + +bool ts_lookahead_iterator_reset_state(t_lookahead_iterator * self, t_state_id state) { + LookaheadIterator *iterator = (LookaheadIterator *)self; + if (state >= iterator->language->state_count) return false; + *iterator = ts_language_lookaheads(iterator->language, state); + return true; +} + +const t_language *ts_lookahead_iterator_language(const t_lookahead_iterator *self) { + const LookaheadIterator *iterator = (const LookaheadIterator *)self; + return iterator->language; +} + +bool ts_lookahead_iterator_reset(t_lookahead_iterator *self, const t_language *language, t_state_id state) { + if (state >= language->state_count) return false; + LookaheadIterator *iterator = (LookaheadIterator *)self; + *iterator = ts_language_lookaheads(language, state); + return true; +} + +bool ts_lookahead_iterator_next(t_lookahead_iterator *self) { + LookaheadIterator *iterator = (LookaheadIterator *)self; + return ts_lookahead_iterator__next(iterator); +} + +t_symbol ts_lookahead_iterator_current_symbol(const t_lookahead_iterator *self) { + const LookaheadIterator *iterator = (const LookaheadIterator *)self; + return iterator->symbol; +} + +const char *ts_lookahead_iterator_current_symbol_name(const t_lookahead_iterator *self) { + const LookaheadIterator *iterator = (const LookaheadIterator *)self; + return ts_language_symbol_name(iterator->language, iterator->symbol); +} +#include +#include "src/lexer.h" +#include "src/subtree.h" +#include "src/length.h" +//#include "src/unicode.h" + +#define LOG(message, character) \ + if (self->logger.log) { \ + snprintf( \ + self->debug_buffer, \ + TREE_SITTER_SERIALIZATION_BUFFER_SIZE, \ + 32 <= character && character < 127 ? \ + message " character:'%c'" : \ + message " character:%d", \ + character \ + ); \ + self->logger.log( \ + self->logger.payload, \ + TSLogTypeLex, \ + self->debug_buffer \ + ); \ + } + +static const int32_t BYTE_ORDER_MARK = 0xFEFF; + +static const t_range DEFAULT_RANGE = { + .start_point = { + .row = 0, + .column = 0, + }, + .end_point = { + .row = UINT32_MAX, + .column = UINT32_MAX, + }, + .start_byte = 0, + .end_byte = UINT32_MAX +}; + +// Check if the lexer has reached EOF. This state is stored +// by setting the lexer's `current_included_range_index` such that +// it has consumed all of its available ranges. +static bool ts_lexer__eof(const TSLexer *_self) { + Lexer *self = (Lexer *)_self; + return self->current_included_range_index == self->included_range_count; +} + +// Clear the currently stored chunk of source code, because the lexer's +// position has changed. +static void ts_lexer__clear_chunk(Lexer *self) { + self->chunk = NULL; + self->chunk_size = 0; + self->chunk_start = 0; +} + +// Call the lexer's input callback to obtain a new chunk of source code +// for the current position. +static void ts_lexer__get_chunk(Lexer *self) { + self->chunk_start = self->current_position.bytes; + self->chunk = self->input.read( + self->input.payload, + self->current_position.bytes, + self->current_position.extent, + &self->chunk_size + ); + if (!self->chunk_size) { + self->current_included_range_index = self->included_range_count; + self->chunk = NULL; + } +} +typedef uint32_t (*DecodeFunc)( + const uint8_t *string, + uint32_t length, + int32_t *code_point +); + +static uint32_t ts_decode_ascii( + const uint8_t *string, + uint32_t length, + int32_t *code_point +) { + uint32_t i = 1; + (void)(length); + *code_point = *string; + return i; +} + +// Decode the next unicode character in the current chunk of source code. +// This assumes that the lexer has already retrieved a chunk of source +// code that spans the current position. +static void ts_lexer__get_lookahead(Lexer *self) { + uint32_t position_in_chunk = self->current_position.bytes - self->chunk_start; + uint32_t size = self->chunk_size - position_in_chunk; + + if (size == 0) { + self->lookahead_size = 1; + self->data.lookahead = '\0'; + return; + } + + #define TS_DECODE_ERROR -1 + + const uint8_t *chunk = (const uint8_t *)self->chunk + position_in_chunk; + // UnicodeDecodeFunction decode = self->input.encoding == TSInputEncodingUTF8 + // ? ts_decode_utf8 + // : ts_decode_utf16; + + + self->lookahead_size = ts_decode_ascii(chunk, size, &self->data.lookahead); + + // If this chunk ended in the middle of a multi-byte character, + // try again with a fresh chunk. + if (self->data.lookahead == TS_DECODE_ERROR && size < 4) { + ts_lexer__get_chunk(self); + chunk = (const uint8_t *)self->chunk; + size = self->chunk_size; + self->lookahead_size = ts_decode_ascii(chunk, size, &self->data.lookahead); + } + + if (self->data.lookahead == TS_DECODE_ERROR) { + self->lookahead_size = 1; + } +} + +static void ts_lexer_goto(Lexer *self, Length position) { + self->current_position = position; + + // Move to the first valid position at or after the given position. + bool found_included_range = false; + for (unsigned i = 0; i < self->included_range_count; i++) { + t_range *included_range = &self->included_ranges[i]; + if ( + included_range->end_byte > self->current_position.bytes && + included_range->end_byte > included_range->start_byte + ) { + if (included_range->start_byte >= self->current_position.bytes) { + self->current_position = (Length) { + .bytes = included_range->start_byte, + .extent = included_range->start_point, + }; + } + + self->current_included_range_index = i; + found_included_range = true; + break; + } + } + + if (found_included_range) { + // If the current position is outside of the current chunk of text, + // then clear out the current chunk of text. + if (self->chunk && ( + self->current_position.bytes < self->chunk_start || + self->current_position.bytes >= self->chunk_start + self->chunk_size + )) { + ts_lexer__clear_chunk(self); + } + + self->lookahead_size = 0; + self->data.lookahead = '\0'; + } + + // If the given position is beyond any of included ranges, move to the EOF + // state - past the end of the included ranges. + else { + self->current_included_range_index = self->included_range_count; + t_range *last_included_range = &self->included_ranges[self->included_range_count - 1]; + self->current_position = (Length) { + .bytes = last_included_range->end_byte, + .extent = last_included_range->end_point, + }; + ts_lexer__clear_chunk(self); + self->lookahead_size = 1; + self->data.lookahead = '\0'; + } +} + +// Intended to be called only from functions that control logging. +static void ts_lexer__do_advance(Lexer *self, bool skip) { + if (self->lookahead_size) { + self->current_position.bytes += self->lookahead_size; + if (self->data.lookahead == '\n') { + self->current_position.extent.row++; + self->current_position.extent.column = 0; + } else { + self->current_position.extent.column += self->lookahead_size; + } + } + + const t_range *current_range = &self->included_ranges[self->current_included_range_index]; + while ( + self->current_position.bytes >= current_range->end_byte || + current_range->end_byte == current_range->start_byte + ) { + if (self->current_included_range_index < self->included_range_count) { + self->current_included_range_index++; + } + if (self->current_included_range_index < self->included_range_count) { + current_range++; + self->current_position = (Length) { + current_range->start_byte, + current_range->start_point, + }; + } else { + current_range = NULL; + break; + } + } + + if (skip) self->token_start_position = self->current_position; + + if (current_range) { + if ( + self->current_position.bytes < self->chunk_start || + self->current_position.bytes >= self->chunk_start + self->chunk_size + ) { + ts_lexer__get_chunk(self); + } + ts_lexer__get_lookahead(self); + } else { + ts_lexer__clear_chunk(self); + self->data.lookahead = '\0'; + self->lookahead_size = 1; + } +} + +// Advance to the next character in the source code, retrieving a new +// chunk of source code if needed. +static void ts_lexer__advance(TSLexer *_self, bool skip) { + Lexer *self = (Lexer *)_self; + if (!self->chunk) return; + + if (skip) { + LOG("skip", self->data.lookahead) + } else { + LOG("consume", self->data.lookahead) + } + + ts_lexer__do_advance(self, skip); +} + +// Mark that a token match has completed. This can be called multiple +// times if a longer match is found later. +static void ts_lexer__mark_end(TSLexer *_self) { + Lexer *self = (Lexer *)_self; + if (!ts_lexer__eof(&self->data)) { + // If the lexer is right at the beginning of included range, + // then the token should be considered to end at the *end* of the + // previous included range, rather than here. + t_range *current_included_range = &self->included_ranges[ + self->current_included_range_index + ]; + if ( + self->current_included_range_index > 0 && + self->current_position.bytes == current_included_range->start_byte + ) { + t_range *previous_included_range = current_included_range - 1; + self->token_end_position = (Length) { + previous_included_range->end_byte, + previous_included_range->end_point, + }; + return; + } + } + self->token_end_position = self->current_position; +} + +static uint32_t ts_lexer__get_column(TSLexer *_self) { + Lexer *self = (Lexer *)_self; + + uint32_t goal_byte = self->current_position.bytes; + + self->did_get_column = true; + self->current_position.bytes -= self->current_position.extent.column; + self->current_position.extent.column = 0; + + if (self->current_position.bytes < self->chunk_start) { + ts_lexer__get_chunk(self); + } + + uint32_t result = 0; + if (!ts_lexer__eof(_self)) { + ts_lexer__get_lookahead(self); + while (self->current_position.bytes < goal_byte && self->chunk) { + result++; + ts_lexer__do_advance(self, false); + if (ts_lexer__eof(_self)) break; + } + } + + return result; +} + +// Is the lexer at a boundary between two disjoint included ranges of +// source code? This is exposed as an API because some languages' external +// scanners need to perform custom actions at these boundaries. +static bool ts_lexer__is_at_included_range_start(const TSLexer *_self) { + const Lexer *self = (const Lexer *)_self; + if (self->current_included_range_index < self->included_range_count) { + t_range *current_range = &self->included_ranges[self->current_included_range_index]; + return self->current_position.bytes == current_range->start_byte; + } else { + return false; + } +} + +void ts_lexer_init(Lexer *self) { + *self = (Lexer) { + .data = { + // The lexer's methods are stored as struct fields so that generated + // parsers can call them without needing to be linked against this + // library. + .advance = ts_lexer__advance, + .mark_end = ts_lexer__mark_end, + .get_column = ts_lexer__get_column, + .is_at_included_range_start = ts_lexer__is_at_included_range_start, + .eof = ts_lexer__eof, + .lookahead = 0, + .result_symbol = 0, + }, + .chunk = NULL, + .chunk_size = 0, + .chunk_start = 0, + .current_position = {0, {0, 0}}, + .logger = { + .payload = NULL, + .log = NULL + }, + .included_ranges = NULL, + .included_range_count = 0, + .current_included_range_index = 0, + }; + ts_lexer_set_included_ranges(self, NULL, 0); +} + +void ts_lexer_delete(Lexer *self) { + ts_free(self->included_ranges); +} + +void ts_lexer_set_input(Lexer *self, t_input input) { + self->input = input; + ts_lexer__clear_chunk(self); + ts_lexer_goto(self, self->current_position); +} + +// Move the lexer to the given position. This doesn't do any work +// if the parser is already at the given position. +void ts_lexer_reset(Lexer *self, Length position) { + if (position.bytes != self->current_position.bytes) { + ts_lexer_goto(self, position); + } +} + +void ts_lexer_start(Lexer *self) { + self->token_start_position = self->current_position; + self->token_end_position = LENGTH_UNDEFINED; + self->data.result_symbol = 0; + self->did_get_column = false; + if (!ts_lexer__eof(&self->data)) { + if (!self->chunk_size) ts_lexer__get_chunk(self); + if (!self->lookahead_size) ts_lexer__get_lookahead(self); + if ( + self->current_position.bytes == 0 && + self->data.lookahead == BYTE_ORDER_MARK + ) ts_lexer__advance(&self->data, true); + } +} + +void ts_lexer_finish(Lexer *self, uint32_t *lookahead_end_byte) { + if (length_is_undefined(self->token_end_position)) { + ts_lexer__mark_end(&self->data); + } + + // If the token ended at an included range boundary, then its end position + // will have been reset to the end of the preceding range. Reset the start + // position to match. + if (self->token_end_position.bytes < self->token_start_position.bytes) { + self->token_start_position = self->token_end_position; + } + + uint32_t current_lookahead_end_byte = self->current_position.bytes + 1; + + // In order to determine that a byte sequence is invalid UTF8 or UTF16, + // the character decoding algorithm may have looked at the following byte. + // Therefore, the next byte *after* the current (invalid) character + // affects the interpretation of the current character. + if (self->data.lookahead == TS_DECODE_ERROR) { + current_lookahead_end_byte++; + } + + if (current_lookahead_end_byte > *lookahead_end_byte) { + *lookahead_end_byte = current_lookahead_end_byte; + } +} + +void ts_lexer_advance_to_end(Lexer *self) { + while (self->chunk) { + ts_lexer__advance(&self->data, false); + } +} + +void ts_lexer_mark_end(Lexer *self) { + ts_lexer__mark_end(&self->data); +} + +bool ts_lexer_set_included_ranges( + Lexer *self, + const t_range *ranges, + uint32_t count +) { + if (count == 0 || !ranges) { + ranges = &DEFAULT_RANGE; + count = 1; + } else { + uint32_t previous_byte = 0; + for (unsigned i = 0; i < count; i++) { + const t_range *range = &ranges[i]; + if ( + range->start_byte < previous_byte || + range->end_byte < range->start_byte + ) return false; + previous_byte = range->end_byte; + } + } + + size_t size = count * sizeof(t_range); + self->included_ranges = ts_realloc(self->included_ranges, size); + memcpy(self->included_ranges, ranges, size); + self->included_range_count = count; + ts_lexer_goto(self, self->current_position); + return true; +} + +t_range *ts_lexer_included_ranges(const Lexer *self, uint32_t *count) { + *count = self->included_range_count; + return self->included_ranges; +} + +#undef LOG + + + + + + + + + + + + + +#include +#include "src/subtree.h" +#include "src/tree.h" +#include "src/language.h" + +typedef struct { + Subtree parent; + const t_tree *tree; + Length position; + uint32_t child_index; + uint32_t structural_child_index; + const t_symbol *alias_sequence; +} NodeChildIterator; + +// TSNode - constructors + +t_parse_node ts_node_new( + const t_tree *tree, + const Subtree *subtree, + Length position, + t_symbol alias +) { + return (t_parse_node) { + {position.bytes, position.extent.row, position.extent.column, alias}, + subtree, + tree, + }; +} + +static inline t_parse_node ts_node__null(void) { + return ts_node_new(NULL, NULL, length_zero(), 0); +} + +// TSNode - accessors + +uint32_t ts_node_start_byte(t_parse_node self) { + return self.context[0]; +} + +t_point ts_node_start_point(t_parse_node self) { + return (t_point) {self.context[1], self.context[2]}; +} + +static inline uint32_t ts_node__alias(const t_parse_node *self) { + return self->context[3]; +} + +static inline Subtree ts_node__subtree(t_parse_node self) { + return *(const Subtree *)self.id; +} + +// NodeChildIterator + +static inline NodeChildIterator ts_node_iterate_children(const t_parse_node *node) { + Subtree subtree = ts_node__subtree(*node); + if (ts_subtree_child_count(subtree) == 0) { + return (NodeChildIterator) {NULL_SUBTREE, node->tree, length_zero(), 0, 0, NULL}; + } + const t_symbol *alias_sequence = ts_language_alias_sequence( + node->tree->language, + subtree.ptr->production_id + ); + return (NodeChildIterator) { + .tree = node->tree, + .parent = subtree, + .position = {ts_node_start_byte(*node), ts_node_start_point(*node)}, + .child_index = 0, + .structural_child_index = 0, + .alias_sequence = alias_sequence, + }; +} + +static inline bool ts_node_child_iterator_done(NodeChildIterator *self) { + return self->child_index == self->parent.ptr->child_count; +} + +static inline bool ts_node_child_iterator_next( + NodeChildIterator *self, + t_parse_node *result +) { + if (!self->parent.ptr || ts_node_child_iterator_done(self)) return false; + const Subtree *child = &ts_subtree_children(self->parent)[self->child_index]; + t_symbol alias_symbol = 0; + if (!ts_subtree_extra(*child)) { + if (self->alias_sequence) { + alias_symbol = self->alias_sequence[self->structural_child_index]; + } + self->structural_child_index++; + } + if (self->child_index > 0) { + self->position = length_add(self->position, ts_subtree_padding(*child)); + } + *result = ts_node_new( + self->tree, + child, + self->position, + alias_symbol + ); + self->position = length_add(self->position, ts_subtree_size(*child)); + self->child_index++; + return true; +} + +// TSNode - private + +static inline bool ts_node__is_relevant(t_parse_node self, bool include_anonymous) { + Subtree tree = ts_node__subtree(self); + if (include_anonymous) { + return ts_subtree_visible(tree) || ts_node__alias(&self); + } else { + t_symbol alias = ts_node__alias(&self); + if (alias) { + return ts_language_symbol_metadata(self.tree->language, alias).named; + } else { + return ts_subtree_visible(tree) && ts_subtree_named(tree); + } + } +} + +static inline uint32_t ts_node__relevant_child_count( + t_parse_node self, + bool include_anonymous +) { + Subtree tree = ts_node__subtree(self); + if (ts_subtree_child_count(tree) > 0) { + if (include_anonymous) { + return tree.ptr->visible_child_count; + } else { + return tree.ptr->named_child_count; + } + } else { + return 0; + } +} + +static inline t_parse_node ts_node__child( + t_parse_node self, + uint32_t child_index, + bool include_anonymous +) { + t_parse_node result = self; + bool did_descend = true; + + while (did_descend) { + did_descend = false; + + t_parse_node child; + uint32_t index = 0; + NodeChildIterator iterator = ts_node_iterate_children(&result); + while (ts_node_child_iterator_next(&iterator, &child)) { + if (ts_node__is_relevant(child, include_anonymous)) { + if (index == child_index) { + return child; + } + index++; + } else { + uint32_t grandchild_index = child_index - index; + uint32_t grandchild_count = ts_node__relevant_child_count(child, include_anonymous); + if (grandchild_index < grandchild_count) { + did_descend = true; + result = child; + child_index = grandchild_index; + break; + } + index += grandchild_count; + } + } + } + + return ts_node__null(); +} + +static bool ts_subtree_has_trailing_empty_descendant( + Subtree self, + Subtree other +) { + for (unsigned i = ts_subtree_child_count(self) - 1; i + 1 > 0; i--) { + Subtree child = ts_subtree_children(self)[i]; + if (ts_subtree_total_bytes(child) > 0) break; + if (child.ptr == other.ptr || ts_subtree_has_trailing_empty_descendant(child, other)) { + return true; + } + } + return false; +} + +static inline t_parse_node ts_node__prev_sibling(t_parse_node self, bool include_anonymous) { + Subtree self_subtree = ts_node__subtree(self); + bool self_is_empty = ts_subtree_total_bytes(self_subtree) == 0; + uint32_t target_end_byte = ts_node_end_byte(self); + + t_parse_node node = ts_node_parent(self); + t_parse_node earlier_node = ts_node__null(); + bool earlier_node_is_relevant = false; + + while (!ts_node_is_null(node)) { + t_parse_node earlier_child = ts_node__null(); + bool earlier_child_is_relevant = false; + bool found_child_containing_target = false; + + t_parse_node child; + NodeChildIterator iterator = ts_node_iterate_children(&node); + while (ts_node_child_iterator_next(&iterator, &child)) { + if (child.id == self.id) break; + if (iterator.position.bytes > target_end_byte) { + found_child_containing_target = true; + break; + } + + if (iterator.position.bytes == target_end_byte && + (!self_is_empty || + ts_subtree_has_trailing_empty_descendant(ts_node__subtree(child), self_subtree))) { + found_child_containing_target = true; + break; + } + + if (ts_node__is_relevant(child, include_anonymous)) { + earlier_child = child; + earlier_child_is_relevant = true; + } else if (ts_node__relevant_child_count(child, include_anonymous) > 0) { + earlier_child = child; + earlier_child_is_relevant = false; + } + } + + if (found_child_containing_target) { + if (!ts_node_is_null(earlier_child)) { + earlier_node = earlier_child; + earlier_node_is_relevant = earlier_child_is_relevant; + } + node = child; + } else if (earlier_child_is_relevant) { + return earlier_child; + } else if (!ts_node_is_null(earlier_child)) { + node = earlier_child; + } else if (earlier_node_is_relevant) { + return earlier_node; + } else { + node = earlier_node; + earlier_node = ts_node__null(); + earlier_node_is_relevant = false; + } + } + + return ts_node__null(); +} + +static inline t_parse_node ts_node__next_sibling(t_parse_node self, bool include_anonymous) { + uint32_t target_end_byte = ts_node_end_byte(self); + + t_parse_node node = ts_node_parent(self); + t_parse_node later_node = ts_node__null(); + bool later_node_is_relevant = false; + + while (!ts_node_is_null(node)) { + t_parse_node later_child = ts_node__null(); + bool later_child_is_relevant = false; + t_parse_node child_containing_target = ts_node__null(); + + t_parse_node child; + NodeChildIterator iterator = ts_node_iterate_children(&node); + while (ts_node_child_iterator_next(&iterator, &child)) { + if (iterator.position.bytes < target_end_byte) continue; + if (ts_node_start_byte(child) <= ts_node_start_byte(self)) { + if (ts_node__subtree(child).ptr != ts_node__subtree(self).ptr) { + child_containing_target = child; + } + } else if (ts_node__is_relevant(child, include_anonymous)) { + later_child = child; + later_child_is_relevant = true; + break; + } else if (ts_node__relevant_child_count(child, include_anonymous) > 0) { + later_child = child; + later_child_is_relevant = false; + break; + } + } + + if (!ts_node_is_null(child_containing_target)) { + if (!ts_node_is_null(later_child)) { + later_node = later_child; + later_node_is_relevant = later_child_is_relevant; + } + node = child_containing_target; + } else if (later_child_is_relevant) { + return later_child; + } else if (!ts_node_is_null(later_child)) { + node = later_child; + } else if (later_node_is_relevant) { + return later_node; + } else { + node = later_node; + } + } + + return ts_node__null(); +} + +static inline t_parse_node ts_node__first_child_for_byte( + t_parse_node self, + uint32_t goal, + bool include_anonymous +) { + t_parse_node node = self; + bool did_descend = true; + + while (did_descend) { + did_descend = false; + + t_parse_node child; + NodeChildIterator iterator = ts_node_iterate_children(&node); + while (ts_node_child_iterator_next(&iterator, &child)) { + if (ts_node_end_byte(child) > goal) { + if (ts_node__is_relevant(child, include_anonymous)) { + return child; + } else if (ts_node_child_count(child) > 0) { + did_descend = true; + node = child; + break; + } + } + } + } + + return ts_node__null(); +} + +static inline t_parse_node ts_node__descendant_for_byte_range( + t_parse_node self, + uint32_t range_start, + uint32_t range_end, + bool include_anonymous +) { + t_parse_node node = self; + t_parse_node last_visible_node = self; + + bool did_descend = true; + while (did_descend) { + did_descend = false; + + t_parse_node child; + NodeChildIterator iterator = ts_node_iterate_children(&node); + while (ts_node_child_iterator_next(&iterator, &child)) { + uint32_t node_end = iterator.position.bytes; + + // The end of this node must extend far enough forward to touch + // the end of the range and exceed the start of the range. + if (node_end < range_end) continue; + if (node_end <= range_start) continue; + + // The start of this node must extend far enough backward to + // touch the start of the range. + if (range_start < ts_node_start_byte(child)) break; + + node = child; + if (ts_node__is_relevant(node, include_anonymous)) { + last_visible_node = node; + } + did_descend = true; + break; + } + } + + return last_visible_node; +} + +static inline t_parse_node ts_node__descendant_for_point_range( + t_parse_node self, + t_point range_start, + t_point range_end, + bool include_anonymous +) { + t_parse_node node = self; + t_parse_node last_visible_node = self; + + bool did_descend = true; + while (did_descend) { + did_descend = false; + + t_parse_node child; + NodeChildIterator iterator = ts_node_iterate_children(&node); + while (ts_node_child_iterator_next(&iterator, &child)) { + t_point node_end = iterator.position.extent; + + // The end of this node must extend far enough forward to touch + // the end of the range and exceed the start of the range. + if (point_lt(node_end, range_end)) continue; + if (point_lte(node_end, range_start)) continue; + + // The start of this node must extend far enough backward to + // touch the start of the range. + if (point_lt(range_start, ts_node_start_point(child))) break; + + node = child; + if (ts_node__is_relevant(node, include_anonymous)) { + last_visible_node = node; + } + did_descend = true; + break; + } + } + + return last_visible_node; +} + +// TSNode - public + +uint32_t ts_node_end_byte(t_parse_node self) { + return ts_node_start_byte(self) + ts_subtree_size(ts_node__subtree(self)).bytes; +} + +t_point ts_node_end_point(t_parse_node self) { + return point_add(ts_node_start_point(self), ts_subtree_size(ts_node__subtree(self)).extent); +} + +t_symbol ts_node_symbol(t_parse_node self) { + t_symbol symbol = ts_node__alias(&self); + if (!symbol) symbol = ts_subtree_symbol(ts_node__subtree(self)); + return ts_language_public_symbol(self.tree->language, symbol); +} + +const char *ts_node_type(t_parse_node self) { + t_symbol symbol = ts_node__alias(&self); + if (!symbol) symbol = ts_subtree_symbol(ts_node__subtree(self)); + return ts_language_symbol_name(self.tree->language, symbol); +} + +const t_language *ts_node_language(t_parse_node self) { + return self.tree->language; +} + +t_symbol ts_node_grammar_symbol(t_parse_node self) { + return ts_subtree_symbol(ts_node__subtree(self)); +} + +const char *ts_node_grammar_type(t_parse_node self) { + t_symbol symbol = ts_subtree_symbol(ts_node__subtree(self)); + return ts_language_symbol_name(self.tree->language, symbol); +} + +char *ts_node_string(t_parse_node self) { + t_symbol alias_symbol = ts_node__alias(&self); + return ts_subtree_string( + ts_node__subtree(self), + alias_symbol, + ts_language_symbol_metadata(self.tree->language, alias_symbol).visible, + self.tree->language, + false + ); +} + +bool ts_node_eq(t_parse_node self, t_parse_node other) { + return self.tree == other.tree && self.id == other.id; +} + +bool ts_node_is_null(t_parse_node self) { + return self.id == 0; +} + +bool ts_node_is_extra(t_parse_node self) { + return ts_subtree_extra(ts_node__subtree(self)); +} + +bool ts_node_is_named(t_parse_node self) { + t_symbol alias = ts_node__alias(&self); + return alias + ? ts_language_symbol_metadata(self.tree->language, alias).named + : ts_subtree_named(ts_node__subtree(self)); +} + +bool ts_node_is_missing(t_parse_node self) { + return ts_subtree_missing(ts_node__subtree(self)); +} + +bool ts_node_has_changes(t_parse_node self) { + return ts_subtree_has_changes(ts_node__subtree(self)); +} + +bool ts_node_has_error(t_parse_node self) { + return ts_subtree_error_cost(ts_node__subtree(self)) > 0; +} + +bool ts_node_is_error(t_parse_node self) { + t_symbol symbol = ts_node_symbol(self); + return symbol == ts_builtin_sym_error; +} + +uint32_t ts_node_descendant_count(t_parse_node self) { + return ts_subtree_visible_descendant_count(ts_node__subtree(self)) + 1; +} + +t_state_id ts_node_parse_state(t_parse_node self) { + return ts_subtree_parse_state(ts_node__subtree(self)); +} + +t_state_id ts_node_next_parse_state(t_parse_node self) { + const t_language *language = self.tree->language; + uint16_t state = ts_node_parse_state(self); + if (state == TS_TREE_STATE_NONE) { + return TS_TREE_STATE_NONE; + } + uint16_t symbol = ts_node_grammar_symbol(self); + return ts_language_next_state(language, state, symbol); +} + +t_parse_node ts_node_parent(t_parse_node self) { + t_parse_node node = ts_tree_root_node(self.tree); + if (node.id == self.id) return ts_node__null(); + + while (true) { + t_parse_node next_node = ts_node_child_containing_descendant(node, self); + if (ts_node_is_null(next_node)) break; + node = next_node; + } + + return node; +} + +t_parse_node ts_node_child_containing_descendant(t_parse_node self, t_parse_node subnode) { + uint32_t start_byte = ts_node_start_byte(subnode); + uint32_t end_byte = ts_node_end_byte(subnode); + + do { + NodeChildIterator iter = ts_node_iterate_children(&self); + do { + if ( + !ts_node_child_iterator_next(&iter, &self) + || ts_node_start_byte(self) > start_byte + || self.id == subnode.id + ) { + return ts_node__null(); + } + } while (iter.position.bytes < end_byte || ts_node_child_count(self) == 0); + } while (!ts_node__is_relevant(self, true)); + + return self; +} + +t_parse_node ts_node_child(t_parse_node self, uint32_t child_index) { + return ts_node__child(self, child_index, true); +} + +t_parse_node ts_node_named_child(t_parse_node self, uint32_t child_index) { + return ts_node__child(self, child_index, false); +} + +t_parse_node ts_node_child_by_field_id(t_parse_node self, t_field_id field_id) { +recur: + if (!field_id || ts_node_child_count(self) == 0) return ts_node__null(); + + const TSFieldMapEntry *field_map, *field_map_end; + ts_language_field_map( + self.tree->language, + ts_node__subtree(self).ptr->production_id, + &field_map, + &field_map_end + ); + if (field_map == field_map_end) return ts_node__null(); + + // The field mappings are sorted by their field id. Scan all + // the mappings to find the ones for the given field id. + while (field_map->field_id < field_id) { + field_map++; + if (field_map == field_map_end) return ts_node__null(); + } + while (field_map_end[-1].field_id > field_id) { + field_map_end--; + if (field_map == field_map_end) return ts_node__null(); + } + + t_parse_node child; + NodeChildIterator iterator = ts_node_iterate_children(&self); + while (ts_node_child_iterator_next(&iterator, &child)) { + if (!ts_subtree_extra(ts_node__subtree(child))) { + uint32_t index = iterator.structural_child_index - 1; + if (index < field_map->child_index) continue; + + // Hidden nodes' fields are "inherited" by their visible parent. + if (field_map->inherited) { + + // If this is the *last* possible child node for this field, + // then perform a tail call to avoid recursion. + if (field_map + 1 == field_map_end) { + self = child; + goto recur; + } + + // Otherwise, descend into this child, but if it doesn't contain + // the field, continue searching subsequent children. + else { + t_parse_node result = ts_node_child_by_field_id(child, field_id); + if (result.id) return result; + field_map++; + if (field_map == field_map_end) return ts_node__null(); + } + } + + else if (ts_node__is_relevant(child, true)) { + return child; + } + + // If the field refers to a hidden node with visible children, + // return the first visible child. + else if (ts_node_child_count(child) > 0 ) { + return ts_node_child(child, 0); + } + + // Otherwise, continue searching subsequent children. + else { + field_map++; + if (field_map == field_map_end) return ts_node__null(); + } + } + } + + return ts_node__null(); +} + +static inline const char *ts_node__field_name_from_language(t_parse_node self, uint32_t structural_child_index) { + const TSFieldMapEntry *field_map, *field_map_end; + ts_language_field_map( + self.tree->language, + ts_node__subtree(self).ptr->production_id, + &field_map, + &field_map_end + ); + for (; field_map != field_map_end; field_map++) { + if (!field_map->inherited && field_map->child_index == structural_child_index) { + return self.tree->language->field_names[field_map->field_id]; + } + } + return NULL; +} + +const char *ts_node_field_name_for_child(t_parse_node self, uint32_t child_index) { + t_parse_node result = self; + bool did_descend = true; + const char *inherited_field_name = NULL; + + while (did_descend) { + did_descend = false; + + t_parse_node child; + uint32_t index = 0; + NodeChildIterator iterator = ts_node_iterate_children(&result); + while (ts_node_child_iterator_next(&iterator, &child)) { + if (ts_node__is_relevant(child, true)) { + if (index == child_index) { + const char *field_name = ts_node__field_name_from_language(result, iterator.structural_child_index - 1); + if (field_name) return field_name; + return inherited_field_name; + } + index++; + } else { + uint32_t grandchild_index = child_index - index; + uint32_t grandchild_count = ts_node__relevant_child_count(child, true); + if (grandchild_index < grandchild_count) { + const char *field_name = ts_node__field_name_from_language(result, iterator.structural_child_index - 1); + if (field_name) inherited_field_name = field_name; + + did_descend = true; + result = child; + child_index = grandchild_index; + break; + } + index += grandchild_count; + } + } + } + + return NULL; +} + +t_parse_node ts_node_child_by_field_name( + t_parse_node self, + const char *name, + uint32_t name_length +) { + t_field_id field_id = ts_language_field_id_for_name( + self.tree->language, + name, + name_length + ); + return ts_node_child_by_field_id(self, field_id); +} + +uint32_t ts_node_child_count(t_parse_node self) { + Subtree tree = ts_node__subtree(self); + if (ts_subtree_child_count(tree) > 0) { + return tree.ptr->visible_child_count; + } else { + return 0; + } +} + +uint32_t ts_node_named_child_count(t_parse_node self) { + Subtree tree = ts_node__subtree(self); + if (ts_subtree_child_count(tree) > 0) { + return tree.ptr->named_child_count; + } else { + return 0; + } +} + +t_parse_node ts_node_next_sibling(t_parse_node self) { + return ts_node__next_sibling(self, true); +} + +t_parse_node ts_node_next_named_sibling(t_parse_node self) { + return ts_node__next_sibling(self, false); +} + +t_parse_node ts_node_prev_sibling(t_parse_node self) { + return ts_node__prev_sibling(self, true); +} + +t_parse_node ts_node_prev_named_sibling(t_parse_node self) { + return ts_node__prev_sibling(self, false); +} + +t_parse_node ts_node_first_child_for_byte(t_parse_node self, uint32_t byte) { + return ts_node__first_child_for_byte(self, byte, true); +} + +t_parse_node ts_node_first_named_child_for_byte(t_parse_node self, uint32_t byte) { + return ts_node__first_child_for_byte(self, byte, false); +} + +t_parse_node ts_node_descendant_for_byte_range( + t_parse_node self, + uint32_t start, + uint32_t end +) { + return ts_node__descendant_for_byte_range(self, start, end, true); +} + +t_parse_node ts_node_named_descendant_for_byte_range( + t_parse_node self, + uint32_t start, + uint32_t end +) { + return ts_node__descendant_for_byte_range(self, start, end, false); +} + +t_parse_node ts_node_descendant_for_point_range( + t_parse_node self, + t_point start, + t_point end +) { + return ts_node__descendant_for_point_range(self, start, end, true); +} + +t_parse_node ts_node_named_descendant_for_point_range( + t_parse_node self, + t_point start, + t_point end +) { + return ts_node__descendant_for_point_range(self, start, end, false); +} + +void ts_node_edit(t_parse_node *self, const t_input_edit *edit) { + uint32_t start_byte = ts_node_start_byte(*self); + t_point start_point = ts_node_start_point(*self); + + if (start_byte >= edit->old_end_byte) { + start_byte = edit->new_end_byte + (start_byte - edit->old_end_byte); + start_point = point_add(edit->new_end_point, point_sub(start_point, edit->old_end_point)); + } else if (start_byte > edit->start_byte) { + start_byte = edit->new_end_byte; + start_point = edit->new_end_point; + } + + self->context[0] = start_byte; + self->context[1] = start_point.row; + self->context[2] = start_point.column; +} + + +#include +#include +#include +#include +#include +#include +#include "src/api.h" +#include "src/alloc.h" +#include "src/array.h" +#include "src/atomic.h" +#include "src/clock.h" +#include "src/error_costs.h" +#include "src/get_changed_ranges.h" +#include "src/language.h" +#include "src/length.h" +#include "src/lexer.h" +#include "src/reduce_action.h" +#include "src/reusable_node.h" +#include "src/stack.h" +#include "src/subtree.h" +#include "src/tree.h" + + +#define LOG(...) \ + if (self->lexer.logger.log || self->dot_graph_file) { \ + snprintf(self->lexer.debug_buffer, TREE_SITTER_SERIALIZATION_BUFFER_SIZE, __VA_ARGS__); \ + ts_parser__log(self); \ + } + +#define LOG_LOOKAHEAD(symbol_name, size) \ + if (self->lexer.logger.log || self->dot_graph_file) { \ + char *buf = self->lexer.debug_buffer; \ + const char *symbol = symbol_name; \ + int off = sprintf(buf, "lexed_lookahead sym:"); \ + for ( \ + int i = 0; \ + symbol[i] != '\0' \ + && off < TREE_SITTER_SERIALIZATION_BUFFER_SIZE; \ + i++ \ + ) { \ + switch (symbol[i]) { \ + case '\t': buf[off++] = '\\'; buf[off++] = 't'; break; \ + case '\n': buf[off++] = '\\'; buf[off++] = 'n'; break; \ + case '\v': buf[off++] = '\\'; buf[off++] = 'v'; break; \ + case '\f': buf[off++] = '\\'; buf[off++] = 'f'; break; \ + case '\r': buf[off++] = '\\'; buf[off++] = 'r'; break; \ + case '\\': buf[off++] = '\\'; buf[off++] = '\\'; break; \ + default: buf[off++] = symbol[i]; break; \ + } \ + } \ + snprintf( \ + buf + off, \ + TREE_SITTER_SERIALIZATION_BUFFER_SIZE - off, \ + ", size:%u", \ + size \ + ); \ + ts_parser__log(self); \ + } + +#define LOG_STACK() \ + if (self->dot_graph_file) { \ + ts_stack_print_dot_graph(self->stack, self->language, self->dot_graph_file); \ + fputs("\n\n", self->dot_graph_file); \ + } + +#define LOG_TREE(tree) \ + if (self->dot_graph_file) { \ + ts_subtree_print_dot_graph(tree, self->language, self->dot_graph_file); \ + fputs("\n", self->dot_graph_file); \ + } + +#define SYM_NAME(symbol) ts_language_symbol_name(self->language, symbol) + +#define TREE_NAME(tree) SYM_NAME(ts_subtree_symbol(tree)) + +static const unsigned MAX_VERSION_COUNT = 6; +static const unsigned MAX_VERSION_COUNT_OVERFLOW = 4; +static const unsigned MAX_SUMMARY_DEPTH = 16; +static const unsigned MAX_COST_DIFFERENCE = 16 * ERROR_COST_PER_SKIPPED_TREE; +static const unsigned OP_COUNT_PER_TIMEOUT_CHECK = 100; + +typedef struct { + Subtree token; + Subtree last_external_token; + uint32_t byte_index; +} TokenCache; + +struct t_parser { + Lexer lexer; + Stack *stack; + SubtreePool tree_pool; + const t_language *language; + ReduceActionSet reduce_actions; + Subtree finished_tree; + SubtreeArray trailing_extras; + SubtreeArray trailing_extras2; + SubtreeArray scratch_trees; + TokenCache token_cache; + ReusableNode reusable_node; + void *external_scanner_payload; + FILE *dot_graph_file; + TSClock end_clock; + TSDuration timeout_duration; + unsigned accept_count; + unsigned operation_count; + const volatile size_t *cancellation_flag; + Subtree old_tree; + TSRangeArray included_range_differences; + unsigned included_range_difference_index; + bool has_scanner_error; +}; + +typedef struct { + unsigned cost; + unsigned node_count; + int dynamic_precedence; + bool is_in_error; +} ErrorStatus; + +typedef enum { + ErrorComparisonTakeLeft, + ErrorComparisonPreferLeft, + ErrorComparisonNone, + ErrorComparisonPreferRight, + ErrorComparisonTakeRight, +} ErrorComparison; + +typedef struct { + const char *string; + uint32_t length; +} TSStringInput; + +// StringInput + +static const char *ts_string_input_read( + void *_self, + uint32_t byte, + t_point point, + uint32_t *length +) { + (void)point; + TSStringInput *self = (TSStringInput *)_self; + if (byte >= self->length) { + *length = 0; + return ""; + } else { + *length = self->length - byte; + return self->string + byte; + } +} + +// Parser - Private + +static void ts_parser__log(t_parser *self) { + if (self->lexer.logger.log) { + self->lexer.logger.log( + self->lexer.logger.payload, + TSLogTypeParse, + self->lexer.debug_buffer + ); + } + + if (self->dot_graph_file) { + fprintf(self->dot_graph_file, "graph {\nlabel=\""); + for (char *chr = &self->lexer.debug_buffer[0]; *chr != 0; chr++) { + if (*chr == '"' || *chr == '\\') fputc('\\', self->dot_graph_file); + fputc(*chr, self->dot_graph_file); + } + fprintf(self->dot_graph_file, "\"\n}\n\n"); + } +} + +static bool ts_parser__breakdown_top_of_stack( + t_parser *self, + StackVersion version +) { + bool did_break_down = false; + bool pending = false; + + do { + StackSliceArray pop = ts_stack_pop_pending(self->stack, version); + if (!pop.size) break; + + did_break_down = true; + pending = false; + for (uint32_t i = 0; i < pop.size; i++) { + StackSlice slice = pop.contents[i]; + t_state_id state = ts_stack_state(self->stack, slice.version); + Subtree parent = *array_front(&slice.subtrees); + + for (uint32_t j = 0, n = ts_subtree_child_count(parent); j < n; j++) { + Subtree child = ts_subtree_children(parent)[j]; + pending = ts_subtree_child_count(child) > 0; + + if (ts_subtree_is_error(child)) { + state = ERROR_STATE; + } else if (!ts_subtree_extra(child)) { + state = ts_language_next_state(self->language, state, ts_subtree_symbol(child)); + } + + ts_subtree_retain(child); + ts_stack_push(self->stack, slice.version, child, pending, state); + } + + for (uint32_t j = 1; j < slice.subtrees.size; j++) { + Subtree tree = slice.subtrees.contents[j]; + ts_stack_push(self->stack, slice.version, tree, false, state); + } + + ts_subtree_release(&self->tree_pool, parent); + array_delete(&slice.subtrees); + + LOG("breakdown_top_of_stack tree:%s", TREE_NAME(parent)); + LOG_STACK(); + } + } while (pending); + + return did_break_down; +} + +static void ts_parser__breakdown_lookahead( + t_parser *self, + Subtree *lookahead, + t_state_id state, + ReusableNode *reusable_node +) { + bool did_descend = false; + Subtree tree = reusable_node_tree(reusable_node); + while (ts_subtree_child_count(tree) > 0 && ts_subtree_parse_state(tree) != state) { + LOG("state_mismatch sym:%s", TREE_NAME(tree)); + reusable_node_descend(reusable_node); + tree = reusable_node_tree(reusable_node); + did_descend = true; + } + + if (did_descend) { + ts_subtree_release(&self->tree_pool, *lookahead); + *lookahead = tree; + ts_subtree_retain(*lookahead); + } +} + +static ErrorComparison ts_parser__compare_versions( + t_parser *self, + ErrorStatus a, + ErrorStatus b +) { + (void)self; + if (!a.is_in_error && b.is_in_error) { + if (a.cost < b.cost) { + return ErrorComparisonTakeLeft; + } else { + return ErrorComparisonPreferLeft; + } + } + + if (a.is_in_error && !b.is_in_error) { + if (b.cost < a.cost) { + return ErrorComparisonTakeRight; + } else { + return ErrorComparisonPreferRight; + } + } + + if (a.cost < b.cost) { + if ((b.cost - a.cost) * (1 + a.node_count) > MAX_COST_DIFFERENCE) { + return ErrorComparisonTakeLeft; + } else { + return ErrorComparisonPreferLeft; + } + } + + if (b.cost < a.cost) { + if ((a.cost - b.cost) * (1 + b.node_count) > MAX_COST_DIFFERENCE) { + return ErrorComparisonTakeRight; + } else { + return ErrorComparisonPreferRight; + } + } + + if (a.dynamic_precedence > b.dynamic_precedence) return ErrorComparisonPreferLeft; + if (b.dynamic_precedence > a.dynamic_precedence) return ErrorComparisonPreferRight; + return ErrorComparisonNone; +} + +static ErrorStatus ts_parser__version_status( + t_parser *self, + StackVersion version +) { + unsigned cost = ts_stack_error_cost(self->stack, version); + bool is_paused = ts_stack_is_paused(self->stack, version); + if (is_paused) cost += ERROR_COST_PER_SKIPPED_TREE; + return (ErrorStatus) { + .cost = cost, + .node_count = ts_stack_node_count_since_error(self->stack, version), + .dynamic_precedence = ts_stack_dynamic_precedence(self->stack, version), + .is_in_error = is_paused || ts_stack_state(self->stack, version) == ERROR_STATE + }; +} + +static bool ts_parser__better_version_exists( + t_parser *self, + StackVersion version, + bool is_in_error, + unsigned cost +) { + if (self->finished_tree.ptr && ts_subtree_error_cost(self->finished_tree) <= cost) { + return true; + } + + Length position = ts_stack_position(self->stack, version); + ErrorStatus status = { + .cost = cost, + .is_in_error = is_in_error, + .dynamic_precedence = ts_stack_dynamic_precedence(self->stack, version), + .node_count = ts_stack_node_count_since_error(self->stack, version), + }; + + for (StackVersion i = 0, n = ts_stack_version_count(self->stack); i < n; i++) { + if (i == version || + !ts_stack_is_active(self->stack, i) || + ts_stack_position(self->stack, i).bytes < position.bytes) continue; + ErrorStatus status_i = ts_parser__version_status(self, i); + switch (ts_parser__compare_versions(self, status, status_i)) { + case ErrorComparisonTakeRight: + return true; + case ErrorComparisonPreferRight: + if (ts_stack_can_merge(self->stack, i, version)) return true; + break; + default: + break; + } + } + + return false; +} + +static bool ts_parser__call_main_lex_fn(t_parser *self, TSLexMode lex_mode) { + + return self->language->lex_fn(&self->lexer.data, lex_mode.lex_state); + +} + +static bool ts_parser__call_keyword_lex_fn(t_parser *self, TSLexMode lex_mode) { + (void)(lex_mode); + + return self->language->keyword_lex_fn(&self->lexer.data, 0); + +} + +static void ts_parser__external_scanner_create( + t_parser *self +) { + if (self->language && self->language->external_scanner.states) { +if (self->language->external_scanner.create) { + self->external_scanner_payload = self->language->external_scanner.create(); + + } +}} + +static void ts_parser__external_scanner_destroy( + t_parser *self +) { + if ( + self->language && + self->external_scanner_payload && + self->language->external_scanner.destroy + ) { + self->language->external_scanner.destroy( + self->external_scanner_payload + ); + } + self->external_scanner_payload = NULL; +} + +static unsigned ts_parser__external_scanner_serialize( + t_parser *self +) { + uint32_t length = self->language->external_scanner.serialize( + self->external_scanner_payload, + self->lexer.debug_buffer + ); + assert(length <= TREE_SITTER_SERIALIZATION_BUFFER_SIZE); + return length; + +} + +static void ts_parser__external_scanner_deserialize( + t_parser *self, + Subtree external_token +) { + const char *data = NULL; + uint32_t length = 0; + if (external_token.ptr) { + data = ts_external_scanner_state_data(&external_token.ptr->external_scanner_state); + length = external_token.ptr->external_scanner_state.length; + } + + + self->language->external_scanner.deserialize( + self->external_scanner_payload, + data, + length + ); + +} + +static bool ts_parser__external_scanner_scan( + t_parser *self, + t_state_id external_lex_state +) { + + const bool *valid_external_tokens = ts_language_enabled_external_tokens( + self->language, + external_lex_state + ); + return self->language->external_scanner.scan( + self->external_scanner_payload, + &self->lexer.data, + valid_external_tokens + ); + +} + +static bool ts_parser__can_reuse_first_leaf( + t_parser *self, + t_state_id state, + Subtree tree, + TableEntry *table_entry +) { + TSLexMode current_lex_mode = self->language->lex_modes[state]; + t_symbol leaf_symbol = ts_subtree_leaf_symbol(tree); + t_state_id leaf_state = ts_subtree_leaf_parse_state(tree); + TSLexMode leaf_lex_mode = self->language->lex_modes[leaf_state]; + + // At the end of a non-terminal extra node, the lexer normally returns + // NULL, which indicates that the parser should look for a reduce action + // at symbol `0`. Avoid reusing tokens in this situation to ensure that + // the same thing happens when incrementally reparsing. + if (current_lex_mode.lex_state == (uint16_t)(-1)) return false; + + // If the token was created in a state with the same set of lookaheads, it is reusable. + if ( + table_entry->action_count > 0 && + memcmp(&leaf_lex_mode, ¤t_lex_mode, sizeof(TSLexMode)) == 0 && + ( + leaf_symbol != self->language->keyword_capture_token || + (!ts_subtree_is_keyword(tree) && ts_subtree_parse_state(tree) == state) + ) + ) return true; + + // Empty tokens are not reusable in states with different lookaheads. + if (ts_subtree_size(tree).bytes == 0 && leaf_symbol != ts_builtin_sym_end) return false; + + // If the current state allows external tokens or other tokens that conflict with this + // token, this token is not reusable. + return current_lex_mode.external_lex_state == 0 && table_entry->is_reusable; +} + +static Subtree ts_parser__lex( + t_parser *self, + StackVersion version, + t_state_id parse_state +) { + TSLexMode lex_mode = self->language->lex_modes[parse_state]; + if (lex_mode.lex_state == (uint16_t)-1) { + LOG("no_lookahead_after_non_terminal_extra"); + return NULL_SUBTREE; + } + + const Length start_position = ts_stack_position(self->stack, version); + const Subtree external_token = ts_stack_last_external_token(self->stack, version); + + bool found_external_token = false; + bool error_mode = parse_state == ERROR_STATE; + bool skipped_error = false; + bool called_get_column = false; + int32_t first_error_character = 0; + Length error_start_position = length_zero(); + Length error_end_position = length_zero(); + uint32_t lookahead_end_byte = 0; + uint32_t external_scanner_state_len = 0; + bool external_scanner_state_changed = false; + ts_lexer_reset(&self->lexer, start_position); + + for (;;) { + bool found_token = false; + Length current_position = self->lexer.current_position; + + if (lex_mode.external_lex_state != 0) { + LOG( + "lex_external state:%d, row:%u, column:%u", + lex_mode.external_lex_state, + current_position.extent.row, + current_position.extent.column + ); + ts_lexer_start(&self->lexer); + ts_parser__external_scanner_deserialize(self, external_token); + found_token = ts_parser__external_scanner_scan(self, lex_mode.external_lex_state); + if (self->has_scanner_error) return NULL_SUBTREE; + ts_lexer_finish(&self->lexer, &lookahead_end_byte); + + if (found_token) { + external_scanner_state_len = ts_parser__external_scanner_serialize(self); + external_scanner_state_changed = !ts_external_scanner_state_eq( + ts_subtree_external_scanner_state(external_token), + self->lexer.debug_buffer, + external_scanner_state_len + ); + + // When recovering from an error, ignore any zero-length external tokens + // unless they have changed the external scanner's state. This helps to + // avoid infinite loops which could otherwise occur, because the lexer is + // looking for any possible token, instead of looking for the specific set of + // tokens that are valid in some parse state. + // + // Note that it's possible that the token end position may be *before* the + // original position of the lexer because of the way that tokens are positioned + // at included range boundaries: when a token is terminated at the start of + // an included range, it is marked as ending at the *end* of the preceding + // included range. + if ( + self->lexer.token_end_position.bytes <= current_position.bytes && + (error_mode || !ts_stack_has_advanced_since_error(self->stack, version)) && + !external_scanner_state_changed + ) { + LOG( + "ignore_empty_external_token symbol:%s", + SYM_NAME(self->language->external_scanner.symbol_map[self->lexer.data.result_symbol]) + ) + found_token = false; + } + } + + if (found_token) { + found_external_token = true; + called_get_column = self->lexer.did_get_column; + break; + } + + ts_lexer_reset(&self->lexer, current_position); + } + + LOG( + "lex_internal state:%d, row:%u, column:%u", + lex_mode.lex_state, + current_position.extent.row, + current_position.extent.column + ); + ts_lexer_start(&self->lexer); + found_token = ts_parser__call_main_lex_fn(self, lex_mode); + ts_lexer_finish(&self->lexer, &lookahead_end_byte); + if (found_token) break; + + if (!error_mode) { + error_mode = true; + lex_mode = self->language->lex_modes[ERROR_STATE]; + ts_lexer_reset(&self->lexer, start_position); + continue; + } + + if (!skipped_error) { + LOG("skip_unrecognized_character"); + skipped_error = true; + error_start_position = self->lexer.token_start_position; + error_end_position = self->lexer.token_start_position; + first_error_character = self->lexer.data.lookahead; + } + + if (self->lexer.current_position.bytes == error_end_position.bytes) { + if (self->lexer.data.eof(&self->lexer.data)) { + self->lexer.data.result_symbol = ts_builtin_sym_error; + break; + } + self->lexer.data.advance(&self->lexer.data, false); + } + + error_end_position = self->lexer.current_position; + } + + Subtree result; + if (skipped_error) { + Length padding = length_sub(error_start_position, start_position); + Length size = length_sub(error_end_position, error_start_position); + uint32_t lookahead_bytes = lookahead_end_byte - error_end_position.bytes; + result = ts_subtree_new_error( + &self->tree_pool, + first_error_character, + padding, + size, + lookahead_bytes, + parse_state, + self->language + ); + } else { + bool is_keyword = false; + t_symbol symbol = self->lexer.data.result_symbol; + Length padding = length_sub(self->lexer.token_start_position, start_position); + Length size = length_sub(self->lexer.token_end_position, self->lexer.token_start_position); + uint32_t lookahead_bytes = lookahead_end_byte - self->lexer.token_end_position.bytes; + + if (found_external_token) { + symbol = self->language->external_scanner.symbol_map[symbol]; + } else if (symbol == self->language->keyword_capture_token && symbol != 0) { + uint32_t end_byte = self->lexer.token_end_position.bytes; + ts_lexer_reset(&self->lexer, self->lexer.token_start_position); + ts_lexer_start(&self->lexer); + + is_keyword = ts_parser__call_keyword_lex_fn(self, lex_mode); + + if ( + is_keyword && + self->lexer.token_end_position.bytes == end_byte && + ts_language_has_actions(self->language, parse_state, self->lexer.data.result_symbol) + ) { + symbol = self->lexer.data.result_symbol; + } + } + + result = ts_subtree_new_leaf( + &self->tree_pool, + symbol, + padding, + size, + lookahead_bytes, + parse_state, + found_external_token, + called_get_column, + is_keyword, + self->language + ); + + if (found_external_token) { + MutableSubtree mut_result = ts_subtree_to_mut_unsafe(result); + ts_external_scanner_state_init( + &mut_result.ptr->external_scanner_state, + self->lexer.debug_buffer, + external_scanner_state_len + ); + mut_result.ptr->has_external_scanner_state_change = external_scanner_state_changed; + } + } + + LOG_LOOKAHEAD( + SYM_NAME(ts_subtree_symbol(result)), + ts_subtree_total_size(result).bytes + ); + return result; +} + +static Subtree ts_parser__get_cached_token( + t_parser *self, + t_state_id state, + size_t position, + Subtree last_external_token, + TableEntry *table_entry +) { + TokenCache *cache = &self->token_cache; + if ( + cache->token.ptr && cache->byte_index == position && + ts_subtree_external_scanner_state_eq(cache->last_external_token, last_external_token) + ) { + ts_language_table_entry(self->language, state, ts_subtree_symbol(cache->token), table_entry); + if (ts_parser__can_reuse_first_leaf(self, state, cache->token, table_entry)) { + ts_subtree_retain(cache->token); + return cache->token; + } + } + return NULL_SUBTREE; +} + +static void ts_parser__set_cached_token( + t_parser *self, + uint32_t byte_index, + Subtree last_external_token, + Subtree token +) { + TokenCache *cache = &self->token_cache; + if (token.ptr) ts_subtree_retain(token); + if (last_external_token.ptr) ts_subtree_retain(last_external_token); + if (cache->token.ptr) ts_subtree_release(&self->tree_pool, cache->token); + if (cache->last_external_token.ptr) ts_subtree_release(&self->tree_pool, cache->last_external_token); + cache->token = token; + cache->byte_index = byte_index; + cache->last_external_token = last_external_token; +} + +static bool ts_parser__has_included_range_difference( + const t_parser *self, + uint32_t start_position, + uint32_t end_position +) { + return ts_range_array_intersects( + &self->included_range_differences, + self->included_range_difference_index, + start_position, + end_position + ); +} + +static Subtree ts_parser__reuse_node( + t_parser *self, + StackVersion version, + t_state_id *state, + uint32_t position, + Subtree last_external_token, + TableEntry *table_entry +) { + Subtree result; + while ((result = reusable_node_tree(&self->reusable_node)).ptr) { + uint32_t byte_offset = reusable_node_byte_offset(&self->reusable_node); + uint32_t end_byte_offset = byte_offset + ts_subtree_total_bytes(result); + + // Do not reuse an EOF node if the included ranges array has changes + // later on in the file. + if (ts_subtree_is_eof(result)) end_byte_offset = UINT32_MAX; + + if (byte_offset > position) { + LOG("before_reusable_node symbol:%s", TREE_NAME(result)); + break; + } + + if (byte_offset < position) { + LOG("past_reusable_node symbol:%s", TREE_NAME(result)); + if (end_byte_offset <= position || !reusable_node_descend(&self->reusable_node)) { + reusable_node_advance(&self->reusable_node); + } + continue; + } + + if (!ts_subtree_external_scanner_state_eq(self->reusable_node.last_external_token, last_external_token)) { + LOG("reusable_node_has_different_external_scanner_state symbol:%s", TREE_NAME(result)); + reusable_node_advance(&self->reusable_node); + continue; + } + + const char *reason = NULL; + if (ts_subtree_has_changes(result)) { + reason = "has_changes"; + } else if (ts_subtree_is_error(result)) { + reason = "is_error"; + } else if (ts_subtree_missing(result)) { + reason = "is_missing"; + } else if (ts_subtree_is_fragile(result)) { + reason = "is_fragile"; + } else if (ts_parser__has_included_range_difference(self, byte_offset, end_byte_offset)) { + reason = "contains_different_included_range"; + } + + if (reason) { + LOG("cant_reuse_node_%s tree:%s", reason, TREE_NAME(result)); + if (!reusable_node_descend(&self->reusable_node)) { + reusable_node_advance(&self->reusable_node); + ts_parser__breakdown_top_of_stack(self, version); + *state = ts_stack_state(self->stack, version); + } + continue; + } + + t_symbol leaf_symbol = ts_subtree_leaf_symbol(result); + ts_language_table_entry(self->language, *state, leaf_symbol, table_entry); + if (!ts_parser__can_reuse_first_leaf(self, *state, result, table_entry)) { + LOG( + "cant_reuse_node symbol:%s, first_leaf_symbol:%s", + TREE_NAME(result), + SYM_NAME(leaf_symbol) + ); + reusable_node_advance_past_leaf(&self->reusable_node); + break; + } + + LOG("reuse_node symbol:%s", TREE_NAME(result)); + ts_subtree_retain(result); + return result; + } + + return NULL_SUBTREE; +} + +// Determine if a given tree should be replaced by an alternative tree. +// +// The decision is based on the trees' error costs (if any), their dynamic precedence, +// and finally, as a default, by a recursive comparison of the trees' symbols. +static bool ts_parser__select_tree(t_parser *self, Subtree left, Subtree right) { + if (!left.ptr) return true; + if (!right.ptr) return false; + + if (ts_subtree_error_cost(right) < ts_subtree_error_cost(left)) { + LOG("select_smaller_error symbol:%s, over_symbol:%s", TREE_NAME(right), TREE_NAME(left)); + return true; + } + + if (ts_subtree_error_cost(left) < ts_subtree_error_cost(right)) { + LOG("select_smaller_error symbol:%s, over_symbol:%s", TREE_NAME(left), TREE_NAME(right)); + return false; + } + + if (ts_subtree_dynamic_precedence(right) > ts_subtree_dynamic_precedence(left)) { + LOG("select_higher_precedence symbol:%s, prec:%" PRId32 ", over_symbol:%s, other_prec:%" PRId32, + TREE_NAME(right), ts_subtree_dynamic_precedence(right), TREE_NAME(left), + ts_subtree_dynamic_precedence(left)); + return true; + } + + if (ts_subtree_dynamic_precedence(left) > ts_subtree_dynamic_precedence(right)) { + LOG("select_higher_precedence symbol:%s, prec:%" PRId32 ", over_symbol:%s, other_prec:%" PRId32, + TREE_NAME(left), ts_subtree_dynamic_precedence(left), TREE_NAME(right), + ts_subtree_dynamic_precedence(right)); + return false; + } + + if (ts_subtree_error_cost(left) > 0) return true; + + int comparison = ts_subtree_compare(left, right, &self->tree_pool); + switch (comparison) { + case -1: + LOG("select_earlier symbol:%s, over_symbol:%s", TREE_NAME(left), TREE_NAME(right)); + return false; + break; + case 1: + LOG("select_earlier symbol:%s, over_symbol:%s", TREE_NAME(right), TREE_NAME(left)); + return true; + default: + LOG("select_existing symbol:%s, over_symbol:%s", TREE_NAME(left), TREE_NAME(right)); + return false; + } +} + +// Determine if a given tree's children should be replaced by an alternative +// array of children. +static bool ts_parser__select_children( + t_parser *self, + Subtree left, + const SubtreeArray *children +) { + array_assign(&self->scratch_trees, children); + + // Create a temporary subtree using the scratch trees array. This node does + // not perform any allocation except for possibly growing the array to make + // room for its own heap data. The scratch tree is never explicitly released, + // so the same 'scratch trees' array can be reused again later. + MutableSubtree scratch_tree = ts_subtree_new_node( + ts_subtree_symbol(left), + &self->scratch_trees, + 0, + self->language + ); + + return ts_parser__select_tree( + self, + left, + ts_subtree_from_mut(scratch_tree) + ); +} + +static void ts_parser__shift( + t_parser *self, + StackVersion version, + t_state_id state, + Subtree lookahead, + bool extra +) { + bool is_leaf = ts_subtree_child_count(lookahead) == 0; + Subtree subtree_to_push = lookahead; + if (extra != ts_subtree_extra(lookahead) && is_leaf) { + MutableSubtree result = ts_subtree_make_mut(&self->tree_pool, lookahead); + ts_subtree_set_extra(&result, extra); + subtree_to_push = ts_subtree_from_mut(result); + } + + ts_stack_push(self->stack, version, subtree_to_push, !is_leaf, state); + if (ts_subtree_has_external_tokens(subtree_to_push)) { + ts_stack_set_last_external_token( + self->stack, version, ts_subtree_last_external_token(subtree_to_push) + ); + } +} + +static StackVersion ts_parser__reduce( + t_parser *self, + StackVersion version, + t_symbol symbol, + uint32_t count, + int dynamic_precedence, + uint16_t production_id, + bool is_fragile, + bool end_of_non_terminal_extra +) { + uint32_t initial_version_count = ts_stack_version_count(self->stack); + + // Pop the given number of nodes from the given version of the parse stack. + // If stack versions have previously merged, then there may be more than one + // path back through the stack. For each path, create a new parent node to + // contain the popped children, and push it onto the stack in place of the + // children. + StackSliceArray pop = ts_stack_pop_count(self->stack, version, count); + uint32_t removed_version_count = 0; + for (uint32_t i = 0; i < pop.size; i++) { + StackSlice slice = pop.contents[i]; + StackVersion slice_version = slice.version - removed_version_count; + + // This is where new versions are added to the parse stack. The versions + // will all be sorted and truncated at the end of the outer parsing loop. + // Allow the maximum version count to be temporarily exceeded, but only + // by a limited threshold. + if (slice_version > MAX_VERSION_COUNT + MAX_VERSION_COUNT_OVERFLOW) { + ts_stack_remove_version(self->stack, slice_version); + ts_subtree_array_delete(&self->tree_pool, &slice.subtrees); + removed_version_count++; + while (i + 1 < pop.size) { + StackSlice next_slice = pop.contents[i + 1]; + if (next_slice.version != slice.version) break; + ts_subtree_array_delete(&self->tree_pool, &next_slice.subtrees); + i++; + } + continue; + } + + // Extra tokens on top of the stack should not be included in this new parent + // node. They will be re-pushed onto the stack after the parent node is + // created and pushed. + SubtreeArray children = slice.subtrees; + ts_subtree_array_remove_trailing_extras(&children, &self->trailing_extras); + + MutableSubtree parent = ts_subtree_new_node( + symbol, &children, production_id, self->language + ); + + // This pop operation may have caused multiple stack versions to collapse + // into one, because they all diverged from a common state. In that case, + // choose one of the arrays of trees to be the parent node's children, and + // delete the rest of the tree arrays. + while (i + 1 < pop.size) { + StackSlice next_slice = pop.contents[i + 1]; + if (next_slice.version != slice.version) break; + i++; + + SubtreeArray next_slice_children = next_slice.subtrees; + ts_subtree_array_remove_trailing_extras(&next_slice_children, &self->trailing_extras2); + + if (ts_parser__select_children( + self, + ts_subtree_from_mut(parent), + &next_slice_children + )) { + ts_subtree_array_clear(&self->tree_pool, &self->trailing_extras); + ts_subtree_release(&self->tree_pool, ts_subtree_from_mut(parent)); + array_swap(&self->trailing_extras, &self->trailing_extras2); + parent = ts_subtree_new_node( + symbol, &next_slice_children, production_id, self->language + ); + } else { + array_clear(&self->trailing_extras2); + ts_subtree_array_delete(&self->tree_pool, &next_slice.subtrees); + } + } + + t_state_id state = ts_stack_state(self->stack, slice_version); + t_state_id next_state = ts_language_next_state(self->language, state, symbol); + if (end_of_non_terminal_extra && next_state == state) { + parent.ptr->extra = true; + } + if (is_fragile || pop.size > 1 || initial_version_count > 1) { + parent.ptr->fragile_left = true; + parent.ptr->fragile_right = true; + parent.ptr->parse_state = TS_TREE_STATE_NONE; + } else { + parent.ptr->parse_state = state; + } + parent.ptr->dynamic_precedence += dynamic_precedence; + + // Push the parent node onto the stack, along with any extra tokens that + // were previously on top of the stack. + ts_stack_push(self->stack, slice_version, ts_subtree_from_mut(parent), false, next_state); + for (uint32_t j = 0; j < self->trailing_extras.size; j++) { + ts_stack_push(self->stack, slice_version, self->trailing_extras.contents[j], false, next_state); + } + + for (StackVersion j = 0; j < slice_version; j++) { + if (j == version) continue; + if (ts_stack_merge(self->stack, j, slice_version)) { + removed_version_count++; + break; + } + } + } + + // Return the first new stack version that was created. + return ts_stack_version_count(self->stack) > initial_version_count + ? initial_version_count + : STACK_VERSION_NONE; +} + +static void ts_parser__accept( + t_parser *self, + StackVersion version, + Subtree lookahead +) { + assert(ts_subtree_is_eof(lookahead)); + ts_stack_push(self->stack, version, lookahead, false, 1); + + StackSliceArray pop = ts_stack_pop_all(self->stack, version); + for (uint32_t i = 0; i < pop.size; i++) { + SubtreeArray trees = pop.contents[i].subtrees; + + Subtree root = NULL_SUBTREE; + for (uint32_t j = trees.size - 1; j + 1 > 0; j--) { + Subtree tree = trees.contents[j]; + if (!ts_subtree_extra(tree)) { + assert(!tree.data.is_inline); + uint32_t child_count = ts_subtree_child_count(tree); + const Subtree *children = ts_subtree_children(tree); + for (uint32_t k = 0; k < child_count; k++) { + ts_subtree_retain(children[k]); + } + array_splice(&trees, j, 1, child_count, children); + root = ts_subtree_from_mut(ts_subtree_new_node( + ts_subtree_symbol(tree), + &trees, + tree.ptr->production_id, + self->language + )); + ts_subtree_release(&self->tree_pool, tree); + break; + } + } + + assert(root.ptr); + self->accept_count++; + + if (self->finished_tree.ptr) { + if (ts_parser__select_tree(self, self->finished_tree, root)) { + ts_subtree_release(&self->tree_pool, self->finished_tree); + self->finished_tree = root; + } else { + ts_subtree_release(&self->tree_pool, root); + } + } else { + self->finished_tree = root; + } + } + + ts_stack_remove_version(self->stack, pop.contents[0].version); + ts_stack_halt(self->stack, version); +} + +static bool ts_parser__do_all_potential_reductions( + t_parser *self, + StackVersion starting_version, + t_symbol lookahead_symbol +) { + uint32_t initial_version_count = ts_stack_version_count(self->stack); + + bool can_shift_lookahead_symbol = false; + StackVersion version = starting_version; + for (unsigned i = 0; true; i++) { + uint32_t version_count = ts_stack_version_count(self->stack); + if (version >= version_count) break; + + bool merged = false; + for (StackVersion j = initial_version_count; j < version; j++) { + if (ts_stack_merge(self->stack, j, version)) { + merged = true; + break; + } + } + if (merged) continue; + + t_state_id state = ts_stack_state(self->stack, version); + bool has_shift_action = false; + array_clear(&self->reduce_actions); + + t_symbol first_symbol, end_symbol; + if (lookahead_symbol != 0) { + first_symbol = lookahead_symbol; + end_symbol = lookahead_symbol + 1; + } else { + first_symbol = 1; + end_symbol = self->language->token_count; + } + + for (t_symbol symbol = first_symbol; symbol < end_symbol; symbol++) { + TableEntry entry; + ts_language_table_entry(self->language, state, symbol, &entry); + for (uint32_t j = 0; j < entry.action_count; j++) { + TSParseAction action = entry.actions[j]; + switch (action.type) { + case TSParseActionTypeShift: + case TSParseActionTypeRecover: + if (!action.shift.extra && !action.shift.repetition) has_shift_action = true; + break; + case TSParseActionTypeReduce: + if (action.reduce.child_count > 0) + ts_reduce_action_set_add(&self->reduce_actions, (ReduceAction) { + .symbol = action.reduce.symbol, + .count = action.reduce.child_count, + .dynamic_precedence = action.reduce.dynamic_precedence, + .production_id = action.reduce.production_id, + }); + break; + default: + break; + } + } + } + + StackVersion reduction_version = STACK_VERSION_NONE; + for (uint32_t j = 0; j < self->reduce_actions.size; j++) { + ReduceAction action = self->reduce_actions.contents[j]; + + reduction_version = ts_parser__reduce( + self, version, action.symbol, action.count, + action.dynamic_precedence, action.production_id, + true, false + ); + } + + if (has_shift_action) { + can_shift_lookahead_symbol = true; + } else if (reduction_version != STACK_VERSION_NONE && i < MAX_VERSION_COUNT) { + ts_stack_renumber_version(self->stack, reduction_version, version); + continue; + } else if (lookahead_symbol != 0) { + ts_stack_remove_version(self->stack, version); + } + + if (version == starting_version) { + version = version_count; + } else { + version++; + } + } + + return can_shift_lookahead_symbol; +} + +static bool ts_parser__recover_to_state( + t_parser *self, + StackVersion version, + unsigned depth, + t_state_id goal_state +) { + StackSliceArray pop = ts_stack_pop_count(self->stack, version, depth); + StackVersion previous_version = STACK_VERSION_NONE; + + for (unsigned i = 0; i < pop.size; i++) { + StackSlice slice = pop.contents[i]; + + if (slice.version == previous_version) { + ts_subtree_array_delete(&self->tree_pool, &slice.subtrees); + array_erase(&pop, i--); + continue; + } + + if (ts_stack_state(self->stack, slice.version) != goal_state) { + ts_stack_halt(self->stack, slice.version); + ts_subtree_array_delete(&self->tree_pool, &slice.subtrees); + array_erase(&pop, i--); + continue; + } + + SubtreeArray error_trees = ts_stack_pop_error(self->stack, slice.version); + if (error_trees.size > 0) { + assert(error_trees.size == 1); + Subtree error_tree = error_trees.contents[0]; + uint32_t error_child_count = ts_subtree_child_count(error_tree); + if (error_child_count > 0) { + array_splice(&slice.subtrees, 0, 0, error_child_count, ts_subtree_children(error_tree)); + for (unsigned j = 0; j < error_child_count; j++) { + ts_subtree_retain(slice.subtrees.contents[j]); + } + } + ts_subtree_array_delete(&self->tree_pool, &error_trees); + } + + ts_subtree_array_remove_trailing_extras(&slice.subtrees, &self->trailing_extras); + + if (slice.subtrees.size > 0) { + Subtree error = ts_subtree_new_error_node(&slice.subtrees, true, self->language); + ts_stack_push(self->stack, slice.version, error, false, goal_state); + } else { + array_delete(&slice.subtrees); + } + + for (unsigned j = 0; j < self->trailing_extras.size; j++) { + Subtree tree = self->trailing_extras.contents[j]; + ts_stack_push(self->stack, slice.version, tree, false, goal_state); + } + + previous_version = slice.version; + } + + return previous_version != STACK_VERSION_NONE; +} + +static void ts_parser__recover( + t_parser *self, + StackVersion version, + Subtree lookahead +) { + bool did_recover = false; + unsigned previous_version_count = ts_stack_version_count(self->stack); + Length position = ts_stack_position(self->stack, version); + StackSummary *summary = ts_stack_get_summary(self->stack, version); + unsigned node_count_since_error = ts_stack_node_count_since_error(self->stack, version); + unsigned current_error_cost = ts_stack_error_cost(self->stack, version); + + // When the parser is in the error state, there are two strategies for recovering with a + // given lookahead token: + // 1. Find a previous state on the stack in which that lookahead token would be valid. Then, + // create a new stack version that is in that state again. This entails popping all of the + // subtrees that have been pushed onto the stack since that previous state, and wrapping + // them in an ERROR node. + // 2. Wrap the lookahead token in an ERROR node, push that ERROR node onto the stack, and + // move on to the next lookahead token, remaining in the error state. + // + // First, try the strategy 1. Upon entering the error state, the parser recorded a summary + // of the previous parse states and their depths. Look at each state in the summary, to see + // if the current lookahead token would be valid in that state. + if (summary && !ts_subtree_is_error(lookahead)) { + for (unsigned i = 0; i < summary->size; i++) { + StackSummaryEntry entry = summary->contents[i]; + + if (entry.state == ERROR_STATE) continue; + if (entry.position.bytes == position.bytes) continue; + unsigned depth = entry.depth; + if (node_count_since_error > 0) depth++; + + // Do not recover in ways that create redundant stack versions. + bool would_merge = false; + for (unsigned j = 0; j < previous_version_count; j++) { + if ( + ts_stack_state(self->stack, j) == entry.state && + ts_stack_position(self->stack, j).bytes == position.bytes + ) { + would_merge = true; + break; + } + } + if (would_merge) continue; + + // Do not recover if the result would clearly be worse than some existing stack version. + unsigned new_cost = + current_error_cost + + entry.depth * ERROR_COST_PER_SKIPPED_TREE + + (position.bytes - entry.position.bytes) * ERROR_COST_PER_SKIPPED_CHAR + + (position.extent.row - entry.position.extent.row) * ERROR_COST_PER_SKIPPED_LINE; + if (ts_parser__better_version_exists(self, version, false, new_cost)) break; + + // If the current lookahead token is valid in some previous state, recover to that state. + // Then stop looking for further recoveries. + if (ts_language_has_actions(self->language, entry.state, ts_subtree_symbol(lookahead))) { + if (ts_parser__recover_to_state(self, version, depth, entry.state)) { + did_recover = true; + LOG("recover_to_previous state:%u, depth:%u", entry.state, depth); + LOG_STACK(); + break; + } + } + } + } + + // In the process of attempting to recover, some stack versions may have been created + // and subsequently halted. Remove those versions. + for (unsigned i = previous_version_count; i < ts_stack_version_count(self->stack); i++) { + if (!ts_stack_is_active(self->stack, i)) { + ts_stack_remove_version(self->stack, i--); + } + } + + // If strategy 1 succeeded, a new stack version will have been created which is able to handle + // the current lookahead token. Now, in addition, try strategy 2 described above: skip the + // current lookahead token by wrapping it in an ERROR node. + + // Don't pursue this additional strategy if there are already too many stack versions. + if (did_recover && ts_stack_version_count(self->stack) > MAX_VERSION_COUNT) { + ts_stack_halt(self->stack, version); + ts_subtree_release(&self->tree_pool, lookahead); + return; + } + + if ( + did_recover && + ts_subtree_has_external_scanner_state_change(lookahead) + ) { + ts_stack_halt(self->stack, version); + ts_subtree_release(&self->tree_pool, lookahead); + return; + } + + // If the parser is still in the error state at the end of the file, just wrap everything + // in an ERROR node and terminate. + if (ts_subtree_is_eof(lookahead)) { + LOG("recover_eof"); + SubtreeArray children = array_new(); + Subtree parent = ts_subtree_new_error_node(&children, false, self->language); + ts_stack_push(self->stack, version, parent, false, 1); + ts_parser__accept(self, version, lookahead); + return; + } + + // Do not recover if the result would clearly be worse than some existing stack version. + unsigned new_cost = + current_error_cost + ERROR_COST_PER_SKIPPED_TREE + + ts_subtree_total_bytes(lookahead) * ERROR_COST_PER_SKIPPED_CHAR + + ts_subtree_total_size(lookahead).extent.row * ERROR_COST_PER_SKIPPED_LINE; + if (ts_parser__better_version_exists(self, version, false, new_cost)) { + ts_stack_halt(self->stack, version); + ts_subtree_release(&self->tree_pool, lookahead); + return; + } + + // If the current lookahead token is an extra token, mark it as extra. This means it won't + // be counted in error cost calculations. + unsigned n; + const TSParseAction *actions = ts_language_actions(self->language, 1, ts_subtree_symbol(lookahead), &n); + if (n > 0 && actions[n - 1].type == TSParseActionTypeShift && actions[n - 1].shift.extra) { + MutableSubtree mutable_lookahead = ts_subtree_make_mut(&self->tree_pool, lookahead); + ts_subtree_set_extra(&mutable_lookahead, true); + lookahead = ts_subtree_from_mut(mutable_lookahead); + } + + // Wrap the lookahead token in an ERROR. + LOG("skip_token symbol:%s", TREE_NAME(lookahead)); + SubtreeArray children = array_new(); + array_reserve(&children, 1); + array_push(&children, lookahead); + MutableSubtree error_repeat = ts_subtree_new_node( + ts_builtin_sym_error_repeat, + &children, + 0, + self->language + ); + + // If other tokens have already been skipped, so there is already an ERROR at the top of the + // stack, then pop that ERROR off the stack and wrap the two ERRORs together into one larger + // ERROR. + if (node_count_since_error > 0) { + StackSliceArray pop = ts_stack_pop_count(self->stack, version, 1); + + // TODO: Figure out how to make this condition occur. + // See https://github.com/atom/atom/issues/18450#issuecomment-439579778 + // If multiple stack versions have merged at this point, just pick one of the errors + // arbitrarily and discard the rest. + if (pop.size > 1) { + for (unsigned i = 1; i < pop.size; i++) { + ts_subtree_array_delete(&self->tree_pool, &pop.contents[i].subtrees); + } + while (ts_stack_version_count(self->stack) > pop.contents[0].version + 1) { + ts_stack_remove_version(self->stack, pop.contents[0].version + 1); + } + } + + ts_stack_renumber_version(self->stack, pop.contents[0].version, version); + array_push(&pop.contents[0].subtrees, ts_subtree_from_mut(error_repeat)); + error_repeat = ts_subtree_new_node( + ts_builtin_sym_error_repeat, + &pop.contents[0].subtrees, + 0, + self->language + ); + } + + // Push the new ERROR onto the stack. + ts_stack_push(self->stack, version, ts_subtree_from_mut(error_repeat), false, ERROR_STATE); + if (ts_subtree_has_external_tokens(lookahead)) { + ts_stack_set_last_external_token( + self->stack, version, ts_subtree_last_external_token(lookahead) + ); + } +} + +static void ts_parser__handle_error( + t_parser *self, + StackVersion version, + Subtree lookahead +) { + uint32_t previous_version_count = ts_stack_version_count(self->stack); + + // Perform any reductions that can happen in this state, regardless of the lookahead. After + // skipping one or more invalid tokens, the parser might find a token that would have allowed + // a reduction to take place. + ts_parser__do_all_potential_reductions(self, version, 0); + uint32_t version_count = ts_stack_version_count(self->stack); + Length position = ts_stack_position(self->stack, version); + + // Push a discontinuity onto the stack. Merge all of the stack versions that + // were created in the previous step. + bool did_insert_missing_token = false; + for (StackVersion v = version; v < version_count;) { + if (!did_insert_missing_token) { + t_state_id state = ts_stack_state(self->stack, v); + for ( + t_symbol missing_symbol = 1; + missing_symbol < (uint16_t)self->language->token_count; + missing_symbol++ + ) { + t_state_id state_after_missing_symbol = ts_language_next_state( + self->language, state, missing_symbol + ); + if (state_after_missing_symbol == 0 || state_after_missing_symbol == state) { + continue; + } + + if (ts_language_has_reduce_action( + self->language, + state_after_missing_symbol, + ts_subtree_leaf_symbol(lookahead) + )) { + // In case the parser is currently outside of any included range, the lexer will + // snap to the beginning of the next included range. The missing token's padding + // must be assigned to position it within the next included range. + ts_lexer_reset(&self->lexer, position); + ts_lexer_mark_end(&self->lexer); + Length padding = length_sub(self->lexer.token_end_position, position); + uint32_t lookahead_bytes = ts_subtree_total_bytes(lookahead) + ts_subtree_lookahead_bytes(lookahead); + + StackVersion version_with_missing_tree = ts_stack_copy_version(self->stack, v); + Subtree missing_tree = ts_subtree_new_missing_leaf( + &self->tree_pool, missing_symbol, + padding, lookahead_bytes, + self->language + ); + ts_stack_push( + self->stack, version_with_missing_tree, + missing_tree, false, + state_after_missing_symbol + ); + + if (ts_parser__do_all_potential_reductions( + self, version_with_missing_tree, + ts_subtree_leaf_symbol(lookahead) + )) { + LOG( + "recover_with_missing symbol:%s, state:%u", + SYM_NAME(missing_symbol), + ts_stack_state(self->stack, version_with_missing_tree) + ); + did_insert_missing_token = true; + break; + } + } + } + } + + ts_stack_push(self->stack, v, NULL_SUBTREE, false, ERROR_STATE); + v = (v == version) ? previous_version_count : v + 1; + } + + for (unsigned i = previous_version_count; i < version_count; i++) { + bool did_merge = ts_stack_merge(self->stack, version, previous_version_count); + assert(did_merge); + (void)did_merge; // fix warning/error with clang -Os + } + + ts_stack_record_summary(self->stack, version, MAX_SUMMARY_DEPTH); + + // Begin recovery with the current lookahead node, rather than waiting for the + // next turn of the parse loop. This ensures that the tree accounts for the + // current lookahead token's "lookahead bytes" value, which describes how far + // the lexer needed to look ahead beyond the content of the token in order to + // recognize it. + if (ts_subtree_child_count(lookahead) > 0) { + ts_parser__breakdown_lookahead(self, &lookahead, ERROR_STATE, &self->reusable_node); + } + ts_parser__recover(self, version, lookahead); + + LOG_STACK(); +} + +static bool ts_parser__advance( + t_parser *self, + StackVersion version, + bool allow_node_reuse +) { + t_state_id state = ts_stack_state(self->stack, version); + uint32_t position = ts_stack_position(self->stack, version).bytes; + Subtree last_external_token = ts_stack_last_external_token(self->stack, version); + + bool did_reuse = true; + Subtree lookahead = NULL_SUBTREE; + TableEntry table_entry = {.action_count = 0}; + + // If possible, reuse a node from the previous syntax tree. + if (allow_node_reuse) { + lookahead = ts_parser__reuse_node( + self, version, &state, position, last_external_token, &table_entry + ); + } + + // If no node from the previous syntax tree could be reused, then try to + // reuse the token previously returned by the lexer. + if (!lookahead.ptr) { + did_reuse = false; + lookahead = ts_parser__get_cached_token( + self, state, position, last_external_token, &table_entry + ); + } + + bool needs_lex = !lookahead.ptr; + for (;;) { + // Otherwise, re-run the lexer. + if (needs_lex) { + needs_lex = false; + lookahead = ts_parser__lex(self, version, state); + if (self->has_scanner_error) return false; + + if (lookahead.ptr) { + ts_parser__set_cached_token(self, position, last_external_token, lookahead); + ts_language_table_entry(self->language, state, ts_subtree_symbol(lookahead), &table_entry); + } + + // When parsing a non-terminal extra, a null lookahead indicates the + // end of the rule. The reduction is stored in the EOF table entry. + // After the reduction, the lexer needs to be run again. + else { + ts_language_table_entry(self->language, state, ts_builtin_sym_end, &table_entry); + } + } + + // If a cancellation flag or a timeout was provided, then check every + // time a fixed number of parse actions has been processed. + if (++self->operation_count == OP_COUNT_PER_TIMEOUT_CHECK) { + self->operation_count = 0; + } + if ( + self->operation_count == 0 && + ((self->cancellation_flag && atomic_load(self->cancellation_flag)) || + (!clock_is_null(self->end_clock) && clock_is_gt(clock_now(), self->end_clock))) + ) { + if (lookahead.ptr) { + ts_subtree_release(&self->tree_pool, lookahead); + } + return false; + } + + // Process each parse action for the current lookahead token in + // the current state. If there are multiple actions, then this is + // an ambiguous state. REDUCE actions always create a new stack + // version, whereas SHIFT actions update the existing stack version + // and terminate this loop. + StackVersion last_reduction_version = STACK_VERSION_NONE; + for (uint32_t i = 0; i < table_entry.action_count; i++) { + TSParseAction action = table_entry.actions[i]; + + switch (action.type) { + case TSParseActionTypeShift: { + if (action.shift.repetition) break; + t_state_id next_state; + if (action.shift.extra) { + next_state = state; + LOG("shift_extra"); + } else { + next_state = action.shift.state; + LOG("shift state:%u", next_state); + } + + if (ts_subtree_child_count(lookahead) > 0) { + ts_parser__breakdown_lookahead(self, &lookahead, state, &self->reusable_node); + next_state = ts_language_next_state(self->language, state, ts_subtree_symbol(lookahead)); + } + + ts_parser__shift(self, version, next_state, lookahead, action.shift.extra); + if (did_reuse) reusable_node_advance(&self->reusable_node); + return true; + } + + case TSParseActionTypeReduce: { + bool is_fragile = table_entry.action_count > 1; + bool end_of_non_terminal_extra = lookahead.ptr == NULL; + LOG("reduce sym:%s, child_count:%u", SYM_NAME(action.reduce.symbol), action.reduce.child_count); + StackVersion reduction_version = ts_parser__reduce( + self, version, action.reduce.symbol, action.reduce.child_count, + action.reduce.dynamic_precedence, action.reduce.production_id, + is_fragile, end_of_non_terminal_extra + ); + if (reduction_version != STACK_VERSION_NONE) { + last_reduction_version = reduction_version; + } + break; + } + + case TSParseActionTypeAccept: { + LOG("accept"); + ts_parser__accept(self, version, lookahead); + return true; + } + + case TSParseActionTypeRecover: { + if (ts_subtree_child_count(lookahead) > 0) { + ts_parser__breakdown_lookahead(self, &lookahead, ERROR_STATE, &self->reusable_node); + } + + ts_parser__recover(self, version, lookahead); + if (did_reuse) reusable_node_advance(&self->reusable_node); + return true; + } + } + } + + // If a reduction was performed, then replace the current stack version + // with one of the stack versions created by a reduction, and continue + // processing this version of the stack with the same lookahead symbol. + if (last_reduction_version != STACK_VERSION_NONE) { + ts_stack_renumber_version(self->stack, last_reduction_version, version); + LOG_STACK(); + state = ts_stack_state(self->stack, version); + + // At the end of a non-terminal extra rule, the lexer will return a + // null subtree, because the parser needs to perform a fixed reduction + // regardless of the lookahead node. After performing that reduction, + // (and completing the non-terminal extra rule) run the lexer again based + // on the current parse state. + if (!lookahead.ptr) { + needs_lex = true; + } else { + ts_language_table_entry( + self->language, + state, + ts_subtree_leaf_symbol(lookahead), + &table_entry + ); + } + + continue; + } + + // A non-terminal extra rule was reduced and merged into an existing + // stack version. This version can be discarded. + if (!lookahead.ptr) { + ts_stack_halt(self->stack, version); + return true; + } + + // If there were no parse actions for the current lookahead token, then + // it is not valid in this state. If the current lookahead token is a + // keyword, then switch to treating it as the normal word token if that + // token is valid in this state. + if ( + ts_subtree_is_keyword(lookahead) && + ts_subtree_symbol(lookahead) != self->language->keyword_capture_token + ) { + ts_language_table_entry(self->language, state, self->language->keyword_capture_token, &table_entry); + if (table_entry.action_count > 0) { + LOG( + "switch from_keyword:%s, to_word_token:%s", + TREE_NAME(lookahead), + SYM_NAME(self->language->keyword_capture_token) + ); + + MutableSubtree mutable_lookahead = ts_subtree_make_mut(&self->tree_pool, lookahead); + ts_subtree_set_symbol(&mutable_lookahead, self->language->keyword_capture_token, self->language); + lookahead = ts_subtree_from_mut(mutable_lookahead); + continue; + } + } + + // If the current lookahead token is not valid and the parser is + // already in the error state, restart the error recovery process. + // TODO - can this be unified with the other `RECOVER` case above? + if (state == ERROR_STATE) { + ts_parser__recover(self, version, lookahead); + return true; + } + + // If the current lookahead token is not valid and the previous + // subtree on the stack was reused from an old tree, it isn't actually + // valid to reuse it. Remove it from the stack, and in its place, + // push each of its children. Then try again to process the current + // lookahead. + if (ts_parser__breakdown_top_of_stack(self, version)) { + state = ts_stack_state(self->stack, version); + ts_subtree_release(&self->tree_pool, lookahead); + needs_lex = true; + continue; + } + + // At this point, the current lookahead token is definitely not valid + // for this parse stack version. Mark this version as paused and continue + // processing any other stack versions that might exist. If some other + // version advances successfully, then this version can simply be removed. + // But if all versions end up paused, then error recovery is needed. + LOG("detect_error"); + ts_stack_pause(self->stack, version, lookahead); + return true; + } +} + +static unsigned ts_parser__condense_stack(t_parser *self) { + bool made_changes = false; + unsigned min_error_cost = UINT_MAX; + for (StackVersion i = 0; i < ts_stack_version_count(self->stack); i++) { + // Prune any versions that have been marked for removal. + if (ts_stack_is_halted(self->stack, i)) { + ts_stack_remove_version(self->stack, i); + i--; + continue; + } + + // Keep track of the minimum error cost of any stack version so + // that it can be returned. + ErrorStatus status_i = ts_parser__version_status(self, i); + if (!status_i.is_in_error && status_i.cost < min_error_cost) { + min_error_cost = status_i.cost; + } + + // Examine each pair of stack versions, removing any versions that + // are clearly worse than another version. Ensure that the versions + // are ordered from most promising to least promising. + for (StackVersion j = 0; j < i; j++) { + ErrorStatus status_j = ts_parser__version_status(self, j); + + switch (ts_parser__compare_versions(self, status_j, status_i)) { + case ErrorComparisonTakeLeft: + made_changes = true; + ts_stack_remove_version(self->stack, i); + i--; + j = i; + break; + + case ErrorComparisonPreferLeft: + case ErrorComparisonNone: + if (ts_stack_merge(self->stack, j, i)) { + made_changes = true; + i--; + j = i; + } + break; + + case ErrorComparisonPreferRight: + made_changes = true; + if (ts_stack_merge(self->stack, j, i)) { + i--; + j = i; + } else { + ts_stack_swap_versions(self->stack, i, j); + } + break; + + case ErrorComparisonTakeRight: + made_changes = true; + ts_stack_remove_version(self->stack, j); + i--; + j--; + break; + } + } + } + + // Enforce a hard upper bound on the number of stack versions by + // discarding the least promising versions. + while (ts_stack_version_count(self->stack) > MAX_VERSION_COUNT) { + ts_stack_remove_version(self->stack, MAX_VERSION_COUNT); + made_changes = true; + } + + // If the best-performing stack version is currently paused, or all + // versions are paused, then resume the best paused version and begin + // the error recovery process. Otherwise, remove the paused versions. + if (ts_stack_version_count(self->stack) > 0) { + bool has_unpaused_version = false; + for (StackVersion i = 0, n = ts_stack_version_count(self->stack); i < n; i++) { + if (ts_stack_is_paused(self->stack, i)) { + if (!has_unpaused_version && self->accept_count < MAX_VERSION_COUNT) { + LOG("resume version:%u", i); + min_error_cost = ts_stack_error_cost(self->stack, i); + Subtree lookahead = ts_stack_resume(self->stack, i); + ts_parser__handle_error(self, i, lookahead); + has_unpaused_version = true; + } else { + ts_stack_remove_version(self->stack, i); + i--; + n--; + } + } else { + has_unpaused_version = true; + } + } + } + + if (made_changes) { + LOG("condense"); + LOG_STACK(); + } + + return min_error_cost; +} + +static bool ts_parser_has_outstanding_parse(t_parser *self) { + return ( + self->external_scanner_payload || + ts_stack_state(self->stack, 0) != 1 || + ts_stack_node_count_since_error(self->stack, 0) != 0 + ); +} + +// Parser - Public + +t_parser *ts_parser_new(void) { + t_parser *self = ts_calloc(1, sizeof(t_parser)); + ts_lexer_init(&self->lexer); + array_init(&self->reduce_actions); + array_reserve(&self->reduce_actions, 4); + self->tree_pool = ts_subtree_pool_new(32); + self->stack = ts_stack_new(&self->tree_pool); + self->finished_tree = NULL_SUBTREE; + self->reusable_node = reusable_node_new(); + self->dot_graph_file = NULL; + self->cancellation_flag = NULL; + self->timeout_duration = 0; + self->language = NULL; + self->has_scanner_error = false; + self->external_scanner_payload = NULL; + self->end_clock = clock_null(); + self->operation_count = 0; + self->old_tree = NULL_SUBTREE; + self->included_range_differences = (TSRangeArray) array_new(); + self->included_range_difference_index = 0; + ts_parser__set_cached_token(self, 0, NULL_SUBTREE, NULL_SUBTREE); + return self; +} + +void ts_parser_delete(t_parser *self) { + if (!self) return; + + ts_parser_set_language(self, NULL); + ts_stack_delete(self->stack); + if (self->reduce_actions.contents) { + array_delete(&self->reduce_actions); + } + if (self->included_range_differences.contents) { + array_delete(&self->included_range_differences); + } + if (self->old_tree.ptr) { + ts_subtree_release(&self->tree_pool, self->old_tree); + self->old_tree = NULL_SUBTREE; + } + ts_lexer_delete(&self->lexer); + ts_parser__set_cached_token(self, 0, NULL_SUBTREE, NULL_SUBTREE); + ts_subtree_pool_delete(&self->tree_pool); + reusable_node_delete(&self->reusable_node); + array_delete(&self->trailing_extras); + array_delete(&self->trailing_extras2); + array_delete(&self->scratch_trees); + ts_free(self); +} + +const t_language *ts_parser_language(const t_parser *self) { + return self->language; +} + +bool ts_parser_set_language(t_parser *self, const t_language *language) { + ts_parser_reset(self); + ts_language_delete(self->language); + self->language = NULL; + + if (language) { + if ( + language->version > TREE_SITTER_LANGUAGE_VERSION || + language->version < TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION + ) return false; + + + } + + self->language = ts_language_copy(language); + return true; +} + +t_logger ts_parser_logger(const t_parser *self) { + return self->lexer.logger; +} + +void ts_parser_set_logger(t_parser *self, t_logger logger) { + self->lexer.logger = logger; +} + +void ts_parser_print_dot_graphs(t_parser *self, int fd) { + if (self->dot_graph_file) { + fclose(self->dot_graph_file); + } + + if (fd >= 0) { + #ifdef _WIN32 + self->dot_graph_file = _fdopen(fd, "a"); + #else + self->dot_graph_file = fdopen(fd, "a"); + #endif + } else { + self->dot_graph_file = NULL; + } +} + +const size_t *ts_parser_cancellation_flag(const t_parser *self) { + return (const size_t *)self->cancellation_flag; +} + +void ts_parser_set_cancellation_flag(t_parser *self, const size_t *flag) { + self->cancellation_flag = (const volatile size_t *)flag; +} + +uint64_t ts_parser_timeout_micros(const t_parser *self) { + return duration_to_micros(self->timeout_duration); +} + +void ts_parser_set_timeout_micros(t_parser *self, uint64_t timeout_micros) { + self->timeout_duration = duration_from_micros(timeout_micros); +} + +bool ts_parser_set_included_ranges( + t_parser *self, + const t_range *ranges, + uint32_t count +) { + return ts_lexer_set_included_ranges(&self->lexer, ranges, count); +} + +const t_range *ts_parser_included_ranges(const t_parser *self, uint32_t *count) { + return ts_lexer_included_ranges(&self->lexer, count); +} + +void ts_parser_reset(t_parser *self) { + ts_parser__external_scanner_destroy(self); + + if (self->old_tree.ptr) { + ts_subtree_release(&self->tree_pool, self->old_tree); + self->old_tree = NULL_SUBTREE; + } + + reusable_node_clear(&self->reusable_node); + ts_lexer_reset(&self->lexer, length_zero()); + ts_stack_clear(self->stack); + ts_parser__set_cached_token(self, 0, NULL_SUBTREE, NULL_SUBTREE); + if (self->finished_tree.ptr) { + ts_subtree_release(&self->tree_pool, self->finished_tree); + self->finished_tree = NULL_SUBTREE; + } + self->accept_count = 0; + self->has_scanner_error = false; +} + +t_tree *ts_parser_parse( + t_parser *self, + const t_tree *old_tree, + t_input input +) { + t_tree *result = NULL; + if (!self->language || !input.read) return NULL; + + + + ts_lexer_set_input(&self->lexer, input); + array_clear(&self->included_range_differences); + self->included_range_difference_index = 0; + + if (ts_parser_has_outstanding_parse(self)) { + LOG("resume_parsing"); + } else { + ts_parser__external_scanner_create(self); + if (self->has_scanner_error) goto exit; + + if (old_tree) { + ts_subtree_retain(old_tree->root); + self->old_tree = old_tree->root; + ts_range_array_get_changed_ranges( + old_tree->included_ranges, old_tree->included_range_count, + self->lexer.included_ranges, self->lexer.included_range_count, + &self->included_range_differences + ); + reusable_node_reset(&self->reusable_node, old_tree->root); + LOG("parse_after_edit"); + LOG_TREE(self->old_tree); + for (unsigned i = 0; i < self->included_range_differences.size; i++) { + t_range *range = &self->included_range_differences.contents[i]; + LOG("different_included_range %u - %u", range->start_byte, range->end_byte); + } + } else { + reusable_node_clear(&self->reusable_node); + LOG("new_parse"); + } + } + + self->operation_count = 0; + if (self->timeout_duration) { + self->end_clock = clock_after(clock_now(), self->timeout_duration); + } else { + self->end_clock = clock_null(); + } + + uint32_t position = 0, last_position = 0, version_count = 0; + do { + for ( + StackVersion version = 0; + version_count = ts_stack_version_count(self->stack), + version < version_count; + version++ + ) { + bool allow_node_reuse = version_count == 1; + while (ts_stack_is_active(self->stack, version)) { + LOG( + "process version:%u, version_count:%u, state:%d, row:%u, col:%u", + version, + ts_stack_version_count(self->stack), + ts_stack_state(self->stack, version), + ts_stack_position(self->stack, version).extent.row, + ts_stack_position(self->stack, version).extent.column + ); + + if (!ts_parser__advance(self, version, allow_node_reuse)) { + if (self->has_scanner_error) goto exit; + return NULL; + } + + LOG_STACK(); + + position = ts_stack_position(self->stack, version).bytes; + if (position > last_position || (version > 0 && position == last_position)) { + last_position = position; + break; + } + } + } + + // After advancing each version of the stack, re-sort the versions by their cost, + // removing any versions that are no longer worth pursuing. + unsigned min_error_cost = ts_parser__condense_stack(self); + + // If there's already a finished parse tree that's better than any in-progress version, + // then terminate parsing. Clear the parse stack to remove any extra references to subtrees + // within the finished tree, ensuring that these subtrees can be safely mutated in-place + // for rebalancing. + if (self->finished_tree.ptr && ts_subtree_error_cost(self->finished_tree) < min_error_cost) { + ts_stack_clear(self->stack); + break; + } + + while (self->included_range_difference_index < self->included_range_differences.size) { + t_range *range = &self->included_range_differences.contents[self->included_range_difference_index]; + if (range->end_byte <= position) { + self->included_range_difference_index++; + } else { + break; + } + } + } while (version_count != 0); + + assert(self->finished_tree.ptr); + ts_subtree_balance(self->finished_tree, &self->tree_pool, self->language); + LOG("done"); + LOG_TREE(self->finished_tree); + + result = ts_tree_new( + self->finished_tree, + self->language, + self->lexer.included_ranges, + self->lexer.included_range_count + ); + self->finished_tree = NULL_SUBTREE; + +exit: + ts_parser_reset(self); + return result; +} + +t_tree *ts_parser_parse_string( + t_parser *self, + const t_tree *old_tree, + const char *string, + uint32_t length +) { + return ts_parser_parse_string_encoding(self, old_tree, string, length, TSInputEncodingUTF8); +} + +t_tree *ts_parser_parse_string_encoding( + t_parser *self, + const t_tree *old_tree, + const char *string, + uint32_t length, + t_input_encoding encoding +) { + TSStringInput input = {string, length}; + return ts_parser_parse(self, old_tree, (t_input) { + &input, + ts_string_input_read, + encoding, + }); +} + +#undef LOG +#include "src/api.h" +#include "src/alloc.h" +#include "src/array.h" +#include "src/language.h" +#include "src/point.h" +#include "src/tree_cursor.h" +// #include "src/unicode.h" +#include + +// #define DEBUG_ANALYZE_QUERY +// #define DEBUG_EXECUTE_QUERY + +#define MAX_STEP_CAPTURE_COUNT 3 +#define MAX_NEGATED_FIELD_COUNT 8 +#define MAX_STATE_PREDECESSOR_COUNT 256 +#define MAX_ANALYSIS_STATE_DEPTH 8 +#define MAX_ANALYSIS_ITERATION_COUNT 256 + +/* + * Stream - A sequence of unicode characters derived from a UTF8 string. + * This struct is used in parsing queries from S-expressions. + */ +typedef struct { + const char *input; + const char *start; + const char *end; + int32_t next; + uint8_t next_size; +} Stream; + +/* + * QueryStep - A step in the process of matching a query. Each node within + * a query S-expression corresponds to one of these steps. An entire pattern + * is represented as a sequence of these steps. The basic properties of a + * node are represented by these fields: + * - `symbol` - The grammar symbol to match. A zero value represents the + * wildcard symbol, '_'. + * - `field` - The field name to match. A zero value means that a field name + * was not specified. + * - `capture_ids` - An array of integers representing the names of captures + * associated with this node in the pattern, terminated by a `NONE` value. + * - `depth` - The depth where this node occurs in the pattern. The root node + * of the pattern has depth zero. + * - `negated_field_list_id` - An id representing a set of fields that must + * not be present on a node matching this step. + * + * Steps have some additional fields in order to handle the `.` (or "anchor") operator, + * which forbids additional child nodes: + * - `is_immediate` - Indicates that the node matching this step cannot be preceded + * by other sibling nodes that weren't specified in the pattern. + * - `is_last_child` - Indicates that the node matching this step cannot have any + * subsequent named siblings. + * + * For simple patterns, steps are matched in sequential order. But in order to + * handle alternative/repeated/optional sub-patterns, query steps are not always + * structured as a linear sequence; they sometimes need to split and merge. This + * is done using the following fields: + * - `alternative_index` - The index of a different query step that serves as + * an alternative to this step. A `NONE` value represents no alternative. + * When a query state reaches a step with an alternative index, the state + * is duplicated, with one copy remaining at the original step, and one copy + * moving to the alternative step. The alternative may have its own alternative + * step, so this splitting is an iterative process. + * - `is_dead_end` - Indicates that this state cannot be passed directly, and + * exists only in order to redirect to an alternative index, with no splitting. + * - `is_pass_through` - Indicates that state has no matching logic of its own, + * and exists only to split a state. One copy of the state advances immediately + * to the next step, and one moves to the alternative step. + * - `alternative_is_immediate` - Indicates that this step's alternative step + * should be treated as if `is_immediate` is true. + * + * Steps also store some derived state that summarizes how they relate to other + * steps within the same pattern. This is used to optimize the matching process: + * - `contains_captures` - Indicates that this step or one of its child steps + * has a non-empty `capture_ids` list. + * - `parent_pattern_guaranteed` - Indicates that if this step is reached, then + * it and all of its subsequent sibling steps within the same parent pattern + * are guaranteed to match. + * - `root_pattern_guaranteed` - Similar to `parent_pattern_guaranteed`, but + * for the entire top-level pattern. When iterating through a query's + * captures using `ts_query_cursor_next_capture`, this field is used to + * detect that a capture can safely be returned from a match that has not + * even completed yet. + */ +typedef struct { + t_symbol symbol; + t_symbol supertype_symbol; + t_field_id field; + uint16_t capture_ids[MAX_STEP_CAPTURE_COUNT]; + uint16_t depth; + uint16_t alternative_index; + uint16_t negated_field_list_id; + bool is_named: 1; + bool is_immediate: 1; + bool is_last_child: 1; + bool is_pass_through: 1; + bool is_dead_end: 1; + bool alternative_is_immediate: 1; + bool contains_captures: 1; + bool root_pattern_guaranteed: 1; + bool parent_pattern_guaranteed: 1; +} QueryStep; + +/* + * Slice - A slice of an external array. Within a query, capture names, + * literal string values, and predicate step information are stored in three + * contiguous arrays. Individual captures, string values, and predicates are + * represented as slices of these three arrays. + */ +typedef struct { + uint32_t offset; + uint32_t length; +} Slice; + +/* + * SymbolTable - a two-way mapping of strings to ids. + */ +typedef struct { + Array(char) characters; + Array(Slice) slices; +} SymbolTable; + +/** + * CaptureQuantififers - a data structure holding the quantifiers of pattern captures. + */ +typedef Array(uint8_t) CaptureQuantifiers; + +/* + * PatternEntry - Information about the starting point for matching a particular + * pattern. These entries are stored in a 'pattern map' - a sorted array that + * makes it possible to efficiently lookup patterns based on the symbol for their + * first step. The entry consists of the following fields: + * - `pattern_index` - the index of the pattern within the query + * - `step_index` - the index of the pattern's first step in the shared `steps` array + * - `is_rooted` - whether or not the pattern has a single root node. This property + * affects decisions about whether or not to start the pattern for nodes outside + * of a QueryCursor's range restriction. + */ +typedef struct { + uint16_t step_index; + uint16_t pattern_index; + bool is_rooted; +} PatternEntry; + +typedef struct { + Slice steps; + Slice predicate_steps; + uint32_t start_byte; + bool is_non_local; +} QueryPattern; + +typedef struct { + uint32_t byte_offset; + uint16_t step_index; +} StepOffset; + +/* + * QueryState - The state of an in-progress match of a particular pattern + * in a query. While executing, a `TSQueryCursor` must keep track of a number + * of possible in-progress matches. Each of those possible matches is + * represented as one of these states. Fields: + * - `id` - A numeric id that is exposed to the public API. This allows the + * caller to remove a given match, preventing any more of its captures + * from being returned. + * - `start_depth` - The depth in the tree where the first step of the state's + * pattern was matched. + * - `pattern_index` - The pattern that the state is matching. + * - `consumed_capture_count` - The number of captures from this match that + * have already been returned. + * - `capture_list_id` - A numeric id that can be used to retrieve the state's + * list of captures from the `CaptureListPool`. + * - `seeking_immediate_match` - A flag that indicates that the state's next + * step must be matched by the very next sibling. This is used when + * processing repetitions. + * - `has_in_progress_alternatives` - A flag that indicates that there is are + * other states that have the same captures as this state, but are at + * different steps in their pattern. This means that in order to obey the + * 'longest-match' rule, this state should not be returned as a match until + * it is clear that there can be no other alternative match with more captures. + */ +typedef struct { + uint32_t id; + uint32_t capture_list_id; + uint16_t start_depth; + uint16_t step_index; + uint16_t pattern_index; + uint16_t consumed_capture_count: 12; + bool seeking_immediate_match: 1; + bool has_in_progress_alternatives: 1; + bool dead: 1; + bool needs_parent: 1; +} QueryState; + +typedef Array(t_query_capture) CaptureList; + +/* + * CaptureListPool - A collection of *lists* of captures. Each query state needs + * to maintain its own list of captures. To avoid repeated allocations, this struct + * maintains a fixed set of capture lists, and keeps track of which ones are + * currently in use by a query state. + */ +typedef struct { + Array(CaptureList) list; + CaptureList empty_list; + // The maximum number of capture lists that we are allowed to allocate. We + // never allow `list` to allocate more entries than this, dropping pending + // matches if needed to stay under the limit. + uint32_t max_capture_list_count; + // The number of capture lists allocated in `list` that are not currently in + // use. We reuse those existing-but-unused capture lists before trying to + // allocate any new ones. We use an invalid value (UINT32_MAX) for a capture + // list's length to indicate that it's not in use. + uint32_t free_capture_list_count; +} CaptureListPool; + +/* + * AnalysisState - The state needed for walking the parse table when analyzing + * a query pattern, to determine at which steps the pattern might fail to match. + */ +typedef struct { + t_state_id parse_state; + t_symbol parent_symbol; + uint16_t child_index; + t_field_id field_id: 15; + bool done: 1; +} AnalysisStateEntry; + +typedef struct { + AnalysisStateEntry stack[MAX_ANALYSIS_STATE_DEPTH]; + uint16_t depth; + uint16_t step_index; + t_symbol root_symbol; +} AnalysisState; + +typedef Array(AnalysisState *) AnalysisStateSet; + +typedef struct { + AnalysisStateSet states; + AnalysisStateSet next_states; + AnalysisStateSet deeper_states; + AnalysisStateSet state_pool; + Array(uint16_t) final_step_indices; + Array(t_symbol) finished_parent_symbols; + bool did_abort; +} QueryAnalysis; + +/* + * AnalysisSubgraph - A subset of the states in the parse table that are used + * in constructing nodes with a certain symbol. Each state is accompanied by + * some information about the possible node that could be produced in + * downstream states. + */ +typedef struct { + t_state_id state; + uint16_t production_id; + uint8_t child_index: 7; + bool done: 1; +} AnalysisSubgraphNode; + +typedef struct { + t_symbol symbol; + Array(t_state_id) start_states; + Array(AnalysisSubgraphNode) nodes; +} AnalysisSubgraph; + +typedef Array(AnalysisSubgraph) AnalysisSubgraphArray; + +/* + * StatePredecessorMap - A map that stores the predecessors of each parse state. + * This is used during query analysis to determine which parse states can lead + * to which reduce actions. + */ +typedef struct { + t_state_id *contents; +} StatePredecessorMap; + +/* + * TSQuery - A tree query, compiled from a string of S-expressions. The query + * itself is immutable. The mutable state used in the process of executing the + * query is stored in a `TSQueryCursor`. + */ +struct t_query { + SymbolTable captures; + SymbolTable predicate_values; + Array(CaptureQuantifiers) capture_quantifiers; + Array(QueryStep) steps; + Array(PatternEntry) pattern_map; + Array(t_query_predicate_step) predicate_steps; + Array(QueryPattern) patterns; + Array(StepOffset) step_offsets; + Array(t_field_id) negated_fields; + Array(char) string_buffer; + Array(t_symbol) repeat_symbols_with_rootless_patterns; + const t_language *language; + uint16_t wildcard_root_pattern_count; +}; + +/* + * TSQueryCursor - A stateful struct used to execute a query on a tree. + */ +struct t_query_cursor { + const t_query *query; + t_tree_cursor cursor; + Array(QueryState) states; + Array(QueryState) finished_states; + CaptureListPool capture_list_pool; + uint32_t depth; + uint32_t max_start_depth; + uint32_t start_byte; + uint32_t end_byte; + t_point start_point; + t_point end_point; + uint32_t next_state_id; + bool on_visible_node; + bool ascending; + bool halted; + bool did_exceed_match_limit; +}; + +static const t_query_error PARENT_DONE = -1; +static const uint16_t PATTERN_DONE_MARKER = UINT16_MAX; +static const uint16_t NONE = UINT16_MAX; +static const t_symbol WILDCARD_SYMBOL = 0; + +/********** + * Stream + **********/ + +// Advance to the next unicode code point in the stream. +static bool stream_advance(Stream *self) { + self->input += self->next_size; + if (self->input < self->end) { + uint32_t size = ts_decode_ascii( + (const uint8_t *)self->input, + (uint32_t)(self->end - self->input), + &self->next + ); + if (size > 0) { + self->next_size = size; + return true; + } + } else { + self->next_size = 0; + self->next = '\0'; + } + return false; +} + +// Reset the stream to the given input position, represented as a pointer +// into the input string. +static void stream_reset(Stream *self, const char *input) { + self->input = input; + self->next_size = 0; + stream_advance(self); +} + +static Stream stream_new(const char *string, uint32_t length) { + Stream self = { + .next = 0, + .input = string, + .start = string, + .end = string + length, + }; + stream_advance(&self); + return self; +} + +static void stream_skip_whitespace(Stream *self) { + for (;;) { + if (iswspace(self->next)) { + stream_advance(self); + } else if (self->next == ';') { + // skip over comments + stream_advance(self); + while (self->next && self->next != '\n') { + if (!stream_advance(self)) break; + } + } else { + break; + } + } +} + +static bool stream_is_ident_start(Stream *self) { + return iswalnum(self->next) || self->next == '_' || self->next == '-'; +} + +static void stream_scan_identifier(Stream *stream) { + do { + stream_advance(stream); + } while ( + iswalnum(stream->next) || + stream->next == '_' || + stream->next == '-' || + stream->next == '.' || + stream->next == '?' || + stream->next == '!' + ); +} + +static uint32_t stream_offset(Stream *self) { + return (uint32_t)(self->input - self->start); +} + +/****************** + * CaptureListPool + ******************/ + +static CaptureListPool capture_list_pool_new(void) { + return (CaptureListPool) { + .list = array_new(), + .empty_list = array_new(), + .max_capture_list_count = UINT32_MAX, + .free_capture_list_count = 0, + }; +} + +static void capture_list_pool_reset(CaptureListPool *self) { + for (uint16_t i = 0; i < (uint16_t)self->list.size; i++) { + // This invalid size means that the list is not in use. + self->list.contents[i].size = UINT32_MAX; + } + self->free_capture_list_count = self->list.size; +} + +static void capture_list_pool_delete(CaptureListPool *self) { + for (uint16_t i = 0; i < (uint16_t)self->list.size; i++) { + array_delete(&self->list.contents[i]); + } + array_delete(&self->list); +} + +static const CaptureList *capture_list_pool_get(const CaptureListPool *self, uint16_t id) { + if (id >= self->list.size) return &self->empty_list; + return &self->list.contents[id]; +} + +static CaptureList *capture_list_pool_get_mut(CaptureListPool *self, uint16_t id) { + assert(id < self->list.size); + return &self->list.contents[id]; +} + +static bool capture_list_pool_is_empty(const CaptureListPool *self) { + // The capture list pool is empty if all allocated lists are in use, and we + // have reached the maximum allowed number of allocated lists. + return self->free_capture_list_count == 0 && self->list.size >= self->max_capture_list_count; +} + +static uint16_t capture_list_pool_acquire(CaptureListPool *self) { + // First see if any already allocated capture list is currently unused. + if (self->free_capture_list_count > 0) { + for (uint16_t i = 0; i < (uint16_t)self->list.size; i++) { + if (self->list.contents[i].size == UINT32_MAX) { + array_clear(&self->list.contents[i]); + self->free_capture_list_count--; + return i; + } + } + } + + // Otherwise allocate and initialize a new capture list, as long as that + // doesn't put us over the requested maximum. + uint32_t i = self->list.size; + if (i >= self->max_capture_list_count) { + return NONE; + } + CaptureList list; + array_init(&list); + array_push(&self->list, list); + return i; +} + +static void capture_list_pool_release(CaptureListPool *self, uint16_t id) { + if (id >= self->list.size) return; + self->list.contents[id].size = UINT32_MAX; + self->free_capture_list_count++; +} + +/************** + * Quantifiers + **************/ + +static t_quantifier quantifier_mul( + t_quantifier left, + t_quantifier right +) { + switch (left) + { + case TSQuantifierZero: + return TSQuantifierZero; + case TSQuantifierZeroOrOne: + switch (right) { + case TSQuantifierZero: + return TSQuantifierZero; + case TSQuantifierZeroOrOne: + case TSQuantifierOne: + return TSQuantifierZeroOrOne; + case TSQuantifierZeroOrMore: + case TSQuantifierOneOrMore: + return TSQuantifierZeroOrMore; + }; + break; + case TSQuantifierZeroOrMore: + switch (right) { + case TSQuantifierZero: + return TSQuantifierZero; + case TSQuantifierZeroOrOne: + case TSQuantifierZeroOrMore: + case TSQuantifierOne: + case TSQuantifierOneOrMore: + return TSQuantifierZeroOrMore; + }; + break; + case TSQuantifierOne: + return right; + case TSQuantifierOneOrMore: + switch (right) { + case TSQuantifierZero: + return TSQuantifierZero; + case TSQuantifierZeroOrOne: + case TSQuantifierZeroOrMore: + return TSQuantifierZeroOrMore; + case TSQuantifierOne: + case TSQuantifierOneOrMore: + return TSQuantifierOneOrMore; + }; + break; + } + return TSQuantifierZero; // to make compiler happy, but all cases should be covered above! +} + +static t_quantifier quantifier_join( + t_quantifier left, + t_quantifier right +) { + switch (left) + { + case TSQuantifierZero: + switch (right) { + case TSQuantifierZero: + return TSQuantifierZero; + case TSQuantifierZeroOrOne: + case TSQuantifierOne: + return TSQuantifierZeroOrOne; + case TSQuantifierZeroOrMore: + case TSQuantifierOneOrMore: + return TSQuantifierZeroOrMore; + }; + break; + case TSQuantifierZeroOrOne: + switch (right) { + case TSQuantifierZero: + case TSQuantifierZeroOrOne: + case TSQuantifierOne: + return TSQuantifierZeroOrOne; + break; + case TSQuantifierZeroOrMore: + case TSQuantifierOneOrMore: + return TSQuantifierZeroOrMore; + break; + }; + break; + case TSQuantifierZeroOrMore: + return TSQuantifierZeroOrMore; + case TSQuantifierOne: + switch (right) { + case TSQuantifierZero: + case TSQuantifierZeroOrOne: + return TSQuantifierZeroOrOne; + case TSQuantifierZeroOrMore: + return TSQuantifierZeroOrMore; + case TSQuantifierOne: + return TSQuantifierOne; + case TSQuantifierOneOrMore: + return TSQuantifierOneOrMore; + }; + break; + case TSQuantifierOneOrMore: + switch (right) { + case TSQuantifierZero: + case TSQuantifierZeroOrOne: + case TSQuantifierZeroOrMore: + return TSQuantifierZeroOrMore; + case TSQuantifierOne: + case TSQuantifierOneOrMore: + return TSQuantifierOneOrMore; + }; + break; + } + return TSQuantifierZero; // to make compiler happy, but all cases should be covered above! +} + +static t_quantifier quantifier_add( + t_quantifier left, + t_quantifier right +) { + switch (left) + { + case TSQuantifierZero: + return right; + case TSQuantifierZeroOrOne: + switch (right) { + case TSQuantifierZero: + return TSQuantifierZeroOrOne; + case TSQuantifierZeroOrOne: + case TSQuantifierZeroOrMore: + return TSQuantifierZeroOrMore; + case TSQuantifierOne: + case TSQuantifierOneOrMore: + return TSQuantifierOneOrMore; + }; + break; + case TSQuantifierZeroOrMore: + switch (right) { + case TSQuantifierZero: + return TSQuantifierZeroOrMore; + case TSQuantifierZeroOrOne: + case TSQuantifierZeroOrMore: + return TSQuantifierZeroOrMore; + case TSQuantifierOne: + case TSQuantifierOneOrMore: + return TSQuantifierOneOrMore; + }; + break; + case TSQuantifierOne: + switch (right) { + case TSQuantifierZero: + return TSQuantifierOne; + case TSQuantifierZeroOrOne: + case TSQuantifierZeroOrMore: + case TSQuantifierOne: + case TSQuantifierOneOrMore: + return TSQuantifierOneOrMore; + }; + break; + case TSQuantifierOneOrMore: + return TSQuantifierOneOrMore; + } + return TSQuantifierZero; // to make compiler happy, but all cases should be covered above! +} + +// Create new capture quantifiers structure +static CaptureQuantifiers capture_quantifiers_new(void) { + return (CaptureQuantifiers) array_new(); +} + +// Delete capture quantifiers structure +static void capture_quantifiers_delete( + CaptureQuantifiers *self +) { + array_delete(self); +} + +// Clear capture quantifiers structure +static void capture_quantifiers_clear( + CaptureQuantifiers *self +) { + array_clear(self); +} + +// Replace capture quantifiers with the given quantifiers +static void capture_quantifiers_replace( + CaptureQuantifiers *self, + CaptureQuantifiers *quantifiers +) { + array_clear(self); + array_push_all(self, quantifiers); +} + +// Return capture quantifier for the given capture id +static t_quantifier capture_quantifier_for_id( + const CaptureQuantifiers *self, + uint16_t id +) { + return (self->size <= id) ? TSQuantifierZero : (t_quantifier) *array_get(self, id); +} + +// Add the given quantifier to the current value for id +static void capture_quantifiers_add_for_id( + CaptureQuantifiers *self, + uint16_t id, + t_quantifier quantifier +) { + if (self->size <= id) { + array_grow_by(self, id + 1 - self->size); + } + uint8_t *own_quantifier = array_get(self, id); + *own_quantifier = (uint8_t) quantifier_add((t_quantifier) *own_quantifier, quantifier); +} + +// Point-wise add the given quantifiers to the current values +static void capture_quantifiers_add_all( + CaptureQuantifiers *self, + CaptureQuantifiers *quantifiers +) { + if (self->size < quantifiers->size) { + array_grow_by(self, quantifiers->size - self->size); + } + for (uint16_t id = 0; id < (uint16_t)quantifiers->size; id++) { + uint8_t *quantifier = array_get(quantifiers, id); + uint8_t *own_quantifier = array_get(self, id); + *own_quantifier = (uint8_t) quantifier_add((t_quantifier) *own_quantifier, (t_quantifier) *quantifier); + } +} + +// Join the given quantifier with the current values +static void capture_quantifiers_mul( + CaptureQuantifiers *self, + t_quantifier quantifier +) { + for (uint16_t id = 0; id < (uint16_t)self->size; id++) { + uint8_t *own_quantifier = array_get(self, id); + *own_quantifier = (uint8_t) quantifier_mul((t_quantifier) *own_quantifier, quantifier); + } +} + +// Point-wise join the quantifiers from a list of alternatives with the current values +static void capture_quantifiers_join_all( + CaptureQuantifiers *self, + CaptureQuantifiers *quantifiers +) { + if (self->size < quantifiers->size) { + array_grow_by(self, quantifiers->size - self->size); + } + for (uint32_t id = 0; id < quantifiers->size; id++) { + uint8_t *quantifier = array_get(quantifiers, id); + uint8_t *own_quantifier = array_get(self, id); + *own_quantifier = (uint8_t) quantifier_join((t_quantifier) *own_quantifier, (t_quantifier) *quantifier); + } + for (uint32_t id = quantifiers->size; id < self->size; id++) { + uint8_t *own_quantifier = array_get(self, id); + *own_quantifier = (uint8_t) quantifier_join((t_quantifier) *own_quantifier, TSQuantifierZero); + } +} + +/************** + * SymbolTable + **************/ + +static SymbolTable symbol_table_new(void) { + return (SymbolTable) { + .characters = array_new(), + .slices = array_new(), + }; +} + +static void symbol_table_delete(SymbolTable *self) { + array_delete(&self->characters); + array_delete(&self->slices); +} + +static int symbol_table_id_for_name( + const SymbolTable *self, + const char *name, + uint32_t length +) { + for (unsigned i = 0; i < self->slices.size; i++) { + Slice slice = self->slices.contents[i]; + if ( + slice.length == length && + !strncmp(&self->characters.contents[slice.offset], name, length) + ) return i; + } + return -1; +} + +static const char *symbol_table_name_for_id( + const SymbolTable *self, + uint16_t id, + uint32_t *length +) { + Slice slice = self->slices.contents[id]; + *length = slice.length; + return &self->characters.contents[slice.offset]; +} + +static uint16_t symbol_table_insert_name( + SymbolTable *self, + const char *name, + uint32_t length +) { + int id = symbol_table_id_for_name(self, name, length); + if (id >= 0) return (uint16_t)id; + Slice slice = { + .offset = self->characters.size, + .length = length, + }; + array_grow_by(&self->characters, length + 1); + memcpy(&self->characters.contents[slice.offset], name, length); + self->characters.contents[self->characters.size - 1] = 0; + array_push(&self->slices, slice); + return self->slices.size - 1; +} + +/************ + * QueryStep + ************/ + +static QueryStep query_step__new( + t_symbol symbol, + uint16_t depth, + bool is_immediate +) { + QueryStep step = { + .symbol = symbol, + .depth = depth, + .field = 0, + .alternative_index = NONE, + .negated_field_list_id = 0, + .contains_captures = false, + .is_last_child = false, + .is_named = false, + .is_pass_through = false, + .is_dead_end = false, + .root_pattern_guaranteed = false, + .is_immediate = is_immediate, + .alternative_is_immediate = false, + }; + for (unsigned i = 0; i < MAX_STEP_CAPTURE_COUNT; i++) { + step.capture_ids[i] = NONE; + } + return step; +} + +static void query_step__add_capture(QueryStep *self, uint16_t capture_id) { + for (unsigned i = 0; i < MAX_STEP_CAPTURE_COUNT; i++) { + if (self->capture_ids[i] == NONE) { + self->capture_ids[i] = capture_id; + break; + } + } +} + +static void query_step__remove_capture(QueryStep *self, uint16_t capture_id) { + for (unsigned i = 0; i < MAX_STEP_CAPTURE_COUNT; i++) { + if (self->capture_ids[i] == capture_id) { + self->capture_ids[i] = NONE; + while (i + 1 < MAX_STEP_CAPTURE_COUNT) { + if (self->capture_ids[i + 1] == NONE) break; + self->capture_ids[i] = self->capture_ids[i + 1]; + self->capture_ids[i + 1] = NONE; + i++; + } + break; + } + } +} + +/********************** + * StatePredecessorMap + **********************/ + +static inline StatePredecessorMap state_predecessor_map_new( + const t_language *language +) { + return (StatePredecessorMap) { + .contents = ts_calloc( + (size_t)language->state_count * (MAX_STATE_PREDECESSOR_COUNT + 1), + sizeof(t_state_id) + ), + }; +} + +static inline void state_predecessor_map_delete(StatePredecessorMap *self) { + ts_free(self->contents); +} + +static inline void state_predecessor_map_add( + StatePredecessorMap *self, + t_state_id state, + t_state_id predecessor +) { + size_t index = (size_t)state * (MAX_STATE_PREDECESSOR_COUNT + 1); + t_state_id *count = &self->contents[index]; + if ( + *count == 0 || + (*count < MAX_STATE_PREDECESSOR_COUNT && self->contents[index + *count] != predecessor) + ) { + (*count)++; + self->contents[index + *count] = predecessor; + } +} + +static inline const t_state_id *state_predecessor_map_get( + const StatePredecessorMap *self, + t_state_id state, + unsigned *count +) { + size_t index = (size_t)state * (MAX_STATE_PREDECESSOR_COUNT + 1); + *count = self->contents[index]; + return &self->contents[index + 1]; +} + +/**************** + * AnalysisState + ****************/ + +static unsigned analysis_state__recursion_depth(const AnalysisState *self) { + unsigned result = 0; + for (unsigned i = 0; i < self->depth; i++) { + t_symbol symbol = self->stack[i].parent_symbol; + for (unsigned j = 0; j < i; j++) { + if (self->stack[j].parent_symbol == symbol) { + result++; + break; + } + } + } + return result; +} + +static inline int analysis_state__compare_position( + AnalysisState *const *self, + AnalysisState *const *other +) { + for (unsigned i = 0; i < (*self)->depth; i++) { + if (i >= (*other)->depth) return -1; + if ((*self)->stack[i].child_index < (*other)->stack[i].child_index) return -1; + if ((*self)->stack[i].child_index > (*other)->stack[i].child_index) return 1; + } + if ((*self)->depth < (*other)->depth) return 1; + if ((*self)->step_index < (*other)->step_index) return -1; + if ((*self)->step_index > (*other)->step_index) return 1; + return 0; +} + +static inline int analysis_state__compare( + AnalysisState *const *self, + AnalysisState *const *other +) { + int result = analysis_state__compare_position(self, other); + if (result != 0) return result; + for (unsigned i = 0; i < (*self)->depth; i++) { + if ((*self)->stack[i].parent_symbol < (*other)->stack[i].parent_symbol) return -1; + if ((*self)->stack[i].parent_symbol > (*other)->stack[i].parent_symbol) return 1; + if ((*self)->stack[i].parse_state < (*other)->stack[i].parse_state) return -1; + if ((*self)->stack[i].parse_state > (*other)->stack[i].parse_state) return 1; + if ((*self)->stack[i].field_id < (*other)->stack[i].field_id) return -1; + if ((*self)->stack[i].field_id > (*other)->stack[i].field_id) return 1; + } + return 0; +} + +static inline AnalysisStateEntry *analysis_state__top(AnalysisState *self) { + if (self->depth == 0) { + return &self->stack[0]; + } + return &self->stack[self->depth - 1]; +} + +static inline bool analysis_state__has_supertype(AnalysisState *self, t_symbol symbol) { + for (unsigned i = 0; i < self->depth; i++) { + if (self->stack[i].parent_symbol == symbol) return true; + } + return false; +} + +/****************** + * AnalysisStateSet + ******************/ + +// Obtains an `AnalysisState` instance, either by consuming one from this set's object pool, or by +// cloning one from scratch. +static inline AnalysisState *analysis_state_pool__clone_or_reuse( + AnalysisStateSet *self, + AnalysisState *borrowed_item +) { + AnalysisState *new_item; + if (self->size) { + new_item = array_pop(self); + } else { + new_item = ts_malloc(sizeof(AnalysisState)); + } + *new_item = *borrowed_item; + return new_item; +} + +// Inserts a clone of the passed-in item at the appropriate position to maintain ordering in this +// set. The set does not contain duplicates, so if the item is already present, it will not be +// inserted, and no clone will be made. +// +// The caller retains ownership of the passed-in memory. However, the clone that is created by this +// function will be managed by the state set. +static inline void analysis_state_set__insert_sorted( + AnalysisStateSet *self, + AnalysisStateSet *pool, + AnalysisState *borrowed_item +) { + unsigned index, exists; + array_search_sorted_with(self, analysis_state__compare, &borrowed_item, &index, &exists); + if (!exists) { + AnalysisState *new_item = analysis_state_pool__clone_or_reuse(pool, borrowed_item); + array_insert(self, index, new_item); + } +} + +// Inserts a clone of the passed-in item at the end position of this list. +// +// IMPORTANT: The caller MUST ENSURE that this item is larger (by the comparison function +// `analysis_state__compare`) than largest item already in this set. If items are inserted in the +// wrong order, the set will not function properly for future use. +// +// The caller retains ownership of the passed-in memory. However, the clone that is created by this +// function will be managed by the state set. +static inline void analysis_state_set__push( + AnalysisStateSet *self, + AnalysisStateSet *pool, + AnalysisState *borrowed_item +) { + AnalysisState *new_item = analysis_state_pool__clone_or_reuse(pool, borrowed_item); + array_push(self, new_item); +} + +// Removes all items from this set, returning it to an empty state. +static inline void analysis_state_set__clear(AnalysisStateSet *self, AnalysisStateSet *pool) { + array_push_all(pool, self); + array_clear(self); +} + +// Releases all memory that is managed with this state set, including any items currently present. +// After calling this function, the set is no longer suitable for use. +static inline void analysis_state_set__delete(AnalysisStateSet *self) { + for (unsigned i = 0; i < self->size; i++) { + ts_free(self->contents[i]); + } + array_delete(self); +} + +/**************** + * QueryAnalyzer + ****************/ + +static inline QueryAnalysis query_analysis__new(void) { + return (QueryAnalysis) { + .states = array_new(), + .next_states = array_new(), + .deeper_states = array_new(), + .state_pool = array_new(), + .final_step_indices = array_new(), + .finished_parent_symbols = array_new(), + .did_abort = false, + }; +} + +static inline void query_analysis__delete(QueryAnalysis *self) { + analysis_state_set__delete(&self->states); + analysis_state_set__delete(&self->next_states); + analysis_state_set__delete(&self->deeper_states); + analysis_state_set__delete(&self->state_pool); + array_delete(&self->final_step_indices); + array_delete(&self->finished_parent_symbols); +} + +/*********************** + * AnalysisSubgraphNode + ***********************/ + +static inline int analysis_subgraph_node__compare(const AnalysisSubgraphNode *self, const AnalysisSubgraphNode *other) { + if (self->state < other->state) return -1; + if (self->state > other->state) return 1; + if (self->child_index < other->child_index) return -1; + if (self->child_index > other->child_index) return 1; + if (self->done < other->done) return -1; + if (self->done > other->done) return 1; + if (self->production_id < other->production_id) return -1; + if (self->production_id > other->production_id) return 1; + return 0; +} + +/********* + * Query + *********/ + +// The `pattern_map` contains a mapping from TSSymbol values to indices in the +// `steps` array. For a given syntax node, the `pattern_map` makes it possible +// to quickly find the starting steps of all of the patterns whose root matches +// that node. Each entry has two fields: a `pattern_index`, which identifies one +// of the patterns in the query, and a `step_index`, which indicates the start +// offset of that pattern's steps within the `steps` array. +// +// The entries are sorted by the patterns' root symbols, and lookups use a +// binary search. This ensures that the cost of this initial lookup step +// scales logarithmically with the number of patterns in the query. +// +// This returns `true` if the symbol is present and `false` otherwise. +// If the symbol is not present `*result` is set to the index where the +// symbol should be inserted. +static inline bool ts_query__pattern_map_search( + const t_query *self, + t_symbol needle, + uint32_t *result +) { + uint32_t base_index = self->wildcard_root_pattern_count; + uint32_t size = self->pattern_map.size - base_index; + if (size == 0) { + *result = base_index; + return false; + } + while (size > 1) { + uint32_t half_size = size / 2; + uint32_t mid_index = base_index + half_size; + t_symbol mid_symbol = self->steps.contents[ + self->pattern_map.contents[mid_index].step_index + ].symbol; + if (needle > mid_symbol) base_index = mid_index; + size -= half_size; + } + + t_symbol symbol = self->steps.contents[ + self->pattern_map.contents[base_index].step_index + ].symbol; + + if (needle > symbol) { + base_index++; + if (base_index < self->pattern_map.size) { + symbol = self->steps.contents[ + self->pattern_map.contents[base_index].step_index + ].symbol; + } + } + + *result = base_index; + return needle == symbol; +} + +// Insert a new pattern's start index into the pattern map, maintaining +// the pattern map's ordering invariant. +static inline void ts_query__pattern_map_insert( + t_query *self, + t_symbol symbol, + PatternEntry new_entry +) { + uint32_t index; + ts_query__pattern_map_search(self, symbol, &index); + + // Ensure that the entries are sorted not only by symbol, but also + // by pattern_index. This way, states for earlier patterns will be + // initiated first, which allows the ordering of the states array + // to be maintained more efficiently. + while (index < self->pattern_map.size) { + PatternEntry *entry = &self->pattern_map.contents[index]; + if ( + self->steps.contents[entry->step_index].symbol == symbol && + entry->pattern_index < new_entry.pattern_index + ) { + index++; + } else { + break; + } + } + + array_insert(&self->pattern_map, index, new_entry); +} + +// Walk the subgraph for this non-terminal, tracking all of the possible +// sequences of progress within the pattern. +static void ts_query__perform_analysis( + t_query *self, + const AnalysisSubgraphArray *subgraphs, + QueryAnalysis *analysis +) { + unsigned recursion_depth_limit = 0; + unsigned prev_final_step_count = 0; + array_clear(&analysis->final_step_indices); + array_clear(&analysis->finished_parent_symbols); + + for (unsigned iteration = 0;; iteration++) { + if (iteration == MAX_ANALYSIS_ITERATION_COUNT) { + analysis->did_abort = true; + break; + } + + #ifdef DEBUG_ANALYZE_QUERY + printf("Iteration: %u. Final step indices:", iteration); + for (unsigned j = 0; j < analysis->final_step_indices.size; j++) { + printf(" %4u", analysis->final_step_indices.contents[j]); + } + printf("\n"); + for (unsigned j = 0; j < analysis->states.size; j++) { + AnalysisState *state = analysis->states.contents[j]; + printf(" %3u: step: %u, stack: [", j, state->step_index); + for (unsigned k = 0; k < state->depth; k++) { + printf( + " {%s, child: %u, state: %4u", + self->language->symbol_names[state->stack[k].parent_symbol], + state->stack[k].child_index, + state->stack[k].parse_state + ); + if (state->stack[k].field_id) printf(", field: %s", self->language->field_names[state->stack[k].field_id]); + if (state->stack[k].done) printf(", DONE"); + printf("}"); + } + printf(" ]\n"); + } + #endif + + // If no further progress can be made within the current recursion depth limit, then + // bump the depth limit by one, and continue to process the states the exceeded the + // limit. But only allow this if progress has been made since the last time the depth + // limit was increased. + if (analysis->states.size == 0) { + if ( + analysis->deeper_states.size > 0 && + analysis->final_step_indices.size > prev_final_step_count + ) { + #ifdef DEBUG_ANALYZE_QUERY + printf("Increase recursion depth limit to %u\n", recursion_depth_limit + 1); + #endif + + prev_final_step_count = analysis->final_step_indices.size; + recursion_depth_limit++; + AnalysisStateSet _states = analysis->states; + analysis->states = analysis->deeper_states; + analysis->deeper_states = _states; + continue; + } + + break; + } + + analysis_state_set__clear(&analysis->next_states, &analysis->state_pool); + for (unsigned j = 0; j < analysis->states.size; j++) { + AnalysisState * const state = analysis->states.contents[j]; + + // For efficiency, it's important to avoid processing the same analysis state more + // than once. To achieve this, keep the states in order of ascending position within + // their hypothetical syntax trees. In each iteration of this loop, start by advancing + // the states that have made the least progress. Avoid advancing states that have already + // made more progress. + if (analysis->next_states.size > 0) { + int comparison = analysis_state__compare_position( + &state, + array_back(&analysis->next_states) + ); + if (comparison == 0) { + analysis_state_set__insert_sorted(&analysis->next_states, &analysis->state_pool, state); + continue; + } else if (comparison > 0) { + #ifdef DEBUG_ANALYZE_QUERY + printf("Terminate iteration at state %u\n", j); + #endif + while (j < analysis->states.size) { + analysis_state_set__push( + &analysis->next_states, + &analysis->state_pool, + analysis->states.contents[j] + ); + j++; + } + break; + } + } + + const t_state_id parse_state = analysis_state__top(state)->parse_state; + const t_symbol parent_symbol = analysis_state__top(state)->parent_symbol; + const t_field_id parent_field_id = analysis_state__top(state)->field_id; + const unsigned child_index = analysis_state__top(state)->child_index; + const QueryStep * const step = &self->steps.contents[state->step_index]; + + unsigned subgraph_index, exists; + array_search_sorted_by(subgraphs, .symbol, parent_symbol, &subgraph_index, &exists); + if (!exists) continue; + const AnalysisSubgraph *subgraph = &subgraphs->contents[subgraph_index]; + + // Follow every possible path in the parse table, but only visit states that + // are part of the subgraph for the current symbol. + LookaheadIterator lookahead_iterator = ts_language_lookaheads(self->language, parse_state); + while (ts_lookahead_iterator__next(&lookahead_iterator)) { + t_symbol sym = lookahead_iterator.symbol; + + AnalysisSubgraphNode successor = { + .state = parse_state, + .child_index = child_index, + }; + if (lookahead_iterator.action_count) { + const TSParseAction *action = &lookahead_iterator.actions[lookahead_iterator.action_count - 1]; + if (action->type == TSParseActionTypeShift) { + if (!action->shift.extra) { + successor.state = action->shift.state; + successor.child_index++; + } + } else { + continue; + } + } else if (lookahead_iterator.next_state != 0) { + successor.state = lookahead_iterator.next_state; + successor.child_index++; + } else { + continue; + } + + unsigned node_index; + array_search_sorted_with( + &subgraph->nodes, + analysis_subgraph_node__compare, &successor, + &node_index, &exists + ); + while (node_index < subgraph->nodes.size) { + AnalysisSubgraphNode *node = &subgraph->nodes.contents[node_index++]; + if (node->state != successor.state || node->child_index != successor.child_index) break; + + // Use the subgraph to determine what alias and field will eventually be applied + // to this child node. + t_symbol alias = ts_language_alias_at(self->language, node->production_id, child_index); + t_symbol visible_symbol = alias + ? alias + : self->language->symbol_metadata[sym].visible + ? self->language->public_symbol_map[sym] + : 0; + t_field_id field_id = parent_field_id; + if (!field_id) { + const TSFieldMapEntry *field_map, *field_map_end; + ts_language_field_map(self->language, node->production_id, &field_map, &field_map_end); + for (; field_map != field_map_end; field_map++) { + if (!field_map->inherited && field_map->child_index == child_index) { + field_id = field_map->field_id; + break; + } + } + } + + // Create a new state that has advanced past this hypothetical subtree. + AnalysisState next_state = *state; + AnalysisStateEntry *next_state_top = analysis_state__top(&next_state); + next_state_top->child_index = successor.child_index; + next_state_top->parse_state = successor.state; + if (node->done) next_state_top->done = true; + + // Determine if this hypothetical child node would match the current step + // of the query pattern. + bool does_match = false; + if (visible_symbol) { + does_match = true; + if (step->symbol == WILDCARD_SYMBOL) { + if ( + step->is_named && + !self->language->symbol_metadata[visible_symbol].named + ) does_match = false; + } else if (step->symbol != visible_symbol) { + does_match = false; + } + if (step->field && step->field != field_id) { + does_match = false; + } + if ( + step->supertype_symbol && + !analysis_state__has_supertype(state, step->supertype_symbol) + ) does_match = false; + } + + // If this child is hidden, then descend into it and walk through its children. + // If the top entry of the stack is at the end of its rule, then that entry can + // be replaced. Otherwise, push a new entry onto the stack. + else if (sym >= self->language->token_count) { + if (!next_state_top->done) { + if (next_state.depth + 1 >= MAX_ANALYSIS_STATE_DEPTH) { + #ifdef DEBUG_ANALYZE_QUERY + printf("Exceeded depth limit for state %u\n", j); + #endif + + analysis->did_abort = true; + continue; + } + + next_state.depth++; + next_state_top = analysis_state__top(&next_state); + } + + *next_state_top = (AnalysisStateEntry) { + .parse_state = parse_state, + .parent_symbol = sym, + .child_index = 0, + .field_id = field_id, + .done = false, + }; + + if (analysis_state__recursion_depth(&next_state) > recursion_depth_limit) { + analysis_state_set__insert_sorted( + &analysis->deeper_states, + &analysis->state_pool, + &next_state + ); + continue; + } + } + + // Pop from the stack when this state reached the end of its current syntax node. + while (next_state.depth > 0 && next_state_top->done) { + next_state.depth--; + next_state_top = analysis_state__top(&next_state); + } + + // If this hypothetical child did match the current step of the query pattern, + // then advance to the next step at the current depth. This involves skipping + // over any descendant steps of the current child. + const QueryStep *next_step = step; + if (does_match) { + for (;;) { + next_state.step_index++; + next_step = &self->steps.contents[next_state.step_index]; + if ( + next_step->depth == PATTERN_DONE_MARKER || + next_step->depth <= step->depth + ) break; + } + } else if (successor.state == parse_state) { + continue; + } + + for (;;) { + // Skip pass-through states. Although these states have alternatives, they are only + // used to implement repetitions, and query analysis does not need to process + // repetitions in order to determine whether steps are possible and definite. + if (next_step->is_pass_through) { + next_state.step_index++; + next_step++; + continue; + } + + // If the pattern is finished or hypothetical parent node is complete, then + // record that matching can terminate at this step of the pattern. Otherwise, + // add this state to the list of states to process on the next iteration. + if (!next_step->is_dead_end) { + bool did_finish_pattern = self->steps.contents[next_state.step_index].depth != step->depth; + if (did_finish_pattern) { + array_insert_sorted_by(&analysis->finished_parent_symbols, , state->root_symbol); + } else if (next_state.depth == 0) { + array_insert_sorted_by(&analysis->final_step_indices, , next_state.step_index); + } else { + analysis_state_set__insert_sorted(&analysis->next_states, &analysis->state_pool, &next_state); + } + } + + // If the state has advanced to a step with an alternative step, then add another state + // at that alternative step. This process is simpler than the process of actually matching a + // pattern during query execution, because for the purposes of query analysis, there is no + // need to process repetitions. + if ( + does_match && + next_step->alternative_index != NONE && + next_step->alternative_index > next_state.step_index + ) { + next_state.step_index = next_step->alternative_index; + next_step = &self->steps.contents[next_state.step_index]; + } else { + break; + } + } + } + } + } + + AnalysisStateSet _states = analysis->states; + analysis->states = analysis->next_states; + analysis->next_states = _states; + } +} + +static bool ts_query__analyze_patterns(t_query *self, unsigned *error_offset) { + Array(uint16_t) non_rooted_pattern_start_steps = array_new(); + for (unsigned i = 0; i < self->pattern_map.size; i++) { + PatternEntry *pattern = &self->pattern_map.contents[i]; + if (!pattern->is_rooted) { + QueryStep *step = &self->steps.contents[pattern->step_index]; + if (step->symbol != WILDCARD_SYMBOL) { + array_push(&non_rooted_pattern_start_steps, i); + } + } + } + + // Walk forward through all of the steps in the query, computing some + // basic information about each step. Mark all of the steps that contain + // captures, and record the indices of all of the steps that have child steps. + Array(uint32_t) parent_step_indices = array_new(); + for (unsigned i = 0; i < self->steps.size; i++) { + QueryStep *step = &self->steps.contents[i]; + if (step->depth == PATTERN_DONE_MARKER) { + step->parent_pattern_guaranteed = true; + step->root_pattern_guaranteed = true; + continue; + } + + bool has_children = false; + bool is_wildcard = step->symbol == WILDCARD_SYMBOL; + step->contains_captures = step->capture_ids[0] != NONE; + for (unsigned j = i + 1; j < self->steps.size; j++) { + QueryStep *next_step = &self->steps.contents[j]; + if ( + next_step->depth == PATTERN_DONE_MARKER || + next_step->depth <= step->depth + ) break; + if (next_step->capture_ids[0] != NONE) { + step->contains_captures = true; + } + if (!is_wildcard) { + next_step->root_pattern_guaranteed = true; + next_step->parent_pattern_guaranteed = true; + } + has_children = true; + } + + if (has_children && !is_wildcard) { + array_push(&parent_step_indices, i); + } + } + + // For every parent symbol in the query, initialize an 'analysis subgraph'. + // This subgraph lists all of the states in the parse table that are directly + // involved in building subtrees for this symbol. + // + // In addition to the parent symbols in the query, construct subgraphs for all + // of the hidden symbols in the grammar, because these might occur within + // one of the parent nodes, such that their children appear to belong to the + // parent. + AnalysisSubgraphArray subgraphs = array_new(); + for (unsigned i = 0; i < parent_step_indices.size; i++) { + uint32_t parent_step_index = parent_step_indices.contents[i]; + t_symbol parent_symbol = self->steps.contents[parent_step_index].symbol; + AnalysisSubgraph subgraph = { .symbol = parent_symbol }; + array_insert_sorted_by(&subgraphs, .symbol, subgraph); + } + for (t_symbol sym = (uint16_t)self->language->token_count; sym < (uint16_t)self->language->symbol_count; sym++) { + if (!ts_language_symbol_metadata(self->language, sym).visible) { + AnalysisSubgraph subgraph = { .symbol = sym }; + array_insert_sorted_by(&subgraphs, .symbol, subgraph); + } + } + + // Scan the parse table to find the data needed to populate these subgraphs. + // Collect three things during this scan: + // 1) All of the parse states where one of these symbols can start. + // 2) All of the parse states where one of these symbols can end, along + // with information about the node that would be created. + // 3) A list of predecessor states for each state. + StatePredecessorMap predecessor_map = state_predecessor_map_new(self->language); + for (t_state_id state = 1; state < (uint16_t)self->language->state_count; state++) { + unsigned subgraph_index, exists; + LookaheadIterator lookahead_iterator = ts_language_lookaheads(self->language, state); + while (ts_lookahead_iterator__next(&lookahead_iterator)) { + if (lookahead_iterator.action_count) { + for (unsigned i = 0; i < lookahead_iterator.action_count; i++) { + const TSParseAction *action = &lookahead_iterator.actions[i]; + if (action->type == TSParseActionTypeReduce) { + const t_symbol *aliases, *aliases_end; + ts_language_aliases_for_symbol( + self->language, + action->reduce.symbol, + &aliases, + &aliases_end + ); + for (const t_symbol *symbol = aliases; symbol < aliases_end; symbol++) { + array_search_sorted_by( + &subgraphs, + .symbol, + *symbol, + &subgraph_index, + &exists + ); + if (exists) { + AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index]; + if (subgraph->nodes.size == 0 || array_back(&subgraph->nodes)->state != state) { + array_push(&subgraph->nodes, ((AnalysisSubgraphNode) { + .state = state, + .production_id = action->reduce.production_id, + .child_index = action->reduce.child_count, + .done = true, + })); + } + } + } + } else if (action->type == TSParseActionTypeShift && !action->shift.extra) { + t_state_id next_state = action->shift.state; + state_predecessor_map_add(&predecessor_map, next_state, state); + } + } + } else if (lookahead_iterator.next_state != 0) { + if (lookahead_iterator.next_state != state) { + state_predecessor_map_add(&predecessor_map, lookahead_iterator.next_state, state); + } + if (ts_language_state_is_primary(self->language, state)) { + const t_symbol *aliases, *aliases_end; + ts_language_aliases_for_symbol( + self->language, + lookahead_iterator.symbol, + &aliases, + &aliases_end + ); + for (const t_symbol *symbol = aliases; symbol < aliases_end; symbol++) { + array_search_sorted_by( + &subgraphs, + .symbol, + *symbol, + &subgraph_index, + &exists + ); + if (exists) { + AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index]; + if ( + subgraph->start_states.size == 0 || + *array_back(&subgraph->start_states) != state + ) + array_push(&subgraph->start_states, state); + } + } + } + } + } + } + + // For each subgraph, compute the preceding states by walking backward + // from the end states using the predecessor map. + Array(AnalysisSubgraphNode) next_nodes = array_new(); + for (unsigned i = 0; i < subgraphs.size; i++) { + AnalysisSubgraph *subgraph = &subgraphs.contents[i]; + if (subgraph->nodes.size == 0) { + array_delete(&subgraph->start_states); + array_erase(&subgraphs, i); + i--; + continue; + } + array_assign(&next_nodes, &subgraph->nodes); + while (next_nodes.size > 0) { + AnalysisSubgraphNode node = array_pop(&next_nodes); + if (node.child_index > 1) { + unsigned predecessor_count; + const t_state_id *predecessors = state_predecessor_map_get( + &predecessor_map, + node.state, + &predecessor_count + ); + for (unsigned j = 0; j < predecessor_count; j++) { + AnalysisSubgraphNode predecessor_node = { + .state = predecessors[j], + .child_index = node.child_index - 1, + .production_id = node.production_id, + .done = false, + }; + unsigned index, exists; + array_search_sorted_with( + &subgraph->nodes, analysis_subgraph_node__compare, &predecessor_node, + &index, &exists + ); + if (!exists) { + array_insert(&subgraph->nodes, index, predecessor_node); + array_push(&next_nodes, predecessor_node); + } + } + } + } + } + + #ifdef DEBUG_ANALYZE_QUERY + printf("\nSubgraphs:\n"); + for (unsigned i = 0; i < subgraphs.size; i++) { + AnalysisSubgraph *subgraph = &subgraphs.contents[i]; + printf(" %u, %s:\n", subgraph->symbol, ts_language_symbol_name(self->language, subgraph->symbol)); + for (unsigned j = 0; j < subgraph->start_states.size; j++) { + printf( + " {state: %u}\n", + subgraph->start_states.contents[j] + ); + } + for (unsigned j = 0; j < subgraph->nodes.size; j++) { + AnalysisSubgraphNode *node = &subgraph->nodes.contents[j]; + printf( + " {state: %u, child_index: %u, production_id: %u, done: %d}\n", + node->state, node->child_index, node->production_id, node->done + ); + } + printf("\n"); + } + #endif + + // For each non-terminal pattern, determine if the pattern can successfully match, + // and identify all of the possible children within the pattern where matching could fail. + bool all_patterns_are_valid = true; + QueryAnalysis analysis = query_analysis__new(); + for (unsigned i = 0; i < parent_step_indices.size; i++) { + uint16_t parent_step_index = parent_step_indices.contents[i]; + uint16_t parent_depth = self->steps.contents[parent_step_index].depth; + t_symbol parent_symbol = self->steps.contents[parent_step_index].symbol; + if (parent_symbol == ts_builtin_sym_error) continue; + + // Find the subgraph that corresponds to this pattern's root symbol. If the pattern's + // root symbol is a terminal, then return an error. + unsigned subgraph_index, exists; + array_search_sorted_by(&subgraphs, .symbol, parent_symbol, &subgraph_index, &exists); + if (!exists) { + unsigned first_child_step_index = parent_step_index + 1; + uint32_t j, child_exists; + array_search_sorted_by(&self->step_offsets, .step_index, first_child_step_index, &j, &child_exists); + assert(child_exists); + *error_offset = self->step_offsets.contents[j].byte_offset; + all_patterns_are_valid = false; + break; + } + + // Initialize an analysis state at every parse state in the table where + // this parent symbol can occur. + AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index]; + analysis_state_set__clear(&analysis.states, &analysis.state_pool); + analysis_state_set__clear(&analysis.deeper_states, &analysis.state_pool); + for (unsigned j = 0; j < subgraph->start_states.size; j++) { + t_state_id parse_state = subgraph->start_states.contents[j]; + analysis_state_set__push(&analysis.states, &analysis.state_pool, &((AnalysisState) { + .step_index = parent_step_index + 1, + .stack = { + [0] = { + .parse_state = parse_state, + .parent_symbol = parent_symbol, + .child_index = 0, + .field_id = 0, + .done = false, + }, + }, + .depth = 1, + .root_symbol = parent_symbol, + })); + } + + #ifdef DEBUG_ANALYZE_QUERY + printf( + "\nWalk states for %s:\n", + ts_language_symbol_name(self->language, analysis.states.contents[0]->stack[0].parent_symbol) + ); + #endif + + analysis.did_abort = false; + ts_query__perform_analysis(self, &subgraphs, &analysis); + + // If this pattern could not be fully analyzed, then every step should + // be considered fallible. + if (analysis.did_abort) { + for (unsigned j = parent_step_index + 1; j < self->steps.size; j++) { + QueryStep *step = &self->steps.contents[j]; + if ( + step->depth <= parent_depth || + step->depth == PATTERN_DONE_MARKER + ) break; + if (!step->is_dead_end) { + step->parent_pattern_guaranteed = false; + step->root_pattern_guaranteed = false; + } + } + continue; + } + + // If this pattern cannot match, store the pattern index so that it can be + // returned to the caller. + if (analysis.finished_parent_symbols.size == 0) { + assert(analysis.final_step_indices.size > 0); + uint16_t impossible_step_index = *array_back(&analysis.final_step_indices); + uint32_t j, impossible_exists; + array_search_sorted_by(&self->step_offsets, .step_index, impossible_step_index, &j, &impossible_exists); + if (j >= self->step_offsets.size) j = self->step_offsets.size - 1; + *error_offset = self->step_offsets.contents[j].byte_offset; + all_patterns_are_valid = false; + break; + } + + // Mark as fallible any step where a match terminated. + // Later, this property will be propagated to all of the step's predecessors. + for (unsigned j = 0; j < analysis.final_step_indices.size; j++) { + uint32_t final_step_index = analysis.final_step_indices.contents[j]; + QueryStep *step = &self->steps.contents[final_step_index]; + if ( + step->depth != PATTERN_DONE_MARKER && + step->depth > parent_depth && + !step->is_dead_end + ) { + step->parent_pattern_guaranteed = false; + step->root_pattern_guaranteed = false; + } + } + } + + // Mark as indefinite any step with captures that are used in predicates. + Array(uint16_t) predicate_capture_ids = array_new(); + for (unsigned i = 0; i < self->patterns.size; i++) { + QueryPattern *pattern = &self->patterns.contents[i]; + + // Gather all of the captures that are used in predicates for this pattern. + array_clear(&predicate_capture_ids); + for ( + unsigned start = pattern->predicate_steps.offset, + end = start + pattern->predicate_steps.length, + j = start; j < end; j++ + ) { + t_query_predicate_step *step = &self->predicate_steps.contents[j]; + if (step->type == TSQueryPredicateStepTypeCapture) { + uint16_t value_id = step->value_id; + array_insert_sorted_by(&predicate_capture_ids, , value_id); + } + } + + // Find all of the steps that have these captures. + for ( + unsigned start = pattern->steps.offset, + end = start + pattern->steps.length, + j = start; j < end; j++ + ) { + QueryStep *step = &self->steps.contents[j]; + for (unsigned k = 0; k < MAX_STEP_CAPTURE_COUNT; k++) { + uint16_t capture_id = step->capture_ids[k]; + if (capture_id == NONE) break; + unsigned index, exists; + array_search_sorted_by(&predicate_capture_ids, , capture_id, &index, &exists); + if (exists) { + step->root_pattern_guaranteed = false; + break; + } + } + } + } + + // Propagate fallibility. If a pattern is fallible at a given step, then it is + // fallible at all of its preceding steps. + bool done = self->steps.size == 0; + while (!done) { + done = true; + for (unsigned i = self->steps.size - 1; i > 0; i--) { + QueryStep *step = &self->steps.contents[i]; + if (step->depth == PATTERN_DONE_MARKER) continue; + + // Determine if this step is definite or has definite alternatives. + bool parent_pattern_guaranteed = false; + for (;;) { + if (step->root_pattern_guaranteed) { + parent_pattern_guaranteed = true; + break; + } + if (step->alternative_index == NONE || step->alternative_index < i) { + break; + } + step = &self->steps.contents[step->alternative_index]; + } + + // If not, mark its predecessor as indefinite. + if (!parent_pattern_guaranteed) { + QueryStep *prev_step = &self->steps.contents[i - 1]; + if ( + !prev_step->is_dead_end && + prev_step->depth != PATTERN_DONE_MARKER && + prev_step->root_pattern_guaranteed + ) { + prev_step->root_pattern_guaranteed = false; + done = false; + } + } + } + } + + #ifdef DEBUG_ANALYZE_QUERY + printf("Steps:\n"); + for (unsigned i = 0; i < self->steps.size; i++) { + QueryStep *step = &self->steps.contents[i]; + if (step->depth == PATTERN_DONE_MARKER) { + printf(" %u: DONE\n", i); + } else { + printf( + " %u: {symbol: %s, field: %s, depth: %u, parent_pattern_guaranteed: %d, root_pattern_guaranteed: %d}\n", + i, + (step->symbol == WILDCARD_SYMBOL) + ? "ANY" + : ts_language_symbol_name(self->language, step->symbol), + (step->field ? ts_language_field_name_for_id(self->language, step->field) : "-"), + step->depth, + step->parent_pattern_guaranteed, + step->root_pattern_guaranteed + ); + } + } + #endif + + // Determine which repetition symbols in this language have the possibility + // of matching non-rooted patterns in this query. These repetition symbols + // prevent certain optimizations with range restrictions. + analysis.did_abort = false; + for (uint32_t i = 0; i < non_rooted_pattern_start_steps.size; i++) { + uint16_t pattern_entry_index = non_rooted_pattern_start_steps.contents[i]; + PatternEntry *pattern_entry = &self->pattern_map.contents[pattern_entry_index]; + + analysis_state_set__clear(&analysis.states, &analysis.state_pool); + analysis_state_set__clear(&analysis.deeper_states, &analysis.state_pool); + for (unsigned j = 0; j < subgraphs.size; j++) { + AnalysisSubgraph *subgraph = &subgraphs.contents[j]; + TSSymbolMetadata metadata = ts_language_symbol_metadata(self->language, subgraph->symbol); + if (metadata.visible || metadata.named) continue; + + for (uint32_t k = 0; k < subgraph->start_states.size; k++) { + t_state_id parse_state = subgraph->start_states.contents[k]; + analysis_state_set__push(&analysis.states, &analysis.state_pool, &((AnalysisState) { + .step_index = pattern_entry->step_index, + .stack = { + [0] = { + .parse_state = parse_state, + .parent_symbol = subgraph->symbol, + .child_index = 0, + .field_id = 0, + .done = false, + }, + }, + .root_symbol = subgraph->symbol, + .depth = 1, + })); + } + } + + #ifdef DEBUG_ANALYZE_QUERY + printf("\nWalk states for rootless pattern step %u:\n", pattern_entry->step_index); + #endif + + ts_query__perform_analysis( + self, + &subgraphs, + &analysis + ); + + if (analysis.finished_parent_symbols.size > 0) { + self->patterns.contents[pattern_entry->pattern_index].is_non_local = true; + } + + for (unsigned k = 0; k < analysis.finished_parent_symbols.size; k++) { + t_symbol symbol = analysis.finished_parent_symbols.contents[k]; + array_insert_sorted_by(&self->repeat_symbols_with_rootless_patterns, , symbol); + } + } + + #ifdef DEBUG_ANALYZE_QUERY + if (self->repeat_symbols_with_rootless_patterns.size > 0) { + printf("\nRepetition symbols with rootless patterns:\n"); + printf("aborted analysis: %d\n", analysis.did_abort); + for (unsigned i = 0; i < self->repeat_symbols_with_rootless_patterns.size; i++) { + TSSymbol symbol = self->repeat_symbols_with_rootless_patterns.contents[i]; + printf(" %u, %s\n", symbol, ts_language_symbol_name(self->language, symbol)); + } + printf("\n"); + } + #endif + + // Cleanup + for (unsigned i = 0; i < subgraphs.size; i++) { + array_delete(&subgraphs.contents[i].start_states); + array_delete(&subgraphs.contents[i].nodes); + } + array_delete(&subgraphs); + query_analysis__delete(&analysis); + array_delete(&next_nodes); + array_delete(&non_rooted_pattern_start_steps); + array_delete(&parent_step_indices); + array_delete(&predicate_capture_ids); + state_predecessor_map_delete(&predecessor_map); + + return all_patterns_are_valid; +} + +static void ts_query__add_negated_fields( + t_query *self, + uint16_t step_index, + t_field_id *field_ids, + uint16_t field_count +) { + QueryStep *step = &self->steps.contents[step_index]; + + // The negated field array stores a list of field lists, separated by zeros. + // Try to find the start index of an existing list that matches this new list. + bool failed_match = false; + unsigned match_count = 0; + unsigned start_i = 0; + for (unsigned i = 0; i < self->negated_fields.size; i++) { + t_field_id existing_field_id = self->negated_fields.contents[i]; + + // At each zero value, terminate the match attempt. If we've exactly + // matched the new field list, then reuse this index. Otherwise, + // start over the matching process. + if (existing_field_id == 0) { + if (match_count == field_count) { + step->negated_field_list_id = start_i; + return; + } else { + start_i = i + 1; + match_count = 0; + failed_match = false; + } + } + + // If the existing list matches our new list so far, then advance + // to the next element of the new list. + else if ( + match_count < field_count && + existing_field_id == field_ids[match_count] && + !failed_match + ) { + match_count++; + } + + // Otherwise, this existing list has failed to match. + else { + match_count = 0; + failed_match = true; + } + } + + step->negated_field_list_id = self->negated_fields.size; + array_extend(&self->negated_fields, field_count, field_ids); + array_push(&self->negated_fields, 0); +} + +static t_query_error ts_query__parse_string_literal( + t_query *self, + Stream *stream +) { + const char *string_start = stream->input; + if (stream->next != '"') return TSQueryErrorSyntax; + stream_advance(stream); + const char *prev_position = stream->input; + + bool is_escaped = false; + array_clear(&self->string_buffer); + for (;;) { + if (is_escaped) { + is_escaped = false; + switch (stream->next) { + case 'n': + array_push(&self->string_buffer, '\n'); + break; + case 'r': + array_push(&self->string_buffer, '\r'); + break; + case 't': + array_push(&self->string_buffer, '\t'); + break; + case '0': + array_push(&self->string_buffer, '\0'); + break; + default: + array_extend(&self->string_buffer, stream->next_size, stream->input); + break; + } + prev_position = stream->input + stream->next_size; + } else { + if (stream->next == '\\') { + array_extend(&self->string_buffer, (uint32_t)(stream->input - prev_position), prev_position); + prev_position = stream->input + 1; + is_escaped = true; + } else if (stream->next == '"') { + array_extend(&self->string_buffer, (uint32_t)(stream->input - prev_position), prev_position); + stream_advance(stream); + return TSQueryErrorNone; + } else if (stream->next == '\n') { + stream_reset(stream, string_start); + return TSQueryErrorSyntax; + } + } + if (!stream_advance(stream)) { + stream_reset(stream, string_start); + return TSQueryErrorSyntax; + } + } +} + +// Parse a single predicate associated with a pattern, adding it to the +// query's internal `predicate_steps` array. Predicates are arbitrary +// S-expressions associated with a pattern which are meant to be handled at +// a higher level of abstraction, such as the Rust/JavaScript bindings. They +// can contain '@'-prefixed capture names, double-quoted strings, and bare +// symbols, which also represent strings. +static t_query_error ts_query__parse_predicate( + t_query *self, + Stream *stream +) { + if (!stream_is_ident_start(stream)) return TSQueryErrorSyntax; + const char *predicate_name = stream->input; + stream_scan_identifier(stream); + uint32_t length = (uint32_t)(stream->input - predicate_name); + uint16_t id = symbol_table_insert_name( + &self->predicate_values, + predicate_name, + length + ); + array_push(&self->predicate_steps, ((t_query_predicate_step) { + .type = TSQueryPredicateStepTypeString, + .value_id = id, + })); + stream_skip_whitespace(stream); + + for (;;) { + if (stream->next == ')') { + stream_advance(stream); + stream_skip_whitespace(stream); + array_push(&self->predicate_steps, ((t_query_predicate_step) { + .type = TSQueryPredicateStepTypeDone, + .value_id = 0, + })); + break; + } + + // Parse an '@'-prefixed capture name + else if (stream->next == '@') { + stream_advance(stream); + + // Parse the capture name + if (!stream_is_ident_start(stream)) return TSQueryErrorSyntax; + const char *capture_name = stream->input; + stream_scan_identifier(stream); + uint32_t capture_length = (uint32_t)(stream->input - capture_name); + + // Add the capture id to the first step of the pattern + int capture_id = symbol_table_id_for_name( + &self->captures, + capture_name, + capture_length + ); + if (capture_id == -1) { + stream_reset(stream, capture_name); + return TSQueryErrorCapture; + } + + array_push(&self->predicate_steps, ((t_query_predicate_step) { + .type = TSQueryPredicateStepTypeCapture, + .value_id = capture_id, + })); + } + + // Parse a string literal + else if (stream->next == '"') { + t_query_error e = ts_query__parse_string_literal(self, stream); + if (e) return e; + uint16_t query_id = symbol_table_insert_name( + &self->predicate_values, + self->string_buffer.contents, + self->string_buffer.size + ); + array_push(&self->predicate_steps, ((t_query_predicate_step) { + .type = TSQueryPredicateStepTypeString, + .value_id = query_id, + })); + } + + // Parse a bare symbol + else if (stream_is_ident_start(stream)) { + const char *symbol_start = stream->input; + stream_scan_identifier(stream); + uint32_t symbol_length = (uint32_t)(stream->input - symbol_start); + uint16_t query_id = symbol_table_insert_name( + &self->predicate_values, + symbol_start, + symbol_length + ); + array_push(&self->predicate_steps, ((t_query_predicate_step) { + .type = TSQueryPredicateStepTypeString, + .value_id = query_id, + })); + } + + else { + return TSQueryErrorSyntax; + } + + stream_skip_whitespace(stream); + } + + return 0; +} + +// Read one S-expression pattern from the stream, and incorporate it into +// the query's internal state machine representation. For nested patterns, +// this function calls itself recursively. +// +// The caller is responsible for passing in a dedicated CaptureQuantifiers. +// These should not be shared between different calls to ts_query__parse_pattern! +static t_query_error ts_query__parse_pattern( + t_query *self, + Stream *stream, + uint32_t depth, + bool is_immediate, + CaptureQuantifiers *capture_quantifiers +) { + if (stream->next == 0) return TSQueryErrorSyntax; + if (stream->next == ')' || stream->next == ']') return PARENT_DONE; + + const uint32_t starting_step_index = self->steps.size; + + // Store the byte offset of each step in the query. + if ( + self->step_offsets.size == 0 || + array_back(&self->step_offsets)->step_index != starting_step_index + ) { + array_push(&self->step_offsets, ((StepOffset) { + .step_index = starting_step_index, + .byte_offset = stream_offset(stream), + })); + } + + // An open bracket is the start of an alternation. + if (stream->next == '[') { + stream_advance(stream); + stream_skip_whitespace(stream); + + // Parse each branch, and add a placeholder step in between the branches. + Array(uint32_t) branch_step_indices = array_new(); + CaptureQuantifiers branch_capture_quantifiers = capture_quantifiers_new(); + for (;;) { + uint32_t start_index = self->steps.size; + t_query_error e = ts_query__parse_pattern( + self, + stream, + depth, + is_immediate, + &branch_capture_quantifiers + ); + + if (e == PARENT_DONE) { + if (stream->next == ']' && branch_step_indices.size > 0) { + stream_advance(stream); + break; + } + e = TSQueryErrorSyntax; + } + if (e) { + capture_quantifiers_delete(&branch_capture_quantifiers); + array_delete(&branch_step_indices); + return e; + } + + if (start_index == starting_step_index) { + capture_quantifiers_replace(capture_quantifiers, &branch_capture_quantifiers); + } else { + capture_quantifiers_join_all(capture_quantifiers, &branch_capture_quantifiers); + } + + array_push(&branch_step_indices, start_index); + array_push(&self->steps, query_step__new(0, depth, false)); + capture_quantifiers_clear(&branch_capture_quantifiers); + } + (void)array_pop(&self->steps); + + // For all of the branches except for the last one, add the subsequent branch as an + // alternative, and link the end of the branch to the current end of the steps. + for (unsigned i = 0; i < branch_step_indices.size - 1; i++) { + uint32_t step_index = branch_step_indices.contents[i]; + uint32_t next_step_index = branch_step_indices.contents[i + 1]; + QueryStep *start_step = &self->steps.contents[step_index]; + QueryStep *end_step = &self->steps.contents[next_step_index - 1]; + start_step->alternative_index = next_step_index; + end_step->alternative_index = self->steps.size; + end_step->is_dead_end = true; + } + + capture_quantifiers_delete(&branch_capture_quantifiers); + array_delete(&branch_step_indices); + } + + // An open parenthesis can be the start of three possible constructs: + // * A grouped sequence + // * A predicate + // * A named node + else if (stream->next == '(') { + stream_advance(stream); + stream_skip_whitespace(stream); + + // If this parenthesis is followed by a node, then it represents a grouped sequence. + if (stream->next == '(' || stream->next == '"' || stream->next == '[') { + bool child_is_immediate = is_immediate; + CaptureQuantifiers child_capture_quantifiers = capture_quantifiers_new(); + for (;;) { + if (stream->next == '.') { + child_is_immediate = true; + stream_advance(stream); + stream_skip_whitespace(stream); + } + t_query_error e = ts_query__parse_pattern( + self, + stream, + depth, + child_is_immediate, + &child_capture_quantifiers + ); + if (e == PARENT_DONE) { + if (stream->next == ')') { + stream_advance(stream); + break; + } + e = TSQueryErrorSyntax; + } + if (e) { + capture_quantifiers_delete(&child_capture_quantifiers); + return e; + } + + capture_quantifiers_add_all(capture_quantifiers, &child_capture_quantifiers); + capture_quantifiers_clear(&child_capture_quantifiers); + child_is_immediate = false; + } + + capture_quantifiers_delete(&child_capture_quantifiers); + } + + // A dot/pound character indicates the start of a predicate. + else if (stream->next == '.' || stream->next == '#') { + stream_advance(stream); + return ts_query__parse_predicate(self, stream); + } + + // Otherwise, this parenthesis is the start of a named node. + else { + t_symbol symbol; + + // Parse a normal node name + if (stream_is_ident_start(stream)) { + const char *node_name = stream->input; + stream_scan_identifier(stream); + uint32_t length = (uint32_t)(stream->input - node_name); + + // Parse the wildcard symbol + if (length == 1 && node_name[0] == '_') { + symbol = WILDCARD_SYMBOL; + } + + else { + symbol = ts_language_symbol_for_name( + self->language, + node_name, + length, + true + ); + if (!symbol) { + stream_reset(stream, node_name); + return TSQueryErrorNodeType; + } + } + } else { + return TSQueryErrorSyntax; + } + + // Add a step for the node. + array_push(&self->steps, query_step__new(symbol, depth, is_immediate)); + QueryStep *step = array_back(&self->steps); + if (ts_language_symbol_metadata(self->language, symbol).supertype) { + step->supertype_symbol = step->symbol; + step->symbol = WILDCARD_SYMBOL; + } + if (symbol == WILDCARD_SYMBOL) { + step->is_named = true; + } + + stream_skip_whitespace(stream); + + if (stream->next == '/') { + stream_advance(stream); + if (!stream_is_ident_start(stream)) { + return TSQueryErrorSyntax; + } + + const char *node_name = stream->input; + stream_scan_identifier(stream); + uint32_t length = (uint32_t)(stream->input - node_name); + + step->symbol = ts_language_symbol_for_name( + self->language, + node_name, + length, + true + ); + if (!step->symbol) { + stream_reset(stream, node_name); + return TSQueryErrorNodeType; + } + + stream_skip_whitespace(stream); + } + + // Parse the child patterns + bool child_is_immediate = false; + uint16_t last_child_step_index = 0; + uint16_t negated_field_count = 0; + t_field_id negated_field_ids[MAX_NEGATED_FIELD_COUNT]; + CaptureQuantifiers child_capture_quantifiers = capture_quantifiers_new(); + for (;;) { + // Parse a negated field assertion + if (stream->next == '!') { + stream_advance(stream); + stream_skip_whitespace(stream); + if (!stream_is_ident_start(stream)) { + capture_quantifiers_delete(&child_capture_quantifiers); + return TSQueryErrorSyntax; + } + const char *field_name = stream->input; + stream_scan_identifier(stream); + uint32_t length = (uint32_t)(stream->input - field_name); + stream_skip_whitespace(stream); + + t_field_id field_id = ts_language_field_id_for_name( + self->language, + field_name, + length + ); + if (!field_id) { + stream->input = field_name; + capture_quantifiers_delete(&child_capture_quantifiers); + return TSQueryErrorField; + } + + // Keep the field ids sorted. + if (negated_field_count < MAX_NEGATED_FIELD_COUNT) { + negated_field_ids[negated_field_count] = field_id; + negated_field_count++; + } + + continue; + } + + // Parse a sibling anchor + if (stream->next == '.') { + child_is_immediate = true; + stream_advance(stream); + stream_skip_whitespace(stream); + } + + uint16_t step_index = self->steps.size; + t_query_error e = ts_query__parse_pattern( + self, + stream, + depth + 1, + child_is_immediate, + &child_capture_quantifiers + ); + if (e == PARENT_DONE) { + if (stream->next == ')') { + if (child_is_immediate) { + if (last_child_step_index == 0) { + capture_quantifiers_delete(&child_capture_quantifiers); + return TSQueryErrorSyntax; + } + self->steps.contents[last_child_step_index].is_last_child = true; + } + + if (negated_field_count) { + ts_query__add_negated_fields( + self, + starting_step_index, + negated_field_ids, + negated_field_count + ); + } + + stream_advance(stream); + break; + } + e = TSQueryErrorSyntax; + } + if (e) { + capture_quantifiers_delete(&child_capture_quantifiers); + return e; + } + + capture_quantifiers_add_all(capture_quantifiers, &child_capture_quantifiers); + + last_child_step_index = step_index; + child_is_immediate = false; + capture_quantifiers_clear(&child_capture_quantifiers); + } + capture_quantifiers_delete(&child_capture_quantifiers); + } + } + + // Parse a wildcard pattern + else if (stream->next == '_') { + stream_advance(stream); + stream_skip_whitespace(stream); + + // Add a step that matches any kind of node + array_push(&self->steps, query_step__new(WILDCARD_SYMBOL, depth, is_immediate)); + } + + // Parse a double-quoted anonymous leaf node expression + else if (stream->next == '"') { + const char *string_start = stream->input; + t_query_error e = ts_query__parse_string_literal(self, stream); + if (e) return e; + + // Add a step for the node + t_symbol symbol = ts_language_symbol_for_name( + self->language, + self->string_buffer.contents, + self->string_buffer.size, + false + ); + if (!symbol) { + stream_reset(stream, string_start + 1); + return TSQueryErrorNodeType; + } + array_push(&self->steps, query_step__new(symbol, depth, is_immediate)); + } + + // Parse a field-prefixed pattern + else if (stream_is_ident_start(stream)) { + // Parse the field name + const char *field_name = stream->input; + stream_scan_identifier(stream); + uint32_t length = (uint32_t)(stream->input - field_name); + stream_skip_whitespace(stream); + + if (stream->next != ':') { + stream_reset(stream, field_name); + return TSQueryErrorSyntax; + } + stream_advance(stream); + stream_skip_whitespace(stream); + + // Parse the pattern + CaptureQuantifiers field_capture_quantifiers = capture_quantifiers_new(); + t_query_error e = ts_query__parse_pattern( + self, + stream, + depth, + is_immediate, + &field_capture_quantifiers + ); + if (e) { + capture_quantifiers_delete(&field_capture_quantifiers); + if (e == PARENT_DONE) e = TSQueryErrorSyntax; + return e; + } + + // Add the field name to the first step of the pattern + t_field_id field_id = ts_language_field_id_for_name( + self->language, + field_name, + length + ); + if (!field_id) { + stream->input = field_name; + return TSQueryErrorField; + } + + uint32_t step_index = starting_step_index; + QueryStep *step = &self->steps.contents[step_index]; + for (;;) { + step->field = field_id; + if ( + step->alternative_index != NONE && + step->alternative_index > step_index && + step->alternative_index < self->steps.size + ) { + step_index = step->alternative_index; + step = &self->steps.contents[step_index]; + } else { + break; + } + } + + capture_quantifiers_add_all(capture_quantifiers, &field_capture_quantifiers); + capture_quantifiers_delete(&field_capture_quantifiers); + } + + else { + return TSQueryErrorSyntax; + } + + stream_skip_whitespace(stream); + + // Parse suffixes modifiers for this pattern + t_quantifier quantifier = TSQuantifierOne; + for (;;) { + // Parse the one-or-more operator. + if (stream->next == '+') { + quantifier = quantifier_join(TSQuantifierOneOrMore, quantifier); + + stream_advance(stream); + stream_skip_whitespace(stream); + + QueryStep repeat_step = query_step__new(WILDCARD_SYMBOL, depth, false); + repeat_step.alternative_index = starting_step_index; + repeat_step.is_pass_through = true; + repeat_step.alternative_is_immediate = true; + array_push(&self->steps, repeat_step); + } + + // Parse the zero-or-more repetition operator. + else if (stream->next == '*') { + quantifier = quantifier_join(TSQuantifierZeroOrMore, quantifier); + + stream_advance(stream); + stream_skip_whitespace(stream); + + QueryStep repeat_step = query_step__new(WILDCARD_SYMBOL, depth, false); + repeat_step.alternative_index = starting_step_index; + repeat_step.is_pass_through = true; + repeat_step.alternative_is_immediate = true; + array_push(&self->steps, repeat_step); + + // Stop when `step->alternative_index` is `NONE` or it points to + // `repeat_step` or beyond. Note that having just been pushed, + // `repeat_step` occupies slot `self->steps.size - 1`. + QueryStep *step = &self->steps.contents[starting_step_index]; + while (step->alternative_index != NONE && step->alternative_index < self->steps.size - 1) { + step = &self->steps.contents[step->alternative_index]; + } + step->alternative_index = self->steps.size; + } + + // Parse the optional operator. + else if (stream->next == '?') { + quantifier = quantifier_join(TSQuantifierZeroOrOne, quantifier); + + stream_advance(stream); + stream_skip_whitespace(stream); + + QueryStep *step = &self->steps.contents[starting_step_index]; + while (step->alternative_index != NONE && step->alternative_index < self->steps.size) { + step = &self->steps.contents[step->alternative_index]; + } + step->alternative_index = self->steps.size; + } + + // Parse an '@'-prefixed capture pattern + else if (stream->next == '@') { + stream_advance(stream); + if (!stream_is_ident_start(stream)) return TSQueryErrorSyntax; + const char *capture_name = stream->input; + stream_scan_identifier(stream); + uint32_t length = (uint32_t)(stream->input - capture_name); + stream_skip_whitespace(stream); + + // Add the capture id to the first step of the pattern + uint16_t capture_id = symbol_table_insert_name( + &self->captures, + capture_name, + length + ); + + // Add the capture quantifier + capture_quantifiers_add_for_id(capture_quantifiers, capture_id, TSQuantifierOne); + + uint32_t step_index = starting_step_index; + for (;;) { + QueryStep *step = &self->steps.contents[step_index]; + query_step__add_capture(step, capture_id); + if ( + step->alternative_index != NONE && + step->alternative_index > step_index && + step->alternative_index < self->steps.size + ) { + step_index = step->alternative_index; + } else { + break; + } + } + } + + // No more suffix modifiers + else { + break; + } + } + + capture_quantifiers_mul(capture_quantifiers, quantifier); + + return 0; +} + +t_query *ts_query_new( + const t_language *language, + const char *source, + uint32_t source_len, + uint32_t *error_offset, + t_query_error *error_type +) { + if ( + !language || + language->version > TREE_SITTER_LANGUAGE_VERSION || + language->version < TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION + ) { + *error_type = TSQueryErrorLanguage; + return NULL; + } + + t_query *self = ts_malloc(sizeof(t_query)); + *self = (t_query) { + .steps = array_new(), + .pattern_map = array_new(), + .captures = symbol_table_new(), + .capture_quantifiers = array_new(), + .predicate_values = symbol_table_new(), + .predicate_steps = array_new(), + .patterns = array_new(), + .step_offsets = array_new(), + .string_buffer = array_new(), + .negated_fields = array_new(), + .repeat_symbols_with_rootless_patterns = array_new(), + .wildcard_root_pattern_count = 0, + .language = ts_language_copy(language), + }; + + array_push(&self->negated_fields, 0); + + // Parse all of the S-expressions in the given string. + Stream stream = stream_new(source, source_len); + stream_skip_whitespace(&stream); + while (stream.input < stream.end) { + uint32_t pattern_index = self->patterns.size; + uint32_t start_step_index = self->steps.size; + uint32_t start_predicate_step_index = self->predicate_steps.size; + array_push(&self->patterns, ((QueryPattern) { + .steps = (Slice) {.offset = start_step_index}, + .predicate_steps = (Slice) {.offset = start_predicate_step_index}, + .start_byte = stream_offset(&stream), + .is_non_local = false, + })); + CaptureQuantifiers capture_quantifiers = capture_quantifiers_new(); + *error_type = ts_query__parse_pattern(self, &stream, 0, false, &capture_quantifiers); + array_push(&self->steps, query_step__new(0, PATTERN_DONE_MARKER, false)); + + QueryPattern *pattern = array_back(&self->patterns); + pattern->steps.length = self->steps.size - start_step_index; + pattern->predicate_steps.length = self->predicate_steps.size - start_predicate_step_index; + + // If any pattern could not be parsed, then report the error information + // and terminate. + if (*error_type) { + if (*error_type == PARENT_DONE) *error_type = TSQueryErrorSyntax; + *error_offset = stream_offset(&stream); + capture_quantifiers_delete(&capture_quantifiers); + ts_query_delete(self); + return NULL; + } + + // Maintain a list of capture quantifiers for each pattern + array_push(&self->capture_quantifiers, capture_quantifiers); + + // Maintain a map that can look up patterns for a given root symbol. + uint16_t wildcard_root_alternative_index = NONE; + for (;;) { + QueryStep *step = &self->steps.contents[start_step_index]; + + // If a pattern has a wildcard at its root, but it has a non-wildcard child, + // then optimize the matching process by skipping matching the wildcard. + // Later, during the matching process, the query cursor will check that + // there is a parent node, and capture it if necessary. + if (step->symbol == WILDCARD_SYMBOL && step->depth == 0 && !step->field) { + QueryStep *second_step = &self->steps.contents[start_step_index + 1]; + if (second_step->symbol != WILDCARD_SYMBOL && second_step->depth == 1) { + wildcard_root_alternative_index = step->alternative_index; + start_step_index += 1; + step = second_step; + } + } + + // Determine whether the pattern has a single root node. This affects + // decisions about whether or not to start matching the pattern when + // a query cursor has a range restriction or when immediately within an + // error node. + uint32_t start_depth = step->depth; + bool is_rooted = start_depth == 0; + for (uint32_t step_index = start_step_index + 1; step_index < self->steps.size; step_index++) { + QueryStep *child_step = &self->steps.contents[step_index]; + if (child_step->is_dead_end) break; + if (child_step->depth == start_depth) { + is_rooted = false; + break; + } + } + + ts_query__pattern_map_insert(self, step->symbol, (PatternEntry) { + .step_index = start_step_index, + .pattern_index = pattern_index, + .is_rooted = is_rooted + }); + if (step->symbol == WILDCARD_SYMBOL) { + self->wildcard_root_pattern_count++; + } + + // If there are alternatives or options at the root of the pattern, + // then add multiple entries to the pattern map. + if (step->alternative_index != NONE) { + start_step_index = step->alternative_index; + } else if (wildcard_root_alternative_index != NONE) { + start_step_index = wildcard_root_alternative_index; + wildcard_root_alternative_index = NONE; + } else { + break; + } + } + } + + if (!ts_query__analyze_patterns(self, error_offset)) { + *error_type = TSQueryErrorStructure; + ts_query_delete(self); + return NULL; + } + + array_delete(&self->string_buffer); + return self; +} + +void ts_query_delete(t_query *self) { + if (self) { + array_delete(&self->steps); + array_delete(&self->pattern_map); + array_delete(&self->predicate_steps); + array_delete(&self->patterns); + array_delete(&self->step_offsets); + array_delete(&self->string_buffer); + array_delete(&self->negated_fields); + array_delete(&self->repeat_symbols_with_rootless_patterns); + ts_language_delete(self->language); + symbol_table_delete(&self->captures); + symbol_table_delete(&self->predicate_values); + for (uint32_t index = 0; index < self->capture_quantifiers.size; index++) { + CaptureQuantifiers *capture_quantifiers = array_get(&self->capture_quantifiers, index); + capture_quantifiers_delete(capture_quantifiers); + } + array_delete(&self->capture_quantifiers); + ts_free(self); + } +} + +uint32_t ts_query_pattern_count(const t_query *self) { + return self->patterns.size; +} + +uint32_t ts_query_capture_count(const t_query *self) { + return self->captures.slices.size; +} + +uint32_t ts_query_string_count(const t_query *self) { + return self->predicate_values.slices.size; +} + +const char *ts_query_capture_name_for_id( + const t_query *self, + uint32_t index, + uint32_t *length +) { + return symbol_table_name_for_id(&self->captures, index, length); +} + +t_quantifier ts_query_capture_quantifier_for_id( + const t_query *self, + uint32_t pattern_index, + uint32_t capture_index +) { + CaptureQuantifiers *capture_quantifiers = array_get(&self->capture_quantifiers, pattern_index); + return capture_quantifier_for_id(capture_quantifiers, capture_index); +} + +const char *ts_query_string_value_for_id( + const t_query *self, + uint32_t index, + uint32_t *length +) { + return symbol_table_name_for_id(&self->predicate_values, index, length); +} + +const t_query_predicate_step *ts_query_predicates_for_pattern( + const t_query *self, + uint32_t pattern_index, + uint32_t *step_count +) { + Slice slice = self->patterns.contents[pattern_index].predicate_steps; + *step_count = slice.length; + if (self->predicate_steps.contents == NULL) { + return NULL; + } + return &self->predicate_steps.contents[slice.offset]; +} + +uint32_t ts_query_start_byte_for_pattern( + const t_query *self, + uint32_t pattern_index +) { + return self->patterns.contents[pattern_index].start_byte; +} + +bool ts_query_is_pattern_rooted( + const t_query *self, + uint32_t pattern_index +) { + for (unsigned i = 0; i < self->pattern_map.size; i++) { + PatternEntry *entry = &self->pattern_map.contents[i]; + if (entry->pattern_index == pattern_index) { + if (!entry->is_rooted) return false; + } + } + return true; +} + +bool ts_query_is_pattern_non_local( + const t_query *self, + uint32_t pattern_index +) { + if (pattern_index < self->patterns.size) { + return self->patterns.contents[pattern_index].is_non_local; + } else { + return false; + } +} + +bool ts_query_is_pattern_guaranteed_at_step( + const t_query *self, + uint32_t byte_offset +) { + uint32_t step_index = UINT32_MAX; + for (unsigned i = 0; i < self->step_offsets.size; i++) { + StepOffset *step_offset = &self->step_offsets.contents[i]; + if (step_offset->byte_offset > byte_offset) break; + step_index = step_offset->step_index; + } + if (step_index < self->steps.size) { + return self->steps.contents[step_index].root_pattern_guaranteed; + } else { + return false; + } +} + +bool ts_query__step_is_fallible( + const t_query *self, + uint16_t step_index +) { + assert((uint32_t)step_index + 1 < self->steps.size); + QueryStep *step = &self->steps.contents[step_index]; + QueryStep *next_step = &self->steps.contents[step_index + 1]; + return ( + next_step->depth != PATTERN_DONE_MARKER && + next_step->depth > step->depth && + !next_step->parent_pattern_guaranteed + ); +} + +void ts_query_disable_capture( + t_query *self, + const char *name, + uint32_t length +) { + // Remove capture information for any pattern step that previously + // captured with the given name. + int id = symbol_table_id_for_name(&self->captures, name, length); + if (id != -1) { + for (unsigned i = 0; i < self->steps.size; i++) { + QueryStep *step = &self->steps.contents[i]; + query_step__remove_capture(step, id); + } + } +} + +void ts_query_disable_pattern( + t_query *self, + uint32_t pattern_index +) { + // Remove the given pattern from the pattern map. Its steps will still + // be in the `steps` array, but they will never be read. + for (unsigned i = 0; i < self->pattern_map.size; i++) { + PatternEntry *pattern = &self->pattern_map.contents[i]; + if (pattern->pattern_index == pattern_index) { + array_erase(&self->pattern_map, i); + i--; + } + } +} + +/*************** + * QueryCursor + ***************/ + +t_query_cursor *ts_query_cursor_new(void) { + t_query_cursor *self = ts_malloc(sizeof(t_query_cursor)); + *self = (t_query_cursor) { + .did_exceed_match_limit = false, + .ascending = false, + .halted = false, + .states = array_new(), + .finished_states = array_new(), + .capture_list_pool = capture_list_pool_new(), + .start_byte = 0, + .end_byte = UINT32_MAX, + .start_point = {0, 0}, + .end_point = POINT_MAX, + .max_start_depth = UINT32_MAX, + }; + array_reserve(&self->states, 8); + array_reserve(&self->finished_states, 8); + return self; +} + +void ts_query_cursor_delete(t_query_cursor *self) { + array_delete(&self->states); + array_delete(&self->finished_states); + ts_tree_cursor_delete(&self->cursor); + capture_list_pool_delete(&self->capture_list_pool); + ts_free(self); +} + +bool ts_query_cursor_did_exceed_match_limit(const t_query_cursor *self) { + return self->did_exceed_match_limit; +} + +uint32_t ts_query_cursor_match_limit(const t_query_cursor *self) { + return self->capture_list_pool.max_capture_list_count; +} + +void ts_query_cursor_set_match_limit(t_query_cursor *self, uint32_t limit) { + self->capture_list_pool.max_capture_list_count = limit; +} + +#ifdef DEBUG_EXECUTE_QUERY +#define LOG(...) fprintf(stderr, __VA_ARGS__) +#else +#define LOG(...) +#endif + +void ts_query_cursor_exec( + t_query_cursor *self, + const t_query *query, + t_parse_node node +) { + if (query) { + LOG("query steps:\n"); + for (unsigned i = 0; i < query->steps.size; i++) { + QueryStep *step = &query->steps.contents[i]; + LOG(" %u: {", i); + if (step->depth == PATTERN_DONE_MARKER) { + LOG("DONE"); + } else if (step->is_dead_end) { + LOG("dead_end"); + } else if (step->is_pass_through) { + LOG("pass_through"); + } else if (step->symbol != WILDCARD_SYMBOL) { + LOG("symbol: %s", query->language->symbol_names[step->symbol]); + } else { + LOG("symbol: *"); + } + if (step->field) { + LOG(", field: %s", query->language->field_names[step->field]); + } + if (step->alternative_index != NONE) { + LOG(", alternative: %u", step->alternative_index); + } + LOG("},\n"); + } + } + + array_clear(&self->states); + array_clear(&self->finished_states); + ts_tree_cursor_reset(&self->cursor, node); + capture_list_pool_reset(&self->capture_list_pool); + self->on_visible_node = true; + self->next_state_id = 0; + self->depth = 0; + self->ascending = false; + self->halted = false; + self->query = query; + self->did_exceed_match_limit = false; +} + +void ts_query_cursor_set_byte_range( + t_query_cursor *self, + uint32_t start_byte, + uint32_t end_byte +) { + if (end_byte == 0) { + end_byte = UINT32_MAX; + } + self->start_byte = start_byte; + self->end_byte = end_byte; +} + +void ts_query_cursor_set_point_range( + t_query_cursor *self, + t_point start_point, + t_point end_point +) { + if (end_point.row == 0 && end_point.column == 0) { + end_point = POINT_MAX; + } + self->start_point = start_point; + self->end_point = end_point; +} + +// Search through all of the in-progress states, and find the captured +// node that occurs earliest in the document. +static bool ts_query_cursor__first_in_progress_capture( + t_query_cursor *self, + uint32_t *state_index, + uint32_t *byte_offset, + uint32_t *pattern_index, + bool *root_pattern_guaranteed +) { + bool result = false; + *state_index = UINT32_MAX; + *byte_offset = UINT32_MAX; + *pattern_index = UINT32_MAX; + for (unsigned i = 0; i < self->states.size; i++) { + QueryState *state = &self->states.contents[i]; + if (state->dead) continue; + + const CaptureList *captures = capture_list_pool_get( + &self->capture_list_pool, + state->capture_list_id + ); + if (state->consumed_capture_count >= captures->size) { + continue; + } + + t_parse_node node = captures->contents[state->consumed_capture_count].node; + if ( + ts_node_end_byte(node) <= self->start_byte || + point_lte(ts_node_end_point(node), self->start_point) + ) { + state->consumed_capture_count++; + i--; + continue; + } + + uint32_t node_start_byte = ts_node_start_byte(node); + if ( + !result || + node_start_byte < *byte_offset || + (node_start_byte == *byte_offset && state->pattern_index < *pattern_index) + ) { + QueryStep *step = &self->query->steps.contents[state->step_index]; + if (root_pattern_guaranteed) { + *root_pattern_guaranteed = step->root_pattern_guaranteed; + } else if (step->root_pattern_guaranteed) { + continue; + } + + result = true; + *state_index = i; + *byte_offset = node_start_byte; + *pattern_index = state->pattern_index; + } + } + return result; +} + +// Determine which node is first in a depth-first traversal +int ts_query_cursor__compare_nodes(t_parse_node left, t_parse_node right) { + if (left.id != right.id) { + uint32_t left_start = ts_node_start_byte(left); + uint32_t right_start = ts_node_start_byte(right); + if (left_start < right_start) return -1; + if (left_start > right_start) return 1; + uint32_t left_node_count = ts_node_end_byte(left); + uint32_t right_node_count = ts_node_end_byte(right); + if (left_node_count > right_node_count) return -1; + if (left_node_count < right_node_count) return 1; + } + return 0; +} + +// Determine if either state contains a superset of the other state's captures. +void ts_query_cursor__compare_captures( + t_query_cursor *self, + QueryState *left_state, + QueryState *right_state, + bool *left_contains_right, + bool *right_contains_left +) { + const CaptureList *left_captures = capture_list_pool_get( + &self->capture_list_pool, + left_state->capture_list_id + ); + const CaptureList *right_captures = capture_list_pool_get( + &self->capture_list_pool, + right_state->capture_list_id + ); + *left_contains_right = true; + *right_contains_left = true; + unsigned i = 0, j = 0; + for (;;) { + if (i < left_captures->size) { + if (j < right_captures->size) { + t_query_capture *left = &left_captures->contents[i]; + t_query_capture *right = &right_captures->contents[j]; + if (left->node.id == right->node.id && left->index == right->index) { + i++; + j++; + } else { + switch (ts_query_cursor__compare_nodes(left->node, right->node)) { + case -1: + *right_contains_left = false; + i++; + break; + case 1: + *left_contains_right = false; + j++; + break; + default: + *right_contains_left = false; + *left_contains_right = false; + i++; + j++; + break; + } + } + } else { + *right_contains_left = false; + break; + } + } else { + if (j < right_captures->size) { + *left_contains_right = false; + } + break; + } + } +} + +static void ts_query_cursor__add_state( + t_query_cursor *self, + const PatternEntry *pattern +) { + QueryStep *step = &self->query->steps.contents[pattern->step_index]; + uint32_t start_depth = self->depth - step->depth; + + // Keep the states array in ascending order of start_depth and pattern_index, + // so that it can be processed more efficiently elsewhere. Usually, there is + // no work to do here because of two facts: + // * States with lower start_depth are naturally added first due to the + // order in which nodes are visited. + // * Earlier patterns are naturally added first because of the ordering of the + // pattern_map data structure that's used to initiate matches. + // + // This loop is only needed in cases where two conditions hold: + // * A pattern consists of more than one sibling node, so that its states + // remain in progress after exiting the node that started the match. + // * The first node in the pattern matches against multiple nodes at the + // same depth. + // + // An example of this is the pattern '((comment)* (function))'. If multiple + // `comment` nodes appear in a row, then we may initiate a new state for this + // pattern while another state for the same pattern is already in progress. + // If there are multiple patterns like this in a query, then this loop will + // need to execute in order to keep the states ordered by pattern_index. + uint32_t index = self->states.size; + while (index > 0) { + QueryState *prev_state = &self->states.contents[index - 1]; + if (prev_state->start_depth < start_depth) break; + if (prev_state->start_depth == start_depth) { + // Avoid inserting an unnecessary duplicate state, which would be + // immediately pruned by the longest-match criteria. + if ( + prev_state->pattern_index == pattern->pattern_index && + prev_state->step_index == pattern->step_index + ) return; + if (prev_state->pattern_index <= pattern->pattern_index) break; + } + index--; + } + + LOG( + " start state. pattern:%u, step:%u\n", + pattern->pattern_index, + pattern->step_index + ); + array_insert(&self->states, index, ((QueryState) { + .id = UINT32_MAX, + .capture_list_id = NONE, + .step_index = pattern->step_index, + .pattern_index = pattern->pattern_index, + .start_depth = start_depth, + .consumed_capture_count = 0, + .seeking_immediate_match = true, + .has_in_progress_alternatives = false, + .needs_parent = step->depth == 1, + .dead = false, + })); +} + +// Acquire a capture list for this state. If there are no capture lists left in the +// pool, this will steal the capture list from another existing state, and mark that +// other state as 'dead'. +static CaptureList *ts_query_cursor__prepare_to_capture( + t_query_cursor *self, + QueryState *state, + unsigned state_index_to_preserve +) { + if (state->capture_list_id == NONE) { + state->capture_list_id = capture_list_pool_acquire(&self->capture_list_pool); + + // If there are no capture lists left in the pool, then terminate whichever + // state has captured the earliest node in the document, and steal its + // capture list. + if (state->capture_list_id == NONE) { + self->did_exceed_match_limit = true; + uint32_t state_index, byte_offset, pattern_index; + if ( + ts_query_cursor__first_in_progress_capture( + self, + &state_index, + &byte_offset, + &pattern_index, + NULL + ) && + state_index != state_index_to_preserve + ) { + LOG( + " abandon state. index:%u, pattern:%u, offset:%u.\n", + state_index, pattern_index, byte_offset + ); + QueryState *other_state = &self->states.contents[state_index]; + state->capture_list_id = other_state->capture_list_id; + other_state->capture_list_id = NONE; + other_state->dead = true; + CaptureList *list = capture_list_pool_get_mut( + &self->capture_list_pool, + state->capture_list_id + ); + array_clear(list); + return list; + } else { + LOG(" ran out of capture lists"); + return NULL; + } + } + } + return capture_list_pool_get_mut(&self->capture_list_pool, state->capture_list_id); +} + +static void ts_query_cursor__capture( + t_query_cursor *self, + QueryState *state, + QueryStep *step, + t_parse_node node +) { + if (state->dead) return; + CaptureList *capture_list = ts_query_cursor__prepare_to_capture(self, state, UINT32_MAX); + if (!capture_list) { + state->dead = true; + return; + } + + for (unsigned j = 0; j < MAX_STEP_CAPTURE_COUNT; j++) { + uint16_t capture_id = step->capture_ids[j]; + if (step->capture_ids[j] == NONE) break; + array_push(capture_list, ((t_query_capture) { node, capture_id })); + LOG( + " capture node. type:%s, pattern:%u, capture_id:%u, capture_count:%u\n", + ts_node_type(node), + state->pattern_index, + capture_id, + capture_list->size + ); + } +} + +// Duplicate the given state and insert the newly-created state immediately after +// the given state in the `states` array. Ensures that the given state reference is +// still valid, even if the states array is reallocated. +static QueryState *ts_query_cursor__copy_state( + t_query_cursor *self, + QueryState **state_ref +) { + const QueryState *state = *state_ref; + uint32_t state_index = (uint32_t)(state - self->states.contents); + QueryState copy = *state; + copy.capture_list_id = NONE; + + // If the state has captures, copy its capture list. + if (state->capture_list_id != NONE) { + CaptureList *new_captures = ts_query_cursor__prepare_to_capture(self, ©, state_index); + if (!new_captures) return NULL; + const CaptureList *old_captures = capture_list_pool_get( + &self->capture_list_pool, + state->capture_list_id + ); + array_push_all(new_captures, old_captures); + } + + array_insert(&self->states, state_index + 1, copy); + *state_ref = &self->states.contents[state_index]; + return &self->states.contents[state_index + 1]; +} + +static inline bool ts_query_cursor__should_descend( + t_query_cursor *self, + bool node_intersects_range +) { + + if (node_intersects_range && self->depth < self->max_start_depth) { + return true; + } + + // If there are in-progress matches whose remaining steps occur + // deeper in the tree, then descend. + for (unsigned i = 0; i < self->states.size; i++) { + QueryState *state = &self->states.contents[i];; + QueryStep *next_step = &self->query->steps.contents[state->step_index]; + if ( + next_step->depth != PATTERN_DONE_MARKER && + state->start_depth + next_step->depth > self->depth + ) { + return true; + } + } + + if (self->depth >= self->max_start_depth) { + return false; + } + + // If the current node is hidden, then a non-rooted pattern might match + // one if its roots inside of this node, and match another of its roots + // as part of a sibling node, so we may need to descend. + if (!self->on_visible_node) { + // Descending into a repetition node outside of the range can be + // expensive, because these nodes can have many visible children. + // Avoid descending into repetition nodes unless we have already + // determined that this query can match rootless patterns inside + // of this type of repetition node. + Subtree subtree = ts_tree_cursor_current_subtree(&self->cursor); + if (ts_subtree_is_repetition(subtree)) { + bool exists; + uint32_t index; + array_search_sorted_by( + &self->query->repeat_symbols_with_rootless_patterns,, + ts_subtree_symbol(subtree), + &index, + &exists + ); + return exists; + } + + return true; + } + + return false; +} + +// Walk the tree, processing patterns until at least one pattern finishes, +// If one or more patterns finish, return `true` and store their states in the +// `finished_states` array. Multiple patterns can finish on the same node. If +// there are no more matches, return `false`. +static inline bool ts_query_cursor__advance( + t_query_cursor *self, + bool stop_on_definite_step +) { + bool did_match = false; + for (;;) { + if (self->halted) { + while (self->states.size > 0) { + QueryState state = array_pop(&self->states); + capture_list_pool_release( + &self->capture_list_pool, + state.capture_list_id + ); + } + } + + if (did_match || self->halted) return did_match; + + // Exit the current node. + if (self->ascending) { + if (self->on_visible_node) { + LOG( + "leave node. depth:%u, type:%s\n", + self->depth, + ts_node_type(ts_tree_cursor_current_node(&self->cursor)) + ); + + // After leaving a node, remove any states that cannot make further progress. + uint32_t deleted_count = 0; + for (unsigned i = 0, n = self->states.size; i < n; i++) { + QueryState *state = &self->states.contents[i]; + QueryStep *step = &self->query->steps.contents[state->step_index]; + + // If a state completed its pattern inside of this node, but was deferred from finishing + // in order to search for longer matches, mark it as finished. + if ( + step->depth == PATTERN_DONE_MARKER && + (state->start_depth > self->depth || self->depth == 0) + ) { + LOG(" finish pattern %u\n", state->pattern_index); + array_push(&self->finished_states, *state); + did_match = true; + deleted_count++; + } + + // If a state needed to match something within this node, then remove that state + // as it has failed to match. + else if ( + step->depth != PATTERN_DONE_MARKER && + (uint32_t)state->start_depth + (uint32_t)step->depth > self->depth + ) { + LOG( + " failed to match. pattern:%u, step:%u\n", + state->pattern_index, + state->step_index + ); + capture_list_pool_release( + &self->capture_list_pool, + state->capture_list_id + ); + deleted_count++; + } + + else if (deleted_count > 0) { + self->states.contents[i - deleted_count] = *state; + } + } + self->states.size -= deleted_count; + } + + // Leave this node by stepping to its next sibling or to its parent. + switch (ts_tree_cursor_goto_next_sibling_internal(&self->cursor)) { + case TreeCursorStepVisible: + if (!self->on_visible_node) { + self->depth++; + self->on_visible_node = true; + } + self->ascending = false; + break; + case TreeCursorStepHidden: + if (self->on_visible_node) { + self->depth--; + self->on_visible_node = false; + } + self->ascending = false; + break; + default: + if (ts_tree_cursor_goto_parent(&self->cursor)) { + self->depth--; + } else { + LOG("halt at root\n"); + self->halted = true; + } + } + } + + // Enter a new node. + else { + // Get the properties of the current node. + t_parse_node node = ts_tree_cursor_current_node(&self->cursor); + t_parse_node parent_node = ts_tree_cursor_parent_node(&self->cursor); + bool parent_precedes_range = !ts_node_is_null(parent_node) && ( + ts_node_end_byte(parent_node) <= self->start_byte || + point_lte(ts_node_end_point(parent_node), self->start_point) + ); + bool parent_follows_range = !ts_node_is_null(parent_node) && ( + ts_node_start_byte(parent_node) >= self->end_byte || + point_gte(ts_node_start_point(parent_node), self->end_point) + ); + bool node_precedes_range = parent_precedes_range || ( + ts_node_end_byte(node) <= self->start_byte || + point_lte(ts_node_end_point(node), self->start_point) + ); + bool node_follows_range = parent_follows_range || ( + ts_node_start_byte(node) >= self->end_byte || + point_gte(ts_node_start_point(node), self->end_point) + ); + bool parent_intersects_range = !parent_precedes_range && !parent_follows_range; + bool node_intersects_range = !node_precedes_range && !node_follows_range; + + if (self->on_visible_node) { + t_symbol symbol = ts_node_symbol(node); + bool is_named = ts_node_is_named(node); + bool has_later_siblings; + bool has_later_named_siblings; + bool can_have_later_siblings_with_this_field; + t_field_id field_id = 0; + t_symbol supertypes[8] = {0}; + unsigned supertype_count = 8; + ts_tree_cursor_current_status( + &self->cursor, + &field_id, + &has_later_siblings, + &has_later_named_siblings, + &can_have_later_siblings_with_this_field, + supertypes, + &supertype_count + ); + LOG( + "enter node. depth:%u, type:%s, field:%s, row:%u state_count:%u, finished_state_count:%u\n", + self->depth, + ts_node_type(node), + ts_language_field_name_for_id(self->query->language, field_id), + ts_node_start_point(node).row, + self->states.size, + self->finished_states.size + ); + + bool node_is_error = symbol == ts_builtin_sym_error; + bool parent_is_error = + !ts_node_is_null(parent_node) && + ts_node_symbol(parent_node) == ts_builtin_sym_error; + + // Add new states for any patterns whose root node is a wildcard. + if (!node_is_error) { + for (unsigned i = 0; i < self->query->wildcard_root_pattern_count; i++) { + PatternEntry *pattern = &self->query->pattern_map.contents[i]; + + // If this node matches the first step of the pattern, then add a new + // state at the start of this pattern. + QueryStep *step = &self->query->steps.contents[pattern->step_index]; + uint32_t start_depth = self->depth - step->depth; + if ( + (pattern->is_rooted ? + node_intersects_range : + (parent_intersects_range && !parent_is_error)) && + (!step->field || field_id == step->field) && + (!step->supertype_symbol || supertype_count > 0) && + (start_depth <= self->max_start_depth) + ) { + ts_query_cursor__add_state(self, pattern); + } + } + } + + // Add new states for any patterns whose root node matches this node. + unsigned i; + if (ts_query__pattern_map_search(self->query, symbol, &i)) { + PatternEntry *pattern = &self->query->pattern_map.contents[i]; + + QueryStep *step = &self->query->steps.contents[pattern->step_index]; + uint32_t start_depth = self->depth - step->depth; + do { + // If this node matches the first step of the pattern, then add a new + // state at the start of this pattern. + if ( + (pattern->is_rooted ? + node_intersects_range : + (parent_intersects_range && !parent_is_error)) && + (!step->field || field_id == step->field) && + (start_depth <= self->max_start_depth) + ) { + ts_query_cursor__add_state(self, pattern); + } + + // Advance to the next pattern whose root node matches this node. + i++; + if (i == self->query->pattern_map.size) break; + pattern = &self->query->pattern_map.contents[i]; + step = &self->query->steps.contents[pattern->step_index]; + } while (step->symbol == symbol); + } + + // Update all of the in-progress states with current node. + for (unsigned j = 0, copy_count = 0; j < self->states.size; j += 1 + copy_count) { + QueryState *state = &self->states.contents[j]; + QueryStep *step = &self->query->steps.contents[state->step_index]; + state->has_in_progress_alternatives = false; + copy_count = 0; + + // Check that the node matches all of the criteria for the next + // step of the pattern. + if ((uint32_t)state->start_depth + (uint32_t)step->depth != self->depth) continue; + + // Determine if this node matches this step of the pattern, and also + // if this node can have later siblings that match this step of the + // pattern. + bool node_does_match = false; + if (step->symbol == WILDCARD_SYMBOL) { + node_does_match = !node_is_error && (is_named || !step->is_named); + } else { + node_does_match = symbol == step->symbol; + } + bool later_sibling_can_match = has_later_siblings; + if ((step->is_immediate && is_named) || state->seeking_immediate_match) { + later_sibling_can_match = false; + } + if (step->is_last_child && has_later_named_siblings) { + node_does_match = false; + } + if (step->supertype_symbol) { + bool has_supertype = false; + for (unsigned k = 0; k < supertype_count; k++) { + if (supertypes[k] == step->supertype_symbol) { + has_supertype = true; + break; + } + } + if (!has_supertype) node_does_match = false; + } + if (step->field) { + if (step->field == field_id) { + if (!can_have_later_siblings_with_this_field) { + later_sibling_can_match = false; + } + } else { + node_does_match = false; + } + } + + if (step->negated_field_list_id) { + t_field_id *negated_field_ids = &self->query->negated_fields.contents[step->negated_field_list_id]; + for (;;) { + t_field_id negated_field_id = *negated_field_ids; + if (negated_field_id) { + negated_field_ids++; + if (ts_node_child_by_field_id(node, negated_field_id).id) { + node_does_match = false; + break; + } + } else { + break; + } + } + } + + // Remove states immediately if it is ever clear that they cannot match. + if (!node_does_match) { + if (!later_sibling_can_match) { + LOG( + " discard state. pattern:%u, step:%u\n", + state->pattern_index, + state->step_index + ); + capture_list_pool_release( + &self->capture_list_pool, + state->capture_list_id + ); + array_erase(&self->states, j); + j--; + } + continue; + } + + // Some patterns can match their root node in multiple ways, capturing different + // children. If this pattern step could match later children within the same + // parent, then this query state cannot simply be updated in place. It must be + // split into two states: one that matches this node, and one which skips over + // this node, to preserve the possibility of matching later siblings. + if (later_sibling_can_match && ( + step->contains_captures || + ts_query__step_is_fallible(self->query, state->step_index) + )) { + if (ts_query_cursor__copy_state(self, &state)) { + LOG( + " split state for capture. pattern:%u, step:%u\n", + state->pattern_index, + state->step_index + ); + copy_count++; + } + } + + // If this pattern started with a wildcard, such that the pattern map + // actually points to the *second* step of the pattern, then check + // that the node has a parent, and capture the parent node if necessary. + if (state->needs_parent) { + t_parse_node parent = ts_tree_cursor_parent_node(&self->cursor); + if (ts_node_is_null(parent)) { + LOG(" missing parent node\n"); + state->dead = true; + } else { + state->needs_parent = false; + QueryStep *skipped_wildcard_step = step; + do { + skipped_wildcard_step--; + } while ( + skipped_wildcard_step->is_dead_end || + skipped_wildcard_step->is_pass_through || + skipped_wildcard_step->depth > 0 + ); + if (skipped_wildcard_step->capture_ids[0] != NONE) { + LOG(" capture wildcard parent\n"); + ts_query_cursor__capture( + self, + state, + skipped_wildcard_step, + parent + ); + } + } + } + + // If the current node is captured in this pattern, add it to the capture list. + if (step->capture_ids[0] != NONE) { + ts_query_cursor__capture(self, state, step, node); + } + + if (state->dead) { + array_erase(&self->states, j); + j--; + continue; + } + + // Advance this state to the next step of its pattern. + state->step_index++; + state->seeking_immediate_match = false; + LOG( + " advance state. pattern:%u, step:%u\n", + state->pattern_index, + state->step_index + ); + + QueryStep *next_step = &self->query->steps.contents[state->step_index]; + if (stop_on_definite_step && next_step->root_pattern_guaranteed) did_match = true; + + // If this state's next step has an alternative step, then copy the state in order + // to pursue both alternatives. The alternative step itself may have an alternative, + // so this is an interactive process. + unsigned end_index = j + 1; + for (unsigned k = j; k < end_index; k++) { + QueryState *child_state = &self->states.contents[k]; + QueryStep *child_step = &self->query->steps.contents[child_state->step_index]; + if (child_step->alternative_index != NONE) { + // A "dead-end" step exists only to add a non-sequential jump into the step sequence, + // via its alternative index. When a state reaches a dead-end step, it jumps straight + // to the step's alternative. + if (child_step->is_dead_end) { + child_state->step_index = child_step->alternative_index; + k--; + continue; + } + + // A "pass-through" step exists only to add a branch into the step sequence, + // via its alternative_index. When a state reaches a pass-through step, it splits + // in order to process the alternative step, and then it advances to the next step. + if (child_step->is_pass_through) { + child_state->step_index++; + k--; + } + + QueryState *copy = ts_query_cursor__copy_state(self, &child_state); + if (copy) { + LOG( + " split state for branch. pattern:%u, from_step:%u, to_step:%u, immediate:%d, capture_count: %u\n", + copy->pattern_index, + copy->step_index, + next_step->alternative_index, + next_step->alternative_is_immediate, + capture_list_pool_get(&self->capture_list_pool, copy->capture_list_id)->size + ); + end_index++; + copy_count++; + copy->step_index = child_step->alternative_index; + if (child_step->alternative_is_immediate) { + copy->seeking_immediate_match = true; + } + } + } + } + } + + for (unsigned j = 0; j < self->states.size; j++) { + QueryState *state = &self->states.contents[j]; + if (state->dead) { + array_erase(&self->states, j); + j--; + continue; + } + + // Enforce the longest-match criteria. When a query pattern contains optional or + // repeated nodes, this is necessary to avoid multiple redundant states, where + // one state has a strict subset of another state's captures. + bool did_remove = false; + for (unsigned k = j + 1; k < self->states.size; k++) { + QueryState *other_state = &self->states.contents[k]; + + // Query states are kept in ascending order of start_depth and pattern_index. + // Since the longest-match criteria is only used for deduping matches of the same + // pattern and root node, we only need to perform pairwise comparisons within a + // small slice of the states array. + if ( + other_state->start_depth != state->start_depth || + other_state->pattern_index != state->pattern_index + ) break; + + bool left_contains_right, right_contains_left; + ts_query_cursor__compare_captures( + self, + state, + other_state, + &left_contains_right, + &right_contains_left + ); + if (left_contains_right) { + if (state->step_index == other_state->step_index) { + LOG( + " drop shorter state. pattern: %u, step_index: %u\n", + state->pattern_index, + state->step_index + ); + capture_list_pool_release(&self->capture_list_pool, other_state->capture_list_id); + array_erase(&self->states, k); + k--; + continue; + } + other_state->has_in_progress_alternatives = true; + } + if (right_contains_left) { + if (state->step_index == other_state->step_index) { + LOG( + " drop shorter state. pattern: %u, step_index: %u\n", + state->pattern_index, + state->step_index + ); + capture_list_pool_release(&self->capture_list_pool, state->capture_list_id); + array_erase(&self->states, j); + j--; + did_remove = true; + break; + } + state->has_in_progress_alternatives = true; + } + } + + // If the state is at the end of its pattern, remove it from the list + // of in-progress states and add it to the list of finished states. + if (!did_remove) { + LOG( + " keep state. pattern: %u, start_depth: %u, step_index: %u, capture_count: %u\n", + state->pattern_index, + state->start_depth, + state->step_index, + capture_list_pool_get(&self->capture_list_pool, state->capture_list_id)->size + ); + QueryStep *next_step = &self->query->steps.contents[state->step_index]; + if (next_step->depth == PATTERN_DONE_MARKER) { + if (state->has_in_progress_alternatives) { + LOG(" defer finishing pattern %u\n", state->pattern_index); + } else { + LOG(" finish pattern %u\n", state->pattern_index); + array_push(&self->finished_states, *state); + array_erase(&self->states, (uint32_t)(state - self->states.contents)); + did_match = true; + j--; + } + } + } + } + } + + if (ts_query_cursor__should_descend(self, node_intersects_range)) { + switch (ts_tree_cursor_goto_first_child_internal(&self->cursor)) { + case TreeCursorStepVisible: + self->depth++; + self->on_visible_node = true; + continue; + case TreeCursorStepHidden: + self->on_visible_node = false; + continue; + default: + break; + } + } + + self->ascending = true; + } + } +} + +bool ts_query_cursor_next_match( + t_query_cursor *self, + t_query_match *match +) { + if (self->finished_states.size == 0) { + if (!ts_query_cursor__advance(self, false)) { + return false; + } + } + + QueryState *state = &self->finished_states.contents[0]; + if (state->id == UINT32_MAX) state->id = self->next_state_id++; + match->id = state->id; + match->pattern_index = state->pattern_index; + const CaptureList *captures = capture_list_pool_get( + &self->capture_list_pool, + state->capture_list_id + ); + match->captures = captures->contents; + match->capture_count = captures->size; + capture_list_pool_release(&self->capture_list_pool, state->capture_list_id); + array_erase(&self->finished_states, 0); + return true; +} + +void ts_query_cursor_remove_match( + t_query_cursor *self, + uint32_t match_id +) { + for (unsigned i = 0; i < self->finished_states.size; i++) { + const QueryState *state = &self->finished_states.contents[i]; + if (state->id == match_id) { + capture_list_pool_release( + &self->capture_list_pool, + state->capture_list_id + ); + array_erase(&self->finished_states, i); + return; + } + } + + // Remove unfinished query states as well to prevent future + // captures for a match being removed. + for (unsigned i = 0; i < self->states.size; i++) { + const QueryState *state = &self->states.contents[i]; + if (state->id == match_id) { + capture_list_pool_release( + &self->capture_list_pool, + state->capture_list_id + ); + array_erase(&self->states, i); + return; + } + } +} + +bool ts_query_cursor_next_capture( + t_query_cursor *self, + t_query_match *match, + uint32_t *capture_index +) { + // The goal here is to return captures in order, even though they may not + // be discovered in order, because patterns can overlap. Search for matches + // until there is a finished capture that is before any unfinished capture. + for (;;) { + // First, find the earliest capture in an unfinished match. + uint32_t first_unfinished_capture_byte; + uint32_t first_unfinished_pattern_index; + uint32_t first_unfinished_state_index; + bool first_unfinished_state_is_definite = false; + ts_query_cursor__first_in_progress_capture( + self, + &first_unfinished_state_index, + &first_unfinished_capture_byte, + &first_unfinished_pattern_index, + &first_unfinished_state_is_definite + ); + + // Then find the earliest capture in a finished match. It must occur + // before the first capture in an *unfinished* match. + QueryState *first_finished_state = NULL; + uint32_t first_finished_capture_byte = first_unfinished_capture_byte; + uint32_t first_finished_pattern_index = first_unfinished_pattern_index; + for (unsigned i = 0; i < self->finished_states.size;) { + QueryState *state = &self->finished_states.contents[i]; + const CaptureList *captures = capture_list_pool_get( + &self->capture_list_pool, + state->capture_list_id + ); + + // Remove states whose captures are all consumed. + if (state->consumed_capture_count >= captures->size) { + capture_list_pool_release( + &self->capture_list_pool, + state->capture_list_id + ); + array_erase(&self->finished_states, i); + continue; + } + + t_parse_node node = captures->contents[state->consumed_capture_count].node; + + bool node_precedes_range = ( + ts_node_end_byte(node) <= self->start_byte || + point_lte(ts_node_end_point(node), self->start_point) + ); + bool node_follows_range = ( + ts_node_start_byte(node) >= self->end_byte || + point_gte(ts_node_start_point(node), self->end_point) + ); + bool node_outside_of_range = node_precedes_range || node_follows_range; + + // Skip captures that are outside of the cursor's range. + if (node_outside_of_range) { + state->consumed_capture_count++; + continue; + } + + uint32_t node_start_byte = ts_node_start_byte(node); + if ( + node_start_byte < first_finished_capture_byte || + ( + node_start_byte == first_finished_capture_byte && + state->pattern_index < first_finished_pattern_index + ) + ) { + first_finished_state = state; + first_finished_capture_byte = node_start_byte; + first_finished_pattern_index = state->pattern_index; + } + i++; + } + + // If there is finished capture that is clearly before any unfinished + // capture, then return its match, and its capture index. Internally + // record the fact that the capture has been 'consumed'. + QueryState *state; + if (first_finished_state) { + state = first_finished_state; + } else if (first_unfinished_state_is_definite) { + state = &self->states.contents[first_unfinished_state_index]; + } else { + state = NULL; + } + + if (state) { + if (state->id == UINT32_MAX) state->id = self->next_state_id++; + match->id = state->id; + match->pattern_index = state->pattern_index; + const CaptureList *captures = capture_list_pool_get( + &self->capture_list_pool, + state->capture_list_id + ); + match->captures = captures->contents; + match->capture_count = captures->size; + *capture_index = state->consumed_capture_count; + state->consumed_capture_count++; + return true; + } + + if (capture_list_pool_is_empty(&self->capture_list_pool)) { + LOG( + " abandon state. index:%u, pattern:%u, offset:%u.\n", + first_unfinished_state_index, + first_unfinished_pattern_index, + first_unfinished_capture_byte + ); + capture_list_pool_release( + &self->capture_list_pool, + self->states.contents[first_unfinished_state_index].capture_list_id + ); + array_erase(&self->states, first_unfinished_state_index); + } + + // If there are no finished matches that are ready to be returned, then + // continue finding more matches. + if ( + !ts_query_cursor__advance(self, true) && + self->finished_states.size == 0 + ) return false; + } +} + +void ts_query_cursor_set_max_start_depth( + t_query_cursor *self, + uint32_t max_start_depth +) { + self->max_start_depth = max_start_depth; +} + +#undef LOG +#include "src/array.h" +#include "src/parser.h" + +#include +#include +#include +#include + +enum TokenType { + HEREDOC_START, + SIMPLE_HEREDOC_BODY, + HEREDOC_BODY_BEGINNING, + HEREDOC_CONTENT, + HEREDOC_END, + FILE_DESCRIPTOR, + EMPTY_VALUE, + CONCAT, + VARIABLE_NAME, + TEST_OPERATOR, + REGEX, + REGEX_NO_SLASH, + REGEX_NO_SPACE, + EXPANSION_WORD, + EXTGLOB_PATTERN, + BARE_DOLLAR, + BRACE_START, + IMMEDIATE_DOUBLE_HASH, + EXTERNAL_EXPANSION_SYM_HASH, + EXTERNAL_EXPANSION_SYM_BANG, + EXTERNAL_EXPANSION_SYM_EQUAL, + CLOSING_BRACE, + CLOSING_BRACKET, + HEREDOC_ARROW, + HEREDOC_ARROW_DASH, + NEWLINE, + OPENING_PAREN, + ESAC, + ERROR_RECOVERY, +}; + +typedef Array(char) String; + +typedef struct { + bool is_raw; + bool started; + bool allows_indent; + String delimiter; + String current_leading_word; +} Heredoc; + +#define heredoc_new() \ + { \ + .is_raw = false, \ + .started = false, \ + .allows_indent = false, \ + .delimiter = array_new(), \ + .current_leading_word = array_new(), \ + }; + +typedef struct { + uint8_t last_glob_paren_depth; + bool ext_was_in_double_quote; + bool ext_saw_outside_quote; + Array(Heredoc) heredocs; +} Scanner; + +static inline void advance(TSLexer *lexer) { lexer->advance(lexer, false); } + +static inline void skip(TSLexer *lexer) { lexer->advance(lexer, true); } + +static inline bool in_error_recovery(const bool *valid_symbols) { return valid_symbols[ERROR_RECOVERY]; } + +static inline void reset_string(String *string) { + if (string->size > 0) { + memset(string->contents, 0, string->size); + array_clear(string); + } +} + +static inline void reset_heredoc(Heredoc *heredoc) { + heredoc->is_raw = false; + heredoc->started = false; + heredoc->allows_indent = false; + reset_string(&heredoc->delimiter); +} + +static inline void reset(Scanner *scanner) { + for (uint32_t i = 0; i < scanner->heredocs.size; i++) { + reset_heredoc(array_get(&scanner->heredocs, i)); + } +} + +static unsigned serialize(Scanner *scanner, char *buffer) { + uint32_t size = 0; + + buffer[size++] = (char)scanner->last_glob_paren_depth; + buffer[size++] = (char)scanner->ext_was_in_double_quote; + buffer[size++] = (char)scanner->ext_saw_outside_quote; + buffer[size++] = (char)scanner->heredocs.size; + + for (uint32_t i = 0; i < scanner->heredocs.size; i++) { + Heredoc *heredoc = array_get(&scanner->heredocs, i); + if (heredoc->delimiter.size + 3 + size >= TREE_SITTER_SERIALIZATION_BUFFER_SIZE) { + return 0; + } + + buffer[size++] = (char)heredoc->is_raw; + buffer[size++] = (char)heredoc->started; + buffer[size++] = (char)heredoc->allows_indent; + + memcpy(&buffer[size], &heredoc->delimiter.size, sizeof(uint32_t)); + size += sizeof(uint32_t); + if (heredoc->delimiter.size > 0) { + memcpy(&buffer[size], heredoc->delimiter.contents, heredoc->delimiter.size); + size += heredoc->delimiter.size; + } + } + return size; +} + +static void deserialize(Scanner *scanner, const char *buffer, unsigned length) { + if (length == 0) { + reset(scanner); + } else { + uint32_t size = 0; + scanner->last_glob_paren_depth = buffer[size++]; + scanner->ext_was_in_double_quote = buffer[size++]; + scanner->ext_saw_outside_quote = buffer[size++]; + uint32_t heredoc_count = (unsigned char)buffer[size++]; + for (uint32_t i = 0; i < heredoc_count; i++) { + Heredoc *heredoc = NULL; + if (i < scanner->heredocs.size) { + heredoc = array_get(&scanner->heredocs, i); + } else { + Heredoc new_heredoc = heredoc_new(); + array_push(&scanner->heredocs, new_heredoc); + heredoc = array_back(&scanner->heredocs); + } + + heredoc->is_raw = buffer[size++]; + heredoc->started = buffer[size++]; + heredoc->allows_indent = buffer[size++]; + + memcpy(&heredoc->delimiter.size, &buffer[size], sizeof(uint32_t)); + size += sizeof(uint32_t); + array_reserve(&heredoc->delimiter, heredoc->delimiter.size); + + if (heredoc->delimiter.size > 0) { + memcpy(heredoc->delimiter.contents, &buffer[size], heredoc->delimiter.size); + size += heredoc->delimiter.size; + } + } + assert(size == length); + } +} + +/** + * Consume a "word" in POSIX parlance, and returns it unquoted. + * + * This is an approximate implementation that doesn't deal with any + * POSIX-mandated substitution, and assumes the default value for + * IFS. + */ +static bool advance_word(TSLexer *lexer, String *unquoted_word) { + bool empty = true; + + int32_t quote = 0; + if (lexer->lookahead == '\'' || lexer->lookahead == '"') { + quote = lexer->lookahead; + advance(lexer); + } + + while (lexer->lookahead && + !(quote ? lexer->lookahead == quote || lexer->lookahead == '\r' || lexer->lookahead == '\n' + : iswspace(lexer->lookahead))) { + if (lexer->lookahead == '\\') { + advance(lexer); + if (!lexer->lookahead) { + return false; + } + } + empty = false; + array_push(unquoted_word, lexer->lookahead); + advance(lexer); + } + array_push(unquoted_word, '\0'); + + if (quote && lexer->lookahead == quote) { + advance(lexer); + } + + return !empty; +} + +static inline bool scan_bare_dollar(TSLexer *lexer) { + while (iswspace(lexer->lookahead) && lexer->lookahead != '\n' && !lexer->eof(lexer)) { + skip(lexer); + } + + if (lexer->lookahead == '$') { + advance(lexer); + lexer->result_symbol = BARE_DOLLAR; + lexer->mark_end(lexer); + return iswspace(lexer->lookahead) || lexer->eof(lexer) || lexer->lookahead == '\"'; + } + + return false; +} + +static bool scan_heredoc_start(Heredoc *heredoc, TSLexer *lexer) { + while (iswspace(lexer->lookahead)) { + skip(lexer); + } + + lexer->result_symbol = HEREDOC_START; + heredoc->is_raw = lexer->lookahead == '\'' || lexer->lookahead == '"' || lexer->lookahead == '\\'; + + bool found_delimiter = advance_word(lexer, &heredoc->delimiter); + if (!found_delimiter) { + reset_string(&heredoc->delimiter); + return false; + } + return found_delimiter; +} + +static bool scan_heredoc_end_identifier(Heredoc *heredoc, TSLexer *lexer) { + reset_string(&heredoc->current_leading_word); + // Scan the first 'n' characters on this line, to see if they match the + // heredoc delimiter + int32_t size = 0; + if (heredoc->delimiter.size > 0) { + while (lexer->lookahead != '\0' && lexer->lookahead != '\n' && + (int32_t)*array_get(&heredoc->delimiter, size) == lexer->lookahead && + heredoc->current_leading_word.size < heredoc->delimiter.size) { + array_push(&heredoc->current_leading_word, lexer->lookahead); + advance(lexer); + size++; + } + } + array_push(&heredoc->current_leading_word, '\0'); + return heredoc->delimiter.size == 0 + ? false + : strcmp(heredoc->current_leading_word.contents, heredoc->delimiter.contents) == 0; +} + +static bool scan_heredoc_content(Scanner *scanner, TSLexer *lexer, enum TokenType middle_type, + enum TokenType end_type) { + bool did_advance = false; + Heredoc *heredoc = array_back(&scanner->heredocs); + + for (;;) { + switch (lexer->lookahead) { + case '\0': { + if (lexer->eof(lexer) && did_advance) { + reset_heredoc(heredoc); + lexer->result_symbol = end_type; + return true; + } + return false; + } + + case '\\': { + did_advance = true; + advance(lexer); + advance(lexer); + break; + } + + case '$': { + if (heredoc->is_raw) { + did_advance = true; + advance(lexer); + break; + } + if (did_advance) { + lexer->mark_end(lexer); + lexer->result_symbol = middle_type; + heredoc->started = true; + advance(lexer); + if (iswalpha(lexer->lookahead) || lexer->lookahead == '{' || lexer->lookahead == '(') { + return true; + } + break; + } + if (middle_type == HEREDOC_BODY_BEGINNING && lexer->get_column(lexer) == 0) { + lexer->result_symbol = middle_type; + heredoc->started = true; + return true; + } + return false; + } + + case '\n': { + if (!did_advance) { + skip(lexer); + } else { + advance(lexer); + } + did_advance = true; + if (heredoc->allows_indent) { + while (iswspace(lexer->lookahead)) { + advance(lexer); + } + } + lexer->result_symbol = heredoc->started ? middle_type : end_type; + lexer->mark_end(lexer); + if (scan_heredoc_end_identifier(heredoc, lexer)) { + if (lexer->result_symbol == HEREDOC_END) { + array_pop(&scanner->heredocs); + } + return true; + } + break; + } + + default: { + if (lexer->get_column(lexer) == 0) { + // an alternative is to check the starting column of the + // heredoc body and track that statefully + while (iswspace(lexer->lookahead)) { + if (did_advance) { + advance(lexer); + } else { + skip(lexer); + } + } + if (end_type != SIMPLE_HEREDOC_BODY) { + lexer->result_symbol = middle_type; + if (scan_heredoc_end_identifier(heredoc, lexer)) { + return true; + } + } + if (end_type == SIMPLE_HEREDOC_BODY) { + lexer->result_symbol = end_type; + lexer->mark_end(lexer); + if (scan_heredoc_end_identifier(heredoc, lexer)) { + return true; + } + } + } + did_advance = true; + advance(lexer); + break; + } + } + } +} + +static bool scan(Scanner *scanner, TSLexer *lexer, const bool *valid_symbols) { + if (valid_symbols[CONCAT] && !in_error_recovery(valid_symbols)) { + if (!(lexer->lookahead == 0 || iswspace(lexer->lookahead) || lexer->lookahead == '>' || + lexer->lookahead == '<' || lexer->lookahead == ')' || lexer->lookahead == '(' || + lexer->lookahead == ';' || lexer->lookahead == '&' || lexer->lookahead == '|' || + (lexer->lookahead == '}' && valid_symbols[CLOSING_BRACE]) || + (lexer->lookahead == ']' && valid_symbols[CLOSING_BRACKET]))) { + lexer->result_symbol = CONCAT; + // So for a`b`, we want to return a concat. We check if the + // 2nd backtick has whitespace after it, and if it does we + // return concat. + if (lexer->lookahead == '`') { + lexer->mark_end(lexer); + advance(lexer); + while (lexer->lookahead != '`' && !lexer->eof(lexer)) { + advance(lexer); + } + if (lexer->eof(lexer)) { + return false; + } + if (lexer->lookahead == '`') { + advance(lexer); + } + return iswspace(lexer->lookahead) || lexer->eof(lexer); + } + // strings w/ expansions that contains escaped quotes or + // backslashes need this to return a concat + if (lexer->lookahead == '\\') { + lexer->mark_end(lexer); + advance(lexer); + if (lexer->lookahead == '"' || lexer->lookahead == '\'' || lexer->lookahead == '\\') { + return true; + } + if (lexer->eof(lexer)) { + return false; + } + } else { + return true; + } + } + if (iswspace(lexer->lookahead) && valid_symbols[CLOSING_BRACE] && !valid_symbols[EXPANSION_WORD]) { + lexer->result_symbol = CONCAT; + return true; + } + } + + if (valid_symbols[IMMEDIATE_DOUBLE_HASH] && !in_error_recovery(valid_symbols)) { + // advance two # and ensure not } after + if (lexer->lookahead == '#') { + lexer->mark_end(lexer); + advance(lexer); + if (lexer->lookahead == '#') { + advance(lexer); + if (lexer->lookahead != '}') { + lexer->result_symbol = IMMEDIATE_DOUBLE_HASH; + lexer->mark_end(lexer); + return true; + } + } + } + } + + if (valid_symbols[EXTERNAL_EXPANSION_SYM_HASH] && !in_error_recovery(valid_symbols)) { + if (lexer->lookahead == '#' || lexer->lookahead == '=' || lexer->lookahead == '!') { + lexer->result_symbol = lexer->lookahead == '#' ? EXTERNAL_EXPANSION_SYM_HASH + : lexer->lookahead == '!' ? EXTERNAL_EXPANSION_SYM_BANG + : EXTERNAL_EXPANSION_SYM_EQUAL; + advance(lexer); + lexer->mark_end(lexer); + while (lexer->lookahead == '#' || lexer->lookahead == '=' || lexer->lookahead == '!') { + advance(lexer); + } + while (iswspace(lexer->lookahead)) { + skip(lexer); + } + if (lexer->lookahead == '}') { + return true; + } + return false; + } + } + + if (valid_symbols[EMPTY_VALUE]) { + if (iswspace(lexer->lookahead) || lexer->eof(lexer) || lexer->lookahead == ';' || lexer->lookahead == '&') { + lexer->result_symbol = EMPTY_VALUE; + return true; + } + } + + if ((valid_symbols[HEREDOC_BODY_BEGINNING] || valid_symbols[SIMPLE_HEREDOC_BODY]) && scanner->heredocs.size > 0 && + !array_back(&scanner->heredocs)->started && !in_error_recovery(valid_symbols)) { + return scan_heredoc_content(scanner, lexer, HEREDOC_BODY_BEGINNING, SIMPLE_HEREDOC_BODY); + } + + if (valid_symbols[HEREDOC_END] && scanner->heredocs.size > 0) { + Heredoc *heredoc = array_back(&scanner->heredocs); + if (scan_heredoc_end_identifier(heredoc, lexer)) { + array_delete(&heredoc->current_leading_word); + array_delete(&heredoc->delimiter); + array_pop(&scanner->heredocs); + lexer->result_symbol = HEREDOC_END; + return true; + } + } + + if (valid_symbols[HEREDOC_CONTENT] && scanner->heredocs.size > 0 && array_back(&scanner->heredocs)->started && + !in_error_recovery(valid_symbols)) { + return scan_heredoc_content(scanner, lexer, HEREDOC_CONTENT, HEREDOC_END); + } + + if (valid_symbols[HEREDOC_START] && !in_error_recovery(valid_symbols) && scanner->heredocs.size > 0) { + return scan_heredoc_start(array_back(&scanner->heredocs), lexer); + } + + if (valid_symbols[TEST_OPERATOR] && !valid_symbols[EXPANSION_WORD]) { + while (iswspace(lexer->lookahead) && lexer->lookahead != '\n') { + skip(lexer); + } + + if (lexer->lookahead == '\\') { + if (valid_symbols[EXTGLOB_PATTERN]) { + goto extglob_pattern; + } + if (valid_symbols[REGEX_NO_SPACE]) { + goto regex; + } + skip(lexer); + + if (lexer->eof(lexer)) { + return false; + } + + if (lexer->lookahead == '\r') { + skip(lexer); + if (lexer->lookahead == '\n') { + skip(lexer); + } + } else if (lexer->lookahead == '\n') { + skip(lexer); + } else { + return false; + } + + while (iswspace(lexer->lookahead)) { + skip(lexer); + } + } + + if (lexer->lookahead == '\n' && !valid_symbols[NEWLINE]) { + skip(lexer); + + while (iswspace(lexer->lookahead)) { + skip(lexer); + } + } + + if (lexer->lookahead == '-') { + advance(lexer); + + bool advanced_once = false; + while (iswalpha(lexer->lookahead)) { + advanced_once = true; + advance(lexer); + } + + if (iswspace(lexer->lookahead) && advanced_once) { + lexer->mark_end(lexer); + advance(lexer); + if (lexer->lookahead == '}' && valid_symbols[CLOSING_BRACE]) { + if (valid_symbols[EXPANSION_WORD]) { + lexer->mark_end(lexer); + lexer->result_symbol = EXPANSION_WORD; + return true; + } + return false; + } + lexer->result_symbol = TEST_OPERATOR; + return true; + } + if (iswspace(lexer->lookahead) && valid_symbols[EXTGLOB_PATTERN]) { + lexer->result_symbol = EXTGLOB_PATTERN; + return true; + } + } + + if (valid_symbols[BARE_DOLLAR] && !in_error_recovery(valid_symbols) && scan_bare_dollar(lexer)) { + return true; + } + } + + if ((valid_symbols[VARIABLE_NAME] || valid_symbols[FILE_DESCRIPTOR] || valid_symbols[HEREDOC_ARROW]) && + !valid_symbols[REGEX_NO_SLASH] && !in_error_recovery(valid_symbols)) { + for (;;) { + if ((lexer->lookahead == ' ' || lexer->lookahead == '\t' || lexer->lookahead == '\r' || + (lexer->lookahead == '\n' && !valid_symbols[NEWLINE])) && + !valid_symbols[EXPANSION_WORD]) { + skip(lexer); + } else if (lexer->lookahead == '\\') { + skip(lexer); + + if (lexer->eof(lexer)) { + lexer->mark_end(lexer); + lexer->result_symbol = VARIABLE_NAME; + return true; + } + + if (lexer->lookahead == '\r') { + skip(lexer); + } + if (lexer->lookahead == '\n') { + skip(lexer); + } else { + if (lexer->lookahead == '\\' && valid_symbols[EXPANSION_WORD]) { + goto expansion_word; + } + return false; + } + } else { + break; + } + } + + // no '*', '@', '?', '-', '$', '0', '_' + if (!valid_symbols[EXPANSION_WORD] && + (lexer->lookahead == '*' || lexer->lookahead == '@' || lexer->lookahead == '?' || lexer->lookahead == '-' || + lexer->lookahead == '0' || lexer->lookahead == '_')) { + lexer->mark_end(lexer); + advance(lexer); + if (lexer->lookahead == '=' || lexer->lookahead == '[' || lexer->lookahead == ':' || + lexer->lookahead == '-' || lexer->lookahead == '%' || lexer->lookahead == '#' || + lexer->lookahead == '/') { + return false; + } + if (valid_symbols[EXTGLOB_PATTERN] && iswspace(lexer->lookahead)) { + lexer->mark_end(lexer); + lexer->result_symbol = EXTGLOB_PATTERN; + return true; + } + } + + if (valid_symbols[HEREDOC_ARROW] && lexer->lookahead == '<') { + advance(lexer); + if (lexer->lookahead == '<') { + advance(lexer); + if (lexer->lookahead == '-') { + advance(lexer); + Heredoc heredoc = heredoc_new(); + heredoc.allows_indent = true; + array_push(&scanner->heredocs, heredoc); + lexer->result_symbol = HEREDOC_ARROW_DASH; + } else if (lexer->lookahead == '<' || lexer->lookahead == '=') { + return false; + } else { + Heredoc heredoc = heredoc_new(); + array_push(&scanner->heredocs, heredoc); + lexer->result_symbol = HEREDOC_ARROW; + } + return true; + } + return false; + } + + bool is_number = true; + if (iswdigit(lexer->lookahead)) { + advance(lexer); + } else if (iswalpha(lexer->lookahead) || lexer->lookahead == '_') { + is_number = false; + advance(lexer); + } else { + if (lexer->lookahead == '{') { + goto brace_start; + } + if (valid_symbols[EXPANSION_WORD]) { + goto expansion_word; + } + if (valid_symbols[EXTGLOB_PATTERN]) { + goto extglob_pattern; + } + return false; + } + + for (;;) { + if (iswdigit(lexer->lookahead)) { + advance(lexer); + } else if (iswalpha(lexer->lookahead) || lexer->lookahead == '_') { + is_number = false; + advance(lexer); + } else { + break; + } + } + + if (is_number && valid_symbols[FILE_DESCRIPTOR] && (lexer->lookahead == '>' || lexer->lookahead == '<')) { + lexer->result_symbol = FILE_DESCRIPTOR; + return true; + } + + if (valid_symbols[VARIABLE_NAME]) { + if (lexer->lookahead == '+') { + lexer->mark_end(lexer); + advance(lexer); + if (lexer->lookahead == '=' || lexer->lookahead == ':' || valid_symbols[CLOSING_BRACE]) { + lexer->result_symbol = VARIABLE_NAME; + return true; + } + return false; + } + if (lexer->lookahead == '/') { + return false; + } + if (lexer->lookahead == '=' || lexer->lookahead == '[' || + (lexer->lookahead == ':' && !valid_symbols[CLOSING_BRACE] && + !valid_symbols[OPENING_PAREN]) || // TODO(amaanq): more cases for regular word chars but not variable + // names for function words, only handling : for now? #235 + lexer->lookahead == '%' || + (lexer->lookahead == '#' && !is_number) || lexer->lookahead == '@' || + (lexer->lookahead == '-' && valid_symbols[CLOSING_BRACE])) { + lexer->mark_end(lexer); + lexer->result_symbol = VARIABLE_NAME; + return true; + } + + if (lexer->lookahead == '?') { + lexer->mark_end(lexer); + advance(lexer); + lexer->result_symbol = VARIABLE_NAME; + return iswalpha(lexer->lookahead); + } + } + + return false; + } + + if (valid_symbols[BARE_DOLLAR] && !in_error_recovery(valid_symbols) && scan_bare_dollar(lexer)) { + return true; + } + +regex: + if ((valid_symbols[REGEX] || valid_symbols[REGEX_NO_SLASH] || valid_symbols[REGEX_NO_SPACE]) && + !in_error_recovery(valid_symbols)) { + if (valid_symbols[REGEX] || valid_symbols[REGEX_NO_SPACE]) { + while (iswspace(lexer->lookahead)) { + skip(lexer); + } + } + + if ((lexer->lookahead != '"' && lexer->lookahead != '\'') || + ((lexer->lookahead == '$' || lexer->lookahead == '\'') && valid_symbols[REGEX_NO_SLASH]) || + (lexer->lookahead == '\'' && valid_symbols[REGEX_NO_SPACE])) { + typedef struct { + bool done; + bool advanced_once; + bool found_non_alnumdollarunderdash; + bool last_was_escape; + bool in_single_quote; + uint32_t paren_depth; + uint32_t bracket_depth; + uint32_t brace_depth; + } State; + + if (lexer->lookahead == '$' && valid_symbols[REGEX_NO_SLASH]) { + lexer->mark_end(lexer); + advance(lexer); + if (lexer->lookahead == '(') { + return false; + } + } + + lexer->mark_end(lexer); + + State state = {false, false, false, false, false, 0, 0, 0}; + while (!state.done) { + if (state.in_single_quote) { + if (lexer->lookahead == '\'') { + state.in_single_quote = false; + advance(lexer); + lexer->mark_end(lexer); + } + } + switch (lexer->lookahead) { + case '\\': + state.last_was_escape = true; + break; + case '\0': + return false; + case '(': + state.paren_depth++; + state.last_was_escape = false; + break; + case '[': + state.bracket_depth++; + state.last_was_escape = false; + break; + case '{': + if (!state.last_was_escape) { + state.brace_depth++; + } + state.last_was_escape = false; + break; + case ')': + if (state.paren_depth == 0) { + state.done = true; + } + state.paren_depth--; + state.last_was_escape = false; + break; + case ']': + if (state.bracket_depth == 0) { + state.done = true; + } + state.bracket_depth--; + state.last_was_escape = false; + break; + case '}': + if (state.brace_depth == 0) { + state.done = true; + } + state.brace_depth--; + state.last_was_escape = false; + break; + case '\'': + // Enter or exit a single-quoted string. + state.in_single_quote = !state.in_single_quote; + advance(lexer); + state.advanced_once = true; + state.last_was_escape = false; + continue; + default: + state.last_was_escape = false; + break; + } + + if (!state.done) { + if (valid_symbols[REGEX]) { + bool was_space = !state.in_single_quote && iswspace(lexer->lookahead); + advance(lexer); + state.advanced_once = true; + if (!was_space || state.paren_depth > 0) { + lexer->mark_end(lexer); + } + } else if (valid_symbols[REGEX_NO_SLASH]) { + if (lexer->lookahead == '/') { + lexer->mark_end(lexer); + lexer->result_symbol = REGEX_NO_SLASH; + return state.advanced_once; + } + if (lexer->lookahead == '\\') { + advance(lexer); + state.advanced_once = true; + if (!lexer->eof(lexer) && lexer->lookahead != '[' && lexer->lookahead != '/') { + advance(lexer); + lexer->mark_end(lexer); + } + } else { + bool was_space = !state.in_single_quote && iswspace(lexer->lookahead); + advance(lexer); + state.advanced_once = true; + if (!was_space) { + lexer->mark_end(lexer); + } + } + } else if (valid_symbols[REGEX_NO_SPACE]) { + if (lexer->lookahead == '\\') { + state.found_non_alnumdollarunderdash = true; + advance(lexer); + if (!lexer->eof(lexer)) { + advance(lexer); + } + } else if (lexer->lookahead == '$') { + lexer->mark_end(lexer); + advance(lexer); + // do not parse a command + // substitution + if (lexer->lookahead == '(') { + return false; + } + // end $ always means regex, e.g. + // 99999999$ + if (iswspace(lexer->lookahead)) { + lexer->result_symbol = REGEX_NO_SPACE; + lexer->mark_end(lexer); + return true; + } + } else { + bool was_space = !state.in_single_quote && iswspace(lexer->lookahead); + if (was_space && state.paren_depth == 0) { + lexer->mark_end(lexer); + lexer->result_symbol = REGEX_NO_SPACE; + return state.found_non_alnumdollarunderdash; + } + if (!iswalnum(lexer->lookahead) && lexer->lookahead != '$' && lexer->lookahead != '-' && + lexer->lookahead != '_') { + state.found_non_alnumdollarunderdash = true; + } + advance(lexer); + } + } + } + } + + lexer->result_symbol = valid_symbols[REGEX_NO_SLASH] ? REGEX_NO_SLASH + : valid_symbols[REGEX_NO_SPACE] ? REGEX_NO_SPACE + : REGEX; + if (valid_symbols[REGEX] && !state.advanced_once) { + return false; + } + return true; + } + } + +extglob_pattern: + if (valid_symbols[EXTGLOB_PATTERN] && !in_error_recovery(valid_symbols)) { + // first skip ws, then check for ? * + @ ! + while (iswspace(lexer->lookahead)) { + skip(lexer); + } + + if (lexer->lookahead == '?' || lexer->lookahead == '*' || lexer->lookahead == '+' || lexer->lookahead == '@' || + lexer->lookahead == '!' || lexer->lookahead == '-' || lexer->lookahead == ')' || lexer->lookahead == '\\' || + lexer->lookahead == '.' || lexer->lookahead == '[' || (iswalpha(lexer->lookahead))) { + if (lexer->lookahead == '\\') { + advance(lexer); + if ((iswspace(lexer->lookahead) || lexer->lookahead == '"') && lexer->lookahead != '\r' && + lexer->lookahead != '\n') { + advance(lexer); + } else { + return false; + } + } + + if (lexer->lookahead == ')' && scanner->last_glob_paren_depth == 0) { + lexer->mark_end(lexer); + advance(lexer); + + if (iswspace(lexer->lookahead)) { + return false; + } + } + + lexer->mark_end(lexer); + bool was_non_alpha = !iswalpha(lexer->lookahead); + if (lexer->lookahead != '[') { + // no esac + if (lexer->lookahead == 'e') { + lexer->mark_end(lexer); + advance(lexer); + if (lexer->lookahead == 's') { + advance(lexer); + if (lexer->lookahead == 'a') { + advance(lexer); + if (lexer->lookahead == 'c') { + advance(lexer); + if (iswspace(lexer->lookahead)) { + return false; + } + } + } + } + } else { + advance(lexer); + } + } + + // -\w is just a word, find something else special + if (lexer->lookahead == '-') { + lexer->mark_end(lexer); + advance(lexer); + while (iswalnum(lexer->lookahead)) { + advance(lexer); + } + + if (lexer->lookahead == ')' || lexer->lookahead == '\\' || lexer->lookahead == '.') { + return false; + } + lexer->mark_end(lexer); + } + + // case item -) or *) + if (lexer->lookahead == ')' && scanner->last_glob_paren_depth == 0) { + lexer->mark_end(lexer); + advance(lexer); + if (iswspace(lexer->lookahead)) { + lexer->result_symbol = EXTGLOB_PATTERN; + return was_non_alpha; + } + } + + if (iswspace(lexer->lookahead)) { + lexer->mark_end(lexer); + lexer->result_symbol = EXTGLOB_PATTERN; + scanner->last_glob_paren_depth = 0; + return true; + } + + if (lexer->lookahead == '$') { + lexer->mark_end(lexer); + advance(lexer); + if (lexer->lookahead == '{' || lexer->lookahead == '(') { + lexer->result_symbol = EXTGLOB_PATTERN; + return true; + } + } + + if (lexer->lookahead == '|') { + lexer->mark_end(lexer); + advance(lexer); + lexer->result_symbol = EXTGLOB_PATTERN; + return true; + } + + if (!iswalnum(lexer->lookahead) && lexer->lookahead != '(' && lexer->lookahead != '"' && + lexer->lookahead != '[' && lexer->lookahead != '?' && lexer->lookahead != '/' && + lexer->lookahead != '\\' && lexer->lookahead != '_' && lexer->lookahead != '*') { + return false; + } + + typedef struct { + bool done; + bool saw_non_alphadot; + uint32_t paren_depth; + uint32_t bracket_depth; + uint32_t brace_depth; + } State; + + State state = {false, was_non_alpha, scanner->last_glob_paren_depth, 0, 0}; + while (!state.done) { + switch (lexer->lookahead) { + case '\0': + return false; + case '(': + state.paren_depth++; + break; + case '[': + state.bracket_depth++; + break; + case '{': + state.brace_depth++; + break; + case ')': + if (state.paren_depth == 0) { + state.done = true; + } + state.paren_depth--; + break; + case ']': + if (state.bracket_depth == 0) { + state.done = true; + } + state.bracket_depth--; + break; + case '}': + if (state.brace_depth == 0) { + state.done = true; + } + state.brace_depth--; + break; + } + + if (lexer->lookahead == '|') { + lexer->mark_end(lexer); + advance(lexer); + if (state.paren_depth == 0 && state.bracket_depth == 0 && state.brace_depth == 0) { + lexer->result_symbol = EXTGLOB_PATTERN; + return true; + } + } + + if (!state.done) { + bool was_space = iswspace(lexer->lookahead); + if (lexer->lookahead == '$') { + lexer->mark_end(lexer); + if (!iswalpha(lexer->lookahead) && lexer->lookahead != '.' && lexer->lookahead != '\\') { + state.saw_non_alphadot = true; + } + advance(lexer); + if (lexer->lookahead == '(' || lexer->lookahead == '{') { + lexer->result_symbol = EXTGLOB_PATTERN; + scanner->last_glob_paren_depth = state.paren_depth; + return state.saw_non_alphadot; + } + } + if (was_space) { + lexer->mark_end(lexer); + lexer->result_symbol = EXTGLOB_PATTERN; + scanner->last_glob_paren_depth = 0; + return state.saw_non_alphadot; + } + if (lexer->lookahead == '"') { + lexer->mark_end(lexer); + lexer->result_symbol = EXTGLOB_PATTERN; + scanner->last_glob_paren_depth = 0; + return state.saw_non_alphadot; + } + if (lexer->lookahead == '\\') { + if (!iswalpha(lexer->lookahead) && lexer->lookahead != '.' && lexer->lookahead != '\\') { + state.saw_non_alphadot = true; + } + advance(lexer); + if (iswspace(lexer->lookahead) || lexer->lookahead == '"') { + advance(lexer); + } + } else { + if (!iswalpha(lexer->lookahead) && lexer->lookahead != '.' && lexer->lookahead != '\\') { + state.saw_non_alphadot = true; + } + advance(lexer); + } + if (!was_space) { + lexer->mark_end(lexer); + } + } + } + + lexer->result_symbol = EXTGLOB_PATTERN; + scanner->last_glob_paren_depth = 0; + return state.saw_non_alphadot; + } + scanner->last_glob_paren_depth = 0; + + return false; + } + +expansion_word: + if (valid_symbols[EXPANSION_WORD]) { + bool advanced_once = false; + bool advance_once_space = false; + for (;;) { + if (lexer->lookahead == '\"') { + return false; + } + if (lexer->lookahead == '$') { + lexer->mark_end(lexer); + advance(lexer); + if (lexer->lookahead == '{' || lexer->lookahead == '(' || lexer->lookahead == '\'' || + iswalnum(lexer->lookahead)) { + lexer->result_symbol = EXPANSION_WORD; + return advanced_once; + } + advanced_once = true; + } + + if (lexer->lookahead == '}') { + lexer->mark_end(lexer); + lexer->result_symbol = EXPANSION_WORD; + return advanced_once || advance_once_space; + } + + if (lexer->lookahead == '(' && !(advanced_once || advance_once_space)) { + lexer->mark_end(lexer); + advance(lexer); + while (lexer->lookahead != ')' && !lexer->eof(lexer)) { + // if we find a $( or ${ assume this is valid and is + // a garbage concatenation of some weird word + an + // expansion + // I wonder where this can fail + if (lexer->lookahead == '$') { + lexer->mark_end(lexer); + advance(lexer); + if (lexer->lookahead == '{' || lexer->lookahead == '(' || lexer->lookahead == '\'' || + iswalnum(lexer->lookahead)) { + lexer->result_symbol = EXPANSION_WORD; + return advanced_once; + } + advanced_once = true; + } else { + advanced_once = advanced_once || !iswspace(lexer->lookahead); + advance_once_space = advance_once_space || iswspace(lexer->lookahead); + advance(lexer); + } + } + lexer->mark_end(lexer); + if (lexer->lookahead == ')') { + advanced_once = true; + advance(lexer); + lexer->mark_end(lexer); + if (lexer->lookahead == '}') { + return false; + } + } else { + return false; + } + } + + if (lexer->lookahead == '\'') { + return false; + } + + if (lexer->eof(lexer)) { + return false; + } + advanced_once = advanced_once || !iswspace(lexer->lookahead); + advance_once_space = advance_once_space || iswspace(lexer->lookahead); + advance(lexer); + } + } + +brace_start: + if (valid_symbols[BRACE_START] && !in_error_recovery(valid_symbols)) { + while (iswspace(lexer->lookahead)) { + skip(lexer); + } + + if (lexer->lookahead != '{') { + return false; + } + + advance(lexer); + lexer->mark_end(lexer); + + while (isdigit(lexer->lookahead)) { + advance(lexer); + } + + if (lexer->lookahead != '.') { + return false; + } + advance(lexer); + + if (lexer->lookahead != '.') { + return false; + } + advance(lexer); + + while (isdigit(lexer->lookahead)) { + advance(lexer); + } + + if (lexer->lookahead != '}') { + return false; + } + + lexer->result_symbol = BRACE_START; + return true; + } + + return false; +} + +void *tree_sitter_bash_external_scanner_create() { + Scanner *scanner = calloc(1, sizeof(Scanner)); + array_init(&scanner->heredocs); + return scanner; +} + +bool tree_sitter_bash_external_scanner_scan(void *payload, TSLexer *lexer, const bool *valid_symbols) { + Scanner *scanner = (Scanner *)payload; + return scan(scanner, lexer, valid_symbols); +} + +unsigned tree_sitter_bash_external_scanner_serialize(void *payload, char *state) { + Scanner *scanner = (Scanner *)payload; + return serialize(scanner, state); +} + +void tree_sitter_bash_external_scanner_deserialize(void *payload, const char *state, unsigned length) { + Scanner *scanner = (Scanner *)payload; + deserialize(scanner, state, length); +} + +void tree_sitter_bash_external_scanner_destroy(void *payload) { + Scanner *scanner = (Scanner *)payload; + for (size_t i = 0; i < scanner->heredocs.size; i++) { + Heredoc *heredoc = array_get(&scanner->heredocs, i); + array_delete(&heredoc->current_leading_word); + array_delete(&heredoc->delimiter); + } + array_delete(&scanner->heredocs); + free(scanner); +} +#include "src/alloc.h" +#include "src/language.h" +#include "src/subtree.h" +#include "src/array.h" +#include "src/stack.h" +#include "src/length.h" +#include +#include +#include + +#define MAX_LINK_COUNT 8 +#define MAX_NODE_POOL_SIZE 50 +#define MAX_ITERATOR_COUNT 64 + +#if defined _WIN32 && !defined __GNUC__ +#define forceinline __forceinline +#else +#define forceinline static inline __attribute__((always_inline)) +#endif + +typedef struct StackNode StackNode; + +typedef struct { + StackNode *node; + Subtree subtree; + bool is_pending; +} StackLink; + +struct StackNode { + t_state_id state; + Length position; + StackLink links[MAX_LINK_COUNT]; + short unsigned int link_count; + uint32_t ref_count; + unsigned error_cost; + unsigned node_count; + int dynamic_precedence; +}; + +typedef struct { + StackNode *node; + SubtreeArray subtrees; + uint32_t subtree_count; + bool is_pending; +} StackIterator; + +typedef Array(StackNode *) StackNodeArray; + +typedef enum { + StackStatusActive, + StackStatusPaused, + StackStatusHalted, +} StackStatus; + +typedef struct { + StackNode *node; + StackSummary *summary; + unsigned node_count_at_last_error; + Subtree last_external_token; + Subtree lookahead_when_paused; + StackStatus status; +} StackHead; + +struct Stack { + Array(StackHead) heads; + StackSliceArray slices; + Array(StackIterator) iterators; + StackNodeArray node_pool; + StackNode *base_node; + SubtreePool *subtree_pool; +}; + +typedef unsigned StackAction; +enum { + StackActionNone, + StackActionStop = 1, + StackActionPop = 2, +}; + +typedef StackAction (*StackCallback)(void *, const StackIterator *); + +static void stack_node_retain(StackNode *self) { + if (!self) + return; + assert(self->ref_count > 0); + self->ref_count++; + assert(self->ref_count != 0); +} + +static void stack_node_release( + StackNode *self, + StackNodeArray *pool, + SubtreePool *subtree_pool +) { +recur: + assert(self->ref_count != 0); + self->ref_count--; + if (self->ref_count > 0) return; + + StackNode *first_predecessor = NULL; + if (self->link_count > 0) { + for (unsigned i = self->link_count - 1; i > 0; i--) { + StackLink link = self->links[i]; + if (link.subtree.ptr) ts_subtree_release(subtree_pool, link.subtree); + stack_node_release(link.node, pool, subtree_pool); + } + StackLink link = self->links[0]; + if (link.subtree.ptr) ts_subtree_release(subtree_pool, link.subtree); + first_predecessor = self->links[0].node; + } + + if (pool->size < MAX_NODE_POOL_SIZE) { + array_push(pool, self); + } else { + ts_free(self); + } + + if (first_predecessor) { + self = first_predecessor; + goto recur; + } +} + +/// Get the number of nodes in the subtree, for the purpose of measuring +/// how much progress has been made by a given version of the stack. +static uint32_t stack__subtree_node_count(Subtree subtree) { + uint32_t count = ts_subtree_visible_descendant_count(subtree); + if (ts_subtree_visible(subtree)) count++; + + // Count intermediate error nodes even though they are not visible, + // because a stack version's node count is used to check whether it + // has made any progress since the last time it encountered an error. + if (ts_subtree_symbol(subtree) == ts_builtin_sym_error_repeat) count++; + + return count; +} + +static StackNode *stack_node_new( + StackNode *previous_node, + Subtree subtree, + bool is_pending, + t_state_id state, + StackNodeArray *pool +) { + StackNode *node = pool->size > 0 + ? array_pop(pool) + : ts_malloc(sizeof(StackNode)); + *node = (StackNode) { + .ref_count = 1, + .link_count = 0, + .state = state + }; + + if (previous_node) { + node->link_count = 1; + node->links[0] = (StackLink) { + .node = previous_node, + .subtree = subtree, + .is_pending = is_pending, + }; + + node->position = previous_node->position; + node->error_cost = previous_node->error_cost; + node->dynamic_precedence = previous_node->dynamic_precedence; + node->node_count = previous_node->node_count; + + if (subtree.ptr) { + node->error_cost += ts_subtree_error_cost(subtree); + node->position = length_add(node->position, ts_subtree_total_size(subtree)); + node->node_count += stack__subtree_node_count(subtree); + node->dynamic_precedence += ts_subtree_dynamic_precedence(subtree); + } + } else { + node->position = length_zero(); + node->error_cost = 0; + } + + return node; +} + +static bool stack__subtree_is_equivalent(Subtree left, Subtree right) { + if (left.ptr == right.ptr) return true; + if (!left.ptr || !right.ptr) return false; + + // Symbols must match + if (ts_subtree_symbol(left) != ts_subtree_symbol(right)) return false; + + // If both have errors, don't bother keeping both. + if (ts_subtree_error_cost(left) > 0 && ts_subtree_error_cost(right) > 0) return true; + + return ( + ts_subtree_padding(left).bytes == ts_subtree_padding(right).bytes && + ts_subtree_size(left).bytes == ts_subtree_size(right).bytes && + ts_subtree_child_count(left) == ts_subtree_child_count(right) && + ts_subtree_extra(left) == ts_subtree_extra(right) && + ts_subtree_external_scanner_state_eq(left, right) + ); +} + +static void stack_node_add_link( + StackNode *self, + StackLink link, + SubtreePool *subtree_pool +) { + if (link.node == self) return; + + for (int i = 0; i < self->link_count; i++) { + StackLink *existing_link = &self->links[i]; + if (stack__subtree_is_equivalent(existing_link->subtree, link.subtree)) { + // In general, we preserve ambiguities until they are removed from the stack + // during a pop operation where multiple paths lead to the same node. But in + // the special case where two links directly connect the same pair of nodes, + // we can safely remove the ambiguity ahead of time without changing behavior. + if (existing_link->node == link.node) { + if ( + ts_subtree_dynamic_precedence(link.subtree) > + ts_subtree_dynamic_precedence(existing_link->subtree) + ) { + ts_subtree_retain(link.subtree); + ts_subtree_release(subtree_pool, existing_link->subtree); + existing_link->subtree = link.subtree; + self->dynamic_precedence = + link.node->dynamic_precedence + ts_subtree_dynamic_precedence(link.subtree); + } + return; + } + + // If the previous nodes are mergeable, merge them recursively. + if ( + existing_link->node->state == link.node->state && + existing_link->node->position.bytes == link.node->position.bytes && + existing_link->node->error_cost == link.node->error_cost + ) { + for (int j = 0; j < link.node->link_count; j++) { + stack_node_add_link(existing_link->node, link.node->links[j], subtree_pool); + } + int32_t dynamic_precedence = link.node->dynamic_precedence; + if (link.subtree.ptr) { + dynamic_precedence += ts_subtree_dynamic_precedence(link.subtree); + } + if (dynamic_precedence > self->dynamic_precedence) { + self->dynamic_precedence = dynamic_precedence; + } + return; + } + } + } + + if (self->link_count == MAX_LINK_COUNT) return; + + stack_node_retain(link.node); + unsigned node_count = link.node->node_count; + int dynamic_precedence = link.node->dynamic_precedence; + self->links[self->link_count++] = link; + + if (link.subtree.ptr) { + ts_subtree_retain(link.subtree); + node_count += stack__subtree_node_count(link.subtree); + dynamic_precedence += ts_subtree_dynamic_precedence(link.subtree); + } + + if (node_count > self->node_count) self->node_count = node_count; + if (dynamic_precedence > self->dynamic_precedence) self->dynamic_precedence = dynamic_precedence; +} + +static void stack_head_delete( + StackHead *self, + StackNodeArray *pool, + SubtreePool *subtree_pool +) { + if (self->node) { + if (self->last_external_token.ptr) { + ts_subtree_release(subtree_pool, self->last_external_token); + } + if (self->lookahead_when_paused.ptr) { + ts_subtree_release(subtree_pool, self->lookahead_when_paused); + } + if (self->summary) { + array_delete(self->summary); + ts_free(self->summary); + } + stack_node_release(self->node, pool, subtree_pool); + } +} + +static StackVersion ts_stack__add_version( + Stack *self, + StackVersion original_version, + StackNode *node +) { + StackHead head = { + .node = node, + .node_count_at_last_error = self->heads.contents[original_version].node_count_at_last_error, + .last_external_token = self->heads.contents[original_version].last_external_token, + .status = StackStatusActive, + .lookahead_when_paused = NULL_SUBTREE, + }; + array_push(&self->heads, head); + stack_node_retain(node); + if (head.last_external_token.ptr) ts_subtree_retain(head.last_external_token); + return (StackVersion)(self->heads.size - 1); +} + +static void ts_stack__add_slice( + Stack *self, + StackVersion original_version, + StackNode *node, + SubtreeArray *subtrees +) { + for (uint32_t i = self->slices.size - 1; i + 1 > 0; i--) { + StackVersion version = self->slices.contents[i].version; + if (self->heads.contents[version].node == node) { + StackSlice slice = {*subtrees, version}; + array_insert(&self->slices, i + 1, slice); + return; + } + } + + StackVersion version = ts_stack__add_version(self, original_version, node); + StackSlice slice = { *subtrees, version }; + array_push(&self->slices, slice); +} + +static StackSliceArray stack__iter( + Stack *self, + StackVersion version, + StackCallback callback, + void *payload, + int goal_subtree_count +) { + array_clear(&self->slices); + array_clear(&self->iterators); + + StackHead *head = array_get(&self->heads, version); + StackIterator new_iterator = { + .node = head->node, + .subtrees = array_new(), + .subtree_count = 0, + .is_pending = true, + }; + + bool include_subtrees = false; + if (goal_subtree_count >= 0) { + include_subtrees = true; + array_reserve(&new_iterator.subtrees, (uint32_t)ts_subtree_alloc_size(goal_subtree_count) / sizeof(Subtree)); + } + + array_push(&self->iterators, new_iterator); + + while (self->iterators.size > 0) { + for (uint32_t i = 0, size = self->iterators.size; i < size; i++) { + StackIterator *iterator = &self->iterators.contents[i]; + StackNode *node = iterator->node; + + StackAction action = callback(payload, iterator); + bool should_pop = action & StackActionPop; + bool should_stop = action & StackActionStop || node->link_count == 0; + + if (should_pop) { + SubtreeArray subtrees = iterator->subtrees; + if (!should_stop) { + ts_subtree_array_copy(subtrees, &subtrees); + } + ts_subtree_array_reverse(&subtrees); + ts_stack__add_slice( + self, + version, + node, + &subtrees + ); + } + + if (should_stop) { + if (!should_pop) { + ts_subtree_array_delete(self->subtree_pool, &iterator->subtrees); + } + array_erase(&self->iterators, i); + i--, size--; + continue; + } + + for (uint32_t j = 1; j <= node->link_count; j++) { + StackIterator *next_iterator; + StackLink link; + if (j == node->link_count) { + link = node->links[0]; + next_iterator = &self->iterators.contents[i]; + } else { + if (self->iterators.size >= MAX_ITERATOR_COUNT) continue; + link = node->links[j]; + StackIterator current_iterator = self->iterators.contents[i]; + array_push(&self->iterators, current_iterator); + next_iterator = array_back(&self->iterators); + ts_subtree_array_copy(next_iterator->subtrees, &next_iterator->subtrees); + } + + next_iterator->node = link.node; + if (link.subtree.ptr) { + if (include_subtrees) { + array_push(&next_iterator->subtrees, link.subtree); + ts_subtree_retain(link.subtree); + } + + if (!ts_subtree_extra(link.subtree)) { + next_iterator->subtree_count++; + if (!link.is_pending) { + next_iterator->is_pending = false; + } + } + } else { + next_iterator->subtree_count++; + next_iterator->is_pending = false; + } + } + } + } + + return self->slices; +} + +Stack *ts_stack_new(SubtreePool *subtree_pool) { + Stack *self = ts_calloc(1, sizeof(Stack)); + + array_init(&self->heads); + array_init(&self->slices); + array_init(&self->iterators); + array_init(&self->node_pool); + array_reserve(&self->heads, 4); + array_reserve(&self->slices, 4); + array_reserve(&self->iterators, 4); + array_reserve(&self->node_pool, MAX_NODE_POOL_SIZE); + + self->subtree_pool = subtree_pool; + self->base_node = stack_node_new(NULL, NULL_SUBTREE, false, 1, &self->node_pool); + ts_stack_clear(self); + + return self; +} + +void ts_stack_delete(Stack *self) { + if (self->slices.contents) + array_delete(&self->slices); + if (self->iterators.contents) + array_delete(&self->iterators); + stack_node_release(self->base_node, &self->node_pool, self->subtree_pool); + for (uint32_t i = 0; i < self->heads.size; i++) { + stack_head_delete(&self->heads.contents[i], &self->node_pool, self->subtree_pool); + } + array_clear(&self->heads); + if (self->node_pool.contents) { + for (uint32_t i = 0; i < self->node_pool.size; i++) + ts_free(self->node_pool.contents[i]); + array_delete(&self->node_pool); + } + array_delete(&self->heads); + ts_free(self); +} + +uint32_t ts_stack_version_count(const Stack *self) { + return self->heads.size; +} + +t_state_id ts_stack_state(const Stack *self, StackVersion version) { + return array_get(&self->heads, version)->node->state; +} + +Length ts_stack_position(const Stack *self, StackVersion version) { + return array_get(&self->heads, version)->node->position; +} + +Subtree ts_stack_last_external_token(const Stack *self, StackVersion version) { + return array_get(&self->heads, version)->last_external_token; +} + +void ts_stack_set_last_external_token(Stack *self, StackVersion version, Subtree token) { + StackHead *head = array_get(&self->heads, version); + if (token.ptr) ts_subtree_retain(token); + if (head->last_external_token.ptr) ts_subtree_release(self->subtree_pool, head->last_external_token); + head->last_external_token = token; +} + +unsigned ts_stack_error_cost(const Stack *self, StackVersion version) { + StackHead *head = array_get(&self->heads, version); + unsigned result = head->node->error_cost; + if ( + head->status == StackStatusPaused || + (head->node->state == ERROR_STATE && !head->node->links[0].subtree.ptr)) { + result += ERROR_COST_PER_RECOVERY; + } + return result; +} + +unsigned ts_stack_node_count_since_error(const Stack *self, StackVersion version) { + StackHead *head = array_get(&self->heads, version); + if (head->node->node_count < head->node_count_at_last_error) { + head->node_count_at_last_error = head->node->node_count; + } + return head->node->node_count - head->node_count_at_last_error; +} + +void ts_stack_push( + Stack *self, + StackVersion version, + Subtree subtree, + bool pending, + t_state_id state +) { + StackHead *head = array_get(&self->heads, version); + StackNode *new_node = stack_node_new(head->node, subtree, pending, state, &self->node_pool); + if (!subtree.ptr) head->node_count_at_last_error = new_node->node_count; + head->node = new_node; +} + +forceinline StackAction pop_count_callback(void *payload, const StackIterator *iterator) { + unsigned *goal_subtree_count = payload; + if (iterator->subtree_count == *goal_subtree_count) { + return StackActionPop | StackActionStop; + } else { + return StackActionNone; + } +} + +StackSliceArray ts_stack_pop_count(Stack *self, StackVersion version, uint32_t count) { + return stack__iter(self, version, pop_count_callback, &count, (int)count); +} + +forceinline StackAction pop_pending_callback(void *payload, const StackIterator *iterator) { + (void)payload; + if (iterator->subtree_count >= 1) { + if (iterator->is_pending) { + return StackActionPop | StackActionStop; + } else { + return StackActionStop; + } + } else { + return StackActionNone; + } +} + +StackSliceArray ts_stack_pop_pending(Stack *self, StackVersion version) { + StackSliceArray pop = stack__iter(self, version, pop_pending_callback, NULL, 0); + if (pop.size > 0) { + ts_stack_renumber_version(self, pop.contents[0].version, version); + pop.contents[0].version = version; + } + return pop; +} + +forceinline StackAction pop_error_callback(void *payload, const StackIterator *iterator) { + if (iterator->subtrees.size > 0) { + bool *found_error = payload; + if (!*found_error && ts_subtree_is_error(iterator->subtrees.contents[0])) { + *found_error = true; + return StackActionPop | StackActionStop; + } else { + return StackActionStop; + } + } else { + return StackActionNone; + } +} + +SubtreeArray ts_stack_pop_error(Stack *self, StackVersion version) { + StackNode *node = array_get(&self->heads, version)->node; + for (unsigned i = 0; i < node->link_count; i++) { + if (node->links[i].subtree.ptr && ts_subtree_is_error(node->links[i].subtree)) { + bool found_error = false; + StackSliceArray pop = stack__iter(self, version, pop_error_callback, &found_error, 1); + if (pop.size > 0) { + assert(pop.size == 1); + ts_stack_renumber_version(self, pop.contents[0].version, version); + return pop.contents[0].subtrees; + } + break; + } + } + return (SubtreeArray) {.size = 0}; +} + +forceinline StackAction pop_all_callback(void *payload, const StackIterator *iterator) { + (void)payload; + return iterator->node->link_count == 0 ? StackActionPop : StackActionNone; +} + +StackSliceArray ts_stack_pop_all(Stack *self, StackVersion version) { + return stack__iter(self, version, pop_all_callback, NULL, 0); +} + +typedef struct { + StackSummary *summary; + unsigned max_depth; +} SummarizeStackSession; + +forceinline StackAction summarize_stack_callback(void *payload, const StackIterator *iterator) { + SummarizeStackSession *session = payload; + t_state_id state = iterator->node->state; + unsigned depth = iterator->subtree_count; + if (depth > session->max_depth) return StackActionStop; + for (unsigned i = session->summary->size - 1; i + 1 > 0; i--) { + StackSummaryEntry entry = session->summary->contents[i]; + if (entry.depth < depth) break; + if (entry.depth == depth && entry.state == state) return StackActionNone; + } + array_push(session->summary, ((StackSummaryEntry) { + .position = iterator->node->position, + .depth = depth, + .state = state, + })); + return StackActionNone; +} + +void ts_stack_record_summary(Stack *self, StackVersion version, unsigned max_depth) { + SummarizeStackSession session = { + .summary = ts_malloc(sizeof(StackSummary)), + .max_depth = max_depth + }; + array_init(session.summary); + stack__iter(self, version, summarize_stack_callback, &session, -1); + StackHead *head = &self->heads.contents[version]; + if (head->summary) { + array_delete(head->summary); + ts_free(head->summary); + } + head->summary = session.summary; +} + +StackSummary *ts_stack_get_summary(Stack *self, StackVersion version) { + return array_get(&self->heads, version)->summary; +} + +int ts_stack_dynamic_precedence(Stack *self, StackVersion version) { + return array_get(&self->heads, version)->node->dynamic_precedence; +} + +bool ts_stack_has_advanced_since_error(const Stack *self, StackVersion version) { + const StackHead *head = array_get(&self->heads, version); + const StackNode *node = head->node; + if (node->error_cost == 0) return true; + while (node) { + if (node->link_count > 0) { + Subtree subtree = node->links[0].subtree; + if (subtree.ptr) { + if (ts_subtree_total_bytes(subtree) > 0) { + return true; + } else if ( + node->node_count > head->node_count_at_last_error && + ts_subtree_error_cost(subtree) == 0 + ) { + node = node->links[0].node; + continue; + } + } + } + break; + } + return false; +} + +void ts_stack_remove_version(Stack *self, StackVersion version) { + stack_head_delete(array_get(&self->heads, version), &self->node_pool, self->subtree_pool); + array_erase(&self->heads, version); +} + +void ts_stack_renumber_version(Stack *self, StackVersion v1, StackVersion v2) { + if (v1 == v2) return; + assert(v2 < v1); + assert((uint32_t)v1 < self->heads.size); + StackHead *source_head = &self->heads.contents[v1]; + StackHead *target_head = &self->heads.contents[v2]; + if (target_head->summary && !source_head->summary) { + source_head->summary = target_head->summary; + target_head->summary = NULL; + } + stack_head_delete(target_head, &self->node_pool, self->subtree_pool); + *target_head = *source_head; + array_erase(&self->heads, v1); +} + +void ts_stack_swap_versions(Stack *self, StackVersion v1, StackVersion v2) { + StackHead temporary_head = self->heads.contents[v1]; + self->heads.contents[v1] = self->heads.contents[v2]; + self->heads.contents[v2] = temporary_head; +} + +StackVersion ts_stack_copy_version(Stack *self, StackVersion version) { + assert(version < self->heads.size); + array_push(&self->heads, self->heads.contents[version]); + StackHead *head = array_back(&self->heads); + stack_node_retain(head->node); + if (head->last_external_token.ptr) ts_subtree_retain(head->last_external_token); + head->summary = NULL; + return self->heads.size - 1; +} + +bool ts_stack_merge(Stack *self, StackVersion version1, StackVersion version2) { + if (!ts_stack_can_merge(self, version1, version2)) return false; + StackHead *head1 = &self->heads.contents[version1]; + StackHead *head2 = &self->heads.contents[version2]; + for (uint32_t i = 0; i < head2->node->link_count; i++) { + stack_node_add_link(head1->node, head2->node->links[i], self->subtree_pool); + } + if (head1->node->state == ERROR_STATE) { + head1->node_count_at_last_error = head1->node->node_count; + } + ts_stack_remove_version(self, version2); + return true; +} + +bool ts_stack_can_merge(Stack *self, StackVersion version1, StackVersion version2) { + StackHead *head1 = &self->heads.contents[version1]; + StackHead *head2 = &self->heads.contents[version2]; + return + head1->status == StackStatusActive && + head2->status == StackStatusActive && + head1->node->state == head2->node->state && + head1->node->position.bytes == head2->node->position.bytes && + head1->node->error_cost == head2->node->error_cost && + ts_subtree_external_scanner_state_eq(head1->last_external_token, head2->last_external_token); +} + +void ts_stack_halt(Stack *self, StackVersion version) { + array_get(&self->heads, version)->status = StackStatusHalted; +} + +void ts_stack_pause(Stack *self, StackVersion version, Subtree lookahead) { + StackHead *head = array_get(&self->heads, version); + head->status = StackStatusPaused; + head->lookahead_when_paused = lookahead; + head->node_count_at_last_error = head->node->node_count; +} + +bool ts_stack_is_active(const Stack *self, StackVersion version) { + return array_get(&self->heads, version)->status == StackStatusActive; +} + +bool ts_stack_is_halted(const Stack *self, StackVersion version) { + return array_get(&self->heads, version)->status == StackStatusHalted; +} + +bool ts_stack_is_paused(const Stack *self, StackVersion version) { + return array_get(&self->heads, version)->status == StackStatusPaused; +} + +Subtree ts_stack_resume(Stack *self, StackVersion version) { + StackHead *head = array_get(&self->heads, version); + assert(head->status == StackStatusPaused); + Subtree result = head->lookahead_when_paused; + head->status = StackStatusActive; + head->lookahead_when_paused = NULL_SUBTREE; + return result; +} + +void ts_stack_clear(Stack *self) { + stack_node_retain(self->base_node); + for (uint32_t i = 0; i < self->heads.size; i++) { + stack_head_delete(&self->heads.contents[i], &self->node_pool, self->subtree_pool); + } + array_clear(&self->heads); + array_push(&self->heads, ((StackHead) { + .node = self->base_node, + .status = StackStatusActive, + .last_external_token = NULL_SUBTREE, + .lookahead_when_paused = NULL_SUBTREE, + })); +} + +bool ts_stack_print_dot_graph(Stack *self, const t_language *language, FILE *f) { + array_reserve(&self->iterators, 32); + if (!f) f = stderr; + + fprintf(f, "digraph stack {\n"); + fprintf(f, "rankdir=\"RL\";\n"); + fprintf(f, "edge [arrowhead=none]\n"); + + Array(StackNode *) visited_nodes = array_new(); + + array_clear(&self->iterators); + for (uint32_t i = 0; i < self->heads.size; i++) { + StackHead *head = &self->heads.contents[i]; + if (head->status == StackStatusHalted) continue; + + fprintf(f, "node_head_%u [shape=none, label=\"\"]\n", i); + fprintf(f, "node_head_%u -> node_%p [", i, (void *)head->node); + + if (head->status == StackStatusPaused) { + fprintf(f, "color=red "); + } + fprintf(f, + "label=%u, fontcolor=blue, weight=10000, labeltooltip=\"node_count: %u\nerror_cost: %u", + i, + ts_stack_node_count_since_error(self, i), + ts_stack_error_cost(self, i) + ); + + if (head->summary) { + fprintf(f, "\nsummary:"); + for (uint32_t j = 0; j < head->summary->size; j++) fprintf(f, " %u", head->summary->contents[j].state); + } + + if (head->last_external_token.ptr) { + const ExternalScannerState *state = &head->last_external_token.ptr->external_scanner_state; + const char *data = ts_external_scanner_state_data(state); + fprintf(f, "\nexternal_scanner_state:"); + for (uint32_t j = 0; j < state->length; j++) fprintf(f, " %2X", data[j]); + } + + fprintf(f, "\"]\n"); + array_push(&self->iterators, ((StackIterator) { + .node = head->node + })); + } + + bool all_iterators_done = false; + while (!all_iterators_done) { + all_iterators_done = true; + + for (uint32_t i = 0; i < self->iterators.size; i++) { + StackIterator iterator = self->iterators.contents[i]; + StackNode *node = iterator.node; + + for (uint32_t j = 0; j < visited_nodes.size; j++) { + if (visited_nodes.contents[j] == node) { + node = NULL; + break; + } + } + + if (!node) continue; + all_iterators_done = false; + + fprintf(f, "node_%p [", (void *)node); + if (node->state == ERROR_STATE) { + fprintf(f, "label=\"?\""); + } else if ( + node->link_count == 1 && + node->links[0].subtree.ptr && + ts_subtree_extra(node->links[0].subtree) + ) { + fprintf(f, "shape=point margin=0 label=\"\""); + } else { + fprintf(f, "label=\"%d\"", node->state); + } + + fprintf( + f, + " tooltip=\"position: %u,%u\nnode_count:%u\nerror_cost: %u\ndynamic_precedence: %d\"];\n", + node->position.extent.row + 1, + node->position.extent.column, + node->node_count, + node->error_cost, + node->dynamic_precedence + ); + + for (int j = 0; j < node->link_count; j++) { + StackLink link = node->links[j]; + fprintf(f, "node_%p -> node_%p [", (void *)node, (void *)link.node); + if (link.is_pending) fprintf(f, "style=dashed "); + if (link.subtree.ptr && ts_subtree_extra(link.subtree)) fprintf(f, "fontcolor=gray "); + + if (!link.subtree.ptr) { + fprintf(f, "color=red"); + } else { + fprintf(f, "label=\""); + bool quoted = ts_subtree_visible(link.subtree) && !ts_subtree_named(link.subtree); + if (quoted) fprintf(f, "'"); + ts_language_write_symbol_as_dot_string(language, f, ts_subtree_symbol(link.subtree)); + if (quoted) fprintf(f, "'"); + fprintf(f, "\""); + fprintf( + f, + "labeltooltip=\"error_cost: %u\ndynamic_precedence: %" PRId32 "\"", + ts_subtree_error_cost(link.subtree), + ts_subtree_dynamic_precedence(link.subtree) + ); + } + + fprintf(f, "];\n"); + + StackIterator *next_iterator; + if (j == 0) { + next_iterator = &self->iterators.contents[i]; + } else { + array_push(&self->iterators, iterator); + next_iterator = array_back(&self->iterators); + } + next_iterator->node = link.node; + } + + array_push(&visited_nodes, node); + } + } + + fprintf(f, "}\n"); + + array_delete(&visited_nodes); + return true; +} + +#undef forceinline +#include +#include +#include +#include +#include +#include +#include "src/alloc.h" +#include "src/array.h" +#include "src/atomic.h" +#include "src/subtree.h" +#include "src/length.h" +#include "src/language.h" +#include "src/error_costs.h" +#include + +typedef struct { + Length start; + Length old_end; + Length new_end; +} Edit; + +#define TS_MAX_INLINE_TREE_LENGTH UINT8_MAX +#define TS_MAX_TREE_POOL_SIZE 32 + +// ExternalScannerState + +void ts_external_scanner_state_init(ExternalScannerState *self, const char *data, unsigned length) { + self->length = length; + if (length > sizeof(self->short_data)) { + self->long_data = ts_malloc(length); + memcpy(self->long_data, data, length); + } else { + memcpy(self->short_data, data, length); + } +} + +ExternalScannerState ts_external_scanner_state_copy(const ExternalScannerState *self) { + ExternalScannerState result = *self; + if (self->length > sizeof(self->short_data)) { + result.long_data = ts_malloc(self->length); + memcpy(result.long_data, self->long_data, self->length); + } + return result; +} + +void ts_external_scanner_state_delete(ExternalScannerState *self) { + if (self->length > sizeof(self->short_data)) { + ts_free(self->long_data); + } +} + +const char *ts_external_scanner_state_data(const ExternalScannerState *self) { + if (self->length > sizeof(self->short_data)) { + return self->long_data; + } else { + return self->short_data; + } +} + +bool ts_external_scanner_state_eq(const ExternalScannerState *self, const char *buffer, unsigned length) { + return + self->length == length && + memcmp(ts_external_scanner_state_data(self), buffer, length) == 0; +} + +// SubtreeArray + +void ts_subtree_array_copy(SubtreeArray self, SubtreeArray *dest) { + dest->size = self.size; + dest->capacity = self.capacity; + dest->contents = self.contents; + if (self.capacity > 0) { + dest->contents = ts_calloc(self.capacity, sizeof(Subtree)); + memcpy(dest->contents, self.contents, self.size * sizeof(Subtree)); + for (uint32_t i = 0; i < self.size; i++) { + ts_subtree_retain(dest->contents[i]); + } + } +} + +void ts_subtree_array_clear(SubtreePool *pool, SubtreeArray *self) { + for (uint32_t i = 0; i < self->size; i++) { + ts_subtree_release(pool, self->contents[i]); + } + array_clear(self); +} + +void ts_subtree_array_delete(SubtreePool *pool, SubtreeArray *self) { + ts_subtree_array_clear(pool, self); + array_delete(self); +} + +void ts_subtree_array_remove_trailing_extras( + SubtreeArray *self, + SubtreeArray *destination +) { + array_clear(destination); + while (self->size > 0) { + Subtree last = self->contents[self->size - 1]; + if (ts_subtree_extra(last)) { + self->size--; + array_push(destination, last); + } else { + break; + } + } + ts_subtree_array_reverse(destination); +} + +void ts_subtree_array_reverse(SubtreeArray *self) { + for (uint32_t i = 0, limit = self->size / 2; i < limit; i++) { + size_t reverse_index = self->size - 1 - i; + Subtree swap = self->contents[i]; + self->contents[i] = self->contents[reverse_index]; + self->contents[reverse_index] = swap; + } +} + +// SubtreePool + +SubtreePool ts_subtree_pool_new(uint32_t capacity) { + SubtreePool self = {array_new(), array_new()}; + array_reserve(&self.free_trees, capacity); + return self; +} + +void ts_subtree_pool_delete(SubtreePool *self) { + if (self->free_trees.contents) { + for (unsigned i = 0; i < self->free_trees.size; i++) { + ts_free(self->free_trees.contents[i].ptr); + } + array_delete(&self->free_trees); + } + if (self->tree_stack.contents) array_delete(&self->tree_stack); +} + +static SubtreeHeapData *ts_subtree_pool_allocate(SubtreePool *self) { + if (self->free_trees.size > 0) { + return array_pop(&self->free_trees).ptr; + } else { + return ts_malloc(sizeof(SubtreeHeapData)); + } +} + +static void ts_subtree_pool_free(SubtreePool *self, SubtreeHeapData *tree) { + if (self->free_trees.capacity > 0 && self->free_trees.size + 1 <= TS_MAX_TREE_POOL_SIZE) { + array_push(&self->free_trees, (MutableSubtree) {.ptr = tree}); + } else { + ts_free(tree); + } +} + +// Subtree + +static inline bool ts_subtree_can_inline(Length padding, Length size, uint32_t lookahead_bytes) { + return + padding.bytes < TS_MAX_INLINE_TREE_LENGTH && + padding.extent.row < 16 && + padding.extent.column < TS_MAX_INLINE_TREE_LENGTH && + size.extent.row == 0 && + size.extent.column < TS_MAX_INLINE_TREE_LENGTH && + lookahead_bytes < 16; +} + +Subtree ts_subtree_new_leaf( + SubtreePool *pool, t_symbol symbol, Length padding, Length size, + uint32_t lookahead_bytes, t_state_id parse_state, + bool has_external_tokens, bool depends_on_column, + bool is_keyword, const t_language *language +) { + TSSymbolMetadata metadata = ts_language_symbol_metadata(language, symbol); + bool extra = symbol == ts_builtin_sym_end; + + bool is_inline = ( + symbol <= UINT8_MAX && + !has_external_tokens && + ts_subtree_can_inline(padding, size, lookahead_bytes) + ); + + if (is_inline) { + return (Subtree) {{ + .parse_state = parse_state, + .symbol = symbol, + .padding_bytes = padding.bytes, + .padding_rows = padding.extent.row, + .padding_columns = padding.extent.column, + .size_bytes = size.bytes, + .lookahead_bytes = lookahead_bytes, + .visible = metadata.visible, + .named = metadata.named, + .extra = extra, + .has_changes = false, + .is_missing = false, + .is_keyword = is_keyword, + .is_inline = true, + }}; + } else { + SubtreeHeapData *data = ts_subtree_pool_allocate(pool); + *data = (SubtreeHeapData) { + .ref_count = 1, + .padding = padding, + .size = size, + .lookahead_bytes = lookahead_bytes, + .error_cost = 0, + .child_count = 0, + .symbol = symbol, + .parse_state = parse_state, + .visible = metadata.visible, + .named = metadata.named, + .extra = extra, + .fragile_left = false, + .fragile_right = false, + .has_changes = false, + .has_external_tokens = has_external_tokens, + .has_external_scanner_state_change = false, + .depends_on_column = depends_on_column, + .is_missing = false, + .is_keyword = is_keyword, + {{.first_leaf = {.symbol = 0, .parse_state = 0}}} + }; + return (Subtree) {.ptr = data}; + } +} + +void ts_subtree_set_symbol( + MutableSubtree *self, + t_symbol symbol, + const t_language *language +) { + TSSymbolMetadata metadata = ts_language_symbol_metadata(language, symbol); + if (self->data.is_inline) { + assert(symbol < UINT8_MAX); + self->data.symbol = symbol; + self->data.named = metadata.named; + self->data.visible = metadata.visible; + } else { + self->ptr->symbol = symbol; + self->ptr->named = metadata.named; + self->ptr->visible = metadata.visible; + } +} + +Subtree ts_subtree_new_error( + SubtreePool *pool, int32_t lookahead_char, Length padding, Length size, + uint32_t bytes_scanned, t_state_id parse_state, const t_language *language +) { + Subtree result = ts_subtree_new_leaf( + pool, ts_builtin_sym_error, padding, size, bytes_scanned, + parse_state, false, false, false, language + ); + SubtreeHeapData *data = (SubtreeHeapData *)result.ptr; + data->fragile_left = true; + data->fragile_right = true; + data->lookahead_char = lookahead_char; + return result; +} + +// Clone a subtree. +MutableSubtree ts_subtree_clone(Subtree self) { + size_t alloc_size = ts_subtree_alloc_size(self.ptr->child_count); + Subtree *new_children = ts_malloc(alloc_size); + Subtree *old_children = ts_subtree_children(self); + memcpy(new_children, old_children, alloc_size); + SubtreeHeapData *result = (SubtreeHeapData *)&new_children[self.ptr->child_count]; + if (self.ptr->child_count > 0) { + for (uint32_t i = 0; i < self.ptr->child_count; i++) { + ts_subtree_retain(new_children[i]); + } + } else if (self.ptr->has_external_tokens) { + result->external_scanner_state = ts_external_scanner_state_copy( + &self.ptr->external_scanner_state + ); + } + result->ref_count = 1; + return (MutableSubtree) {.ptr = result}; +} + +// Get mutable version of a subtree. +// +// This takes ownership of the subtree. If the subtree has only one owner, +// this will directly convert it into a mutable version. Otherwise, it will +// perform a copy. +MutableSubtree ts_subtree_make_mut(SubtreePool *pool, Subtree self) { + if (self.data.is_inline) return (MutableSubtree) {self.data}; + if (self.ptr->ref_count == 1) return ts_subtree_to_mut_unsafe(self); + MutableSubtree result = ts_subtree_clone(self); + ts_subtree_release(pool, self); + return result; +} + +static void ts_subtree__compress( + MutableSubtree self, + unsigned count, + const t_language *language, + MutableSubtreeArray *stack +) { + unsigned initial_stack_size = stack->size; + + MutableSubtree tree = self; + t_symbol symbol = tree.ptr->symbol; + for (unsigned i = 0; i < count; i++) { + if (tree.ptr->ref_count > 1 || tree.ptr->child_count < 2) break; + + MutableSubtree child = ts_subtree_to_mut_unsafe(ts_subtree_children(tree)[0]); + if ( + child.data.is_inline || + child.ptr->child_count < 2 || + child.ptr->ref_count > 1 || + child.ptr->symbol != symbol + ) break; + + MutableSubtree grandchild = ts_subtree_to_mut_unsafe(ts_subtree_children(child)[0]); + if ( + grandchild.data.is_inline || + grandchild.ptr->child_count < 2 || + grandchild.ptr->ref_count > 1 || + grandchild.ptr->symbol != symbol + ) break; + + ts_subtree_children(tree)[0] = ts_subtree_from_mut(grandchild); + ts_subtree_children(child)[0] = ts_subtree_children(grandchild)[grandchild.ptr->child_count - 1]; + ts_subtree_children(grandchild)[grandchild.ptr->child_count - 1] = ts_subtree_from_mut(child); + array_push(stack, tree); + tree = grandchild; + } + + while (stack->size > initial_stack_size) { + tree = array_pop(stack); + MutableSubtree child = ts_subtree_to_mut_unsafe(ts_subtree_children(tree)[0]); + MutableSubtree grandchild = ts_subtree_to_mut_unsafe(ts_subtree_children(child)[child.ptr->child_count - 1]); + ts_subtree_summarize_children(grandchild, language); + ts_subtree_summarize_children(child, language); + ts_subtree_summarize_children(tree, language); + } +} + +void ts_subtree_balance(Subtree self, SubtreePool *pool, const t_language *language) { + array_clear(&pool->tree_stack); + + if (ts_subtree_child_count(self) > 0 && self.ptr->ref_count == 1) { + array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(self)); + } + + while (pool->tree_stack.size > 0) { + MutableSubtree tree = array_pop(&pool->tree_stack); + + if (tree.ptr->repeat_depth > 0) { + Subtree child1 = ts_subtree_children(tree)[0]; + Subtree child2 = ts_subtree_children(tree)[tree.ptr->child_count - 1]; + long repeat_delta = (long)ts_subtree_repeat_depth(child1) - (long)ts_subtree_repeat_depth(child2); + if (repeat_delta > 0) { + unsigned n = (unsigned)repeat_delta; + for (unsigned i = n / 2; i > 0; i /= 2) { + ts_subtree__compress(tree, i, language, &pool->tree_stack); + n -= i; + } + } + } + + for (uint32_t i = 0; i < tree.ptr->child_count; i++) { + Subtree child = ts_subtree_children(tree)[i]; + if (ts_subtree_child_count(child) > 0 && child.ptr->ref_count == 1) { + array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(child)); + } + } + } +} + +// Assign all of the node's properties that depend on its children. +void ts_subtree_summarize_children( + MutableSubtree self, + const t_language *language +) { + assert(!self.data.is_inline); + + self.ptr->named_child_count = 0; + self.ptr->visible_child_count = 0; + self.ptr->error_cost = 0; + self.ptr->repeat_depth = 0; + self.ptr->visible_descendant_count = 0; + self.ptr->has_external_tokens = false; + self.ptr->depends_on_column = false; + self.ptr->has_external_scanner_state_change = false; + self.ptr->dynamic_precedence = 0; + + uint32_t structural_index = 0; + const t_symbol *alias_sequence = ts_language_alias_sequence(language, self.ptr->production_id); + uint32_t lookahead_end_byte = 0; + + const Subtree *children = ts_subtree_children(self); + for (uint32_t i = 0; i < self.ptr->child_count; i++) { + Subtree child = children[i]; + + if ( + self.ptr->size.extent.row == 0 && + ts_subtree_depends_on_column(child) + ) { + self.ptr->depends_on_column = true; + } + + if (ts_subtree_has_external_scanner_state_change(child)) { + self.ptr->has_external_scanner_state_change = true; + } + + if (i == 0) { + self.ptr->padding = ts_subtree_padding(child); + self.ptr->size = ts_subtree_size(child); + } else { + self.ptr->size = length_add(self.ptr->size, ts_subtree_total_size(child)); + } + + uint32_t child_lookahead_end_byte = + self.ptr->padding.bytes + + self.ptr->size.bytes + + ts_subtree_lookahead_bytes(child); + if (child_lookahead_end_byte > lookahead_end_byte) { + lookahead_end_byte = child_lookahead_end_byte; + } + + if (ts_subtree_symbol(child) != ts_builtin_sym_error_repeat) { + self.ptr->error_cost += ts_subtree_error_cost(child); + } + + uint32_t grandchild_count = ts_subtree_child_count(child); + if ( + self.ptr->symbol == ts_builtin_sym_error || + self.ptr->symbol == ts_builtin_sym_error_repeat + ) { + if (!ts_subtree_extra(child) && !(ts_subtree_is_error(child) && grandchild_count == 0)) { + if (ts_subtree_visible(child)) { + self.ptr->error_cost += ERROR_COST_PER_SKIPPED_TREE; + } else if (grandchild_count > 0) { + self.ptr->error_cost += ERROR_COST_PER_SKIPPED_TREE * child.ptr->visible_child_count; + } + } + } + + self.ptr->dynamic_precedence += ts_subtree_dynamic_precedence(child); + self.ptr->visible_descendant_count += ts_subtree_visible_descendant_count(child); + + if (alias_sequence && alias_sequence[structural_index] != 0 && !ts_subtree_extra(child)) { + self.ptr->visible_descendant_count++; + self.ptr->visible_child_count++; + if (ts_language_symbol_metadata(language, alias_sequence[structural_index]).named) { + self.ptr->named_child_count++; + } + } else if (ts_subtree_visible(child)) { + self.ptr->visible_descendant_count++; + self.ptr->visible_child_count++; + if (ts_subtree_named(child)) self.ptr->named_child_count++; + } else if (grandchild_count > 0) { + self.ptr->visible_child_count += child.ptr->visible_child_count; + self.ptr->named_child_count += child.ptr->named_child_count; + } + + if (ts_subtree_has_external_tokens(child)) self.ptr->has_external_tokens = true; + + if (ts_subtree_is_error(child)) { + self.ptr->fragile_left = self.ptr->fragile_right = true; + self.ptr->parse_state = TS_TREE_STATE_NONE; + } + + if (!ts_subtree_extra(child)) structural_index++; + } + + self.ptr->lookahead_bytes = lookahead_end_byte - self.ptr->size.bytes - self.ptr->padding.bytes; + + if ( + self.ptr->symbol == ts_builtin_sym_error || + self.ptr->symbol == ts_builtin_sym_error_repeat + ) { + self.ptr->error_cost += + ERROR_COST_PER_RECOVERY + + ERROR_COST_PER_SKIPPED_CHAR * self.ptr->size.bytes + + ERROR_COST_PER_SKIPPED_LINE * self.ptr->size.extent.row; + } + + if (self.ptr->child_count > 0) { + Subtree first_child = children[0]; + Subtree last_child = children[self.ptr->child_count - 1]; + + self.ptr->first_leaf.symbol = ts_subtree_leaf_symbol(first_child); + self.ptr->first_leaf.parse_state = ts_subtree_leaf_parse_state(first_child); + + if (ts_subtree_fragile_left(first_child)) self.ptr->fragile_left = true; + if (ts_subtree_fragile_right(last_child)) self.ptr->fragile_right = true; + + if ( + self.ptr->child_count >= 2 && + !self.ptr->visible && + !self.ptr->named && + ts_subtree_symbol(first_child) == self.ptr->symbol + ) { + if (ts_subtree_repeat_depth(first_child) > ts_subtree_repeat_depth(last_child)) { + self.ptr->repeat_depth = ts_subtree_repeat_depth(first_child) + 1; + } else { + self.ptr->repeat_depth = ts_subtree_repeat_depth(last_child) + 1; + } + } + } +} + +// Create a new parent node with the given children. +// +// This takes ownership of the children array. +MutableSubtree ts_subtree_new_node( + t_symbol symbol, + SubtreeArray *children, + unsigned production_id, + const t_language *language +) { + TSSymbolMetadata metadata = ts_language_symbol_metadata(language, symbol); + bool fragile = symbol == ts_builtin_sym_error || symbol == ts_builtin_sym_error_repeat; + + // Allocate the node's data at the end of the array of children. + size_t new_byte_size = ts_subtree_alloc_size(children->size); + if (children->capacity * sizeof(Subtree) < new_byte_size) { + children->contents = ts_realloc(children->contents, new_byte_size); + children->capacity = (uint32_t)(new_byte_size / sizeof(Subtree)); + } + SubtreeHeapData *data = (SubtreeHeapData *)&children->contents[children->size]; + + *data = (SubtreeHeapData) { + .ref_count = 1, + .symbol = symbol, + .child_count = children->size, + .visible = metadata.visible, + .named = metadata.named, + .has_changes = false, + .has_external_scanner_state_change = false, + .fragile_left = fragile, + .fragile_right = fragile, + .is_keyword = false, + {{ + .visible_descendant_count = 0, + .production_id = production_id, + .first_leaf = {.symbol = 0, .parse_state = 0}, + }} + }; + MutableSubtree result = {.ptr = data}; + ts_subtree_summarize_children(result, language); + return result; +} + +// Create a new error node containing the given children. +// +// This node is treated as 'extra'. Its children are prevented from having +// having any effect on the parse state. +Subtree ts_subtree_new_error_node( + SubtreeArray *children, + bool extra, + const t_language *language +) { + MutableSubtree result = ts_subtree_new_node( + ts_builtin_sym_error, children, 0, language + ); + result.ptr->extra = extra; + return ts_subtree_from_mut(result); +} + +// Create a new 'missing leaf' node. +// +// This node is treated as 'extra'. Its children are prevented from having +// having any effect on the parse state. +Subtree ts_subtree_new_missing_leaf( + SubtreePool *pool, + t_symbol symbol, + Length padding, + uint32_t lookahead_bytes, + const t_language *language +) { + Subtree result = ts_subtree_new_leaf( + pool, symbol, padding, length_zero(), lookahead_bytes, + 0, false, false, false, language + ); + if (result.data.is_inline) { + result.data.is_missing = true; + } else { + ((SubtreeHeapData *)result.ptr)->is_missing = true; + } + return result; +} + +void ts_subtree_retain(Subtree self) { + if (self.data.is_inline) return; + assert(self.ptr->ref_count > 0); + atomic_inc((volatile uint32_t *)&self.ptr->ref_count); + assert(self.ptr->ref_count != 0); +} + +void ts_subtree_release(SubtreePool *pool, Subtree self) { + if (self.data.is_inline) return; + array_clear(&pool->tree_stack); + + assert(self.ptr->ref_count > 0); + if (atomic_dec((volatile uint32_t *)&self.ptr->ref_count) == 0) { + array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(self)); + } + + while (pool->tree_stack.size > 0) { + MutableSubtree tree = array_pop(&pool->tree_stack); + if (tree.ptr->child_count > 0) { + Subtree *children = ts_subtree_children(tree); + for (uint32_t i = 0; i < tree.ptr->child_count; i++) { + Subtree child = children[i]; + if (child.data.is_inline) continue; + assert(child.ptr->ref_count > 0); + if (atomic_dec((volatile uint32_t *)&child.ptr->ref_count) == 0) { + array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(child)); + } + } + ts_free(children); + } else { + if (tree.ptr->has_external_tokens) { + ts_external_scanner_state_delete(&tree.ptr->external_scanner_state); + } + ts_subtree_pool_free(pool, tree.ptr); + } + } +} + +int ts_subtree_compare(Subtree left, Subtree right, SubtreePool *pool) { + array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(left)); + array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(right)); + + while (pool->tree_stack.size > 0) { + right = ts_subtree_from_mut(array_pop(&pool->tree_stack)); + left = ts_subtree_from_mut(array_pop(&pool->tree_stack)); + + int result = 0; + if (ts_subtree_symbol(left) < ts_subtree_symbol(right)) result = -1; + else if (ts_subtree_symbol(right) < ts_subtree_symbol(left)) result = 1; + else if (ts_subtree_child_count(left) < ts_subtree_child_count(right)) result = -1; + else if (ts_subtree_child_count(right) < ts_subtree_child_count(left)) result = 1; + if (result != 0) { + array_clear(&pool->tree_stack); + return result; + } + + for (uint32_t i = ts_subtree_child_count(left); i > 0; i--) { + Subtree left_child = ts_subtree_children(left)[i - 1]; + Subtree right_child = ts_subtree_children(right)[i - 1]; + array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(left_child)); + array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(right_child)); + } + } + + return 0; +} + +static inline void ts_subtree_set_has_changes(MutableSubtree *self) { + if (self->data.is_inline) { + self->data.has_changes = true; + } else { + self->ptr->has_changes = true; + } +} + +Subtree ts_subtree_edit(Subtree self, const t_input_edit *input_edit, SubtreePool *pool) { + typedef struct { + Subtree *tree; + Edit edit; + } EditEntry; + + Array(EditEntry) stack = array_new(); + array_push(&stack, ((EditEntry) { + .tree = &self, + .edit = (Edit) { + .start = {input_edit->start_byte, input_edit->start_point}, + .old_end = {input_edit->old_end_byte, input_edit->old_end_point}, + .new_end = {input_edit->new_end_byte, input_edit->new_end_point}, + }, + })); + + while (stack.size) { + EditEntry entry = array_pop(&stack); + Edit edit = entry.edit; + bool is_noop = edit.old_end.bytes == edit.start.bytes && edit.new_end.bytes == edit.start.bytes; + bool is_pure_insertion = edit.old_end.bytes == edit.start.bytes; + bool invalidate_first_row = ts_subtree_depends_on_column(*entry.tree); + + Length size = ts_subtree_size(*entry.tree); + Length padding = ts_subtree_padding(*entry.tree); + Length total_size = length_add(padding, size); + uint32_t lookahead_bytes = ts_subtree_lookahead_bytes(*entry.tree); + uint32_t end_byte = total_size.bytes + lookahead_bytes; + if (edit.start.bytes > end_byte || (is_noop && edit.start.bytes == end_byte)) continue; + + // If the edit is entirely within the space before this subtree, then shift this + // subtree over according to the edit without changing its size. + if (edit.old_end.bytes <= padding.bytes) { + padding = length_add(edit.new_end, length_sub(padding, edit.old_end)); + } + + // If the edit starts in the space before this subtree and extends into this subtree, + // shrink the subtree's content to compensate for the change in the space before it. + else if (edit.start.bytes < padding.bytes) { + size = length_saturating_sub(size, length_sub(edit.old_end, padding)); + padding = edit.new_end; + } + + // If the edit is a pure insertion right at the start of the subtree, + // shift the subtree over according to the insertion. + else if (edit.start.bytes == padding.bytes && is_pure_insertion) { + padding = edit.new_end; + } + + // If the edit is within this subtree, resize the subtree to reflect the edit. + else if ( + edit.start.bytes < total_size.bytes || + (edit.start.bytes == total_size.bytes && is_pure_insertion) + ) { + size = length_add( + length_sub(edit.new_end, padding), + length_saturating_sub(total_size, edit.old_end) + ); + } + + MutableSubtree result = ts_subtree_make_mut(pool, *entry.tree); + + if (result.data.is_inline) { + if (ts_subtree_can_inline(padding, size, lookahead_bytes)) { + result.data.padding_bytes = padding.bytes; + result.data.padding_rows = padding.extent.row; + result.data.padding_columns = padding.extent.column; + result.data.size_bytes = size.bytes; + } else { + SubtreeHeapData *data = ts_subtree_pool_allocate(pool); + data->ref_count = 1; + data->padding = padding; + data->size = size; + data->lookahead_bytes = lookahead_bytes; + data->error_cost = 0; + data->child_count = 0; + data->symbol = result.data.symbol; + data->parse_state = result.data.parse_state; + data->visible = result.data.visible; + data->named = result.data.named; + data->extra = result.data.extra; + data->fragile_left = false; + data->fragile_right = false; + data->has_changes = false; + data->has_external_tokens = false; + data->depends_on_column = false; + data->is_missing = result.data.is_missing; + data->is_keyword = result.data.is_keyword; + result.ptr = data; + } + } else { + result.ptr->padding = padding; + result.ptr->size = size; + } + + ts_subtree_set_has_changes(&result); + *entry.tree = ts_subtree_from_mut(result); + + Length child_left, child_right = length_zero(); + for (uint32_t i = 0, n = ts_subtree_child_count(*entry.tree); i < n; i++) { + Subtree *child = &ts_subtree_children(*entry.tree)[i]; + Length child_size = ts_subtree_total_size(*child); + child_left = child_right; + child_right = length_add(child_left, child_size); + + // If this child ends before the edit, it is not affected. + if (child_right.bytes + ts_subtree_lookahead_bytes(*child) < edit.start.bytes) continue; + + // Keep editing child nodes until a node is reached that starts after the edit. + // Also, if this node's validity depends on its column position, then continue + // invaliditing child nodes until reaching a line break. + if (( + (child_left.bytes > edit.old_end.bytes) || + (child_left.bytes == edit.old_end.bytes && child_size.bytes > 0 && i > 0) + ) && ( + !invalidate_first_row || + child_left.extent.row > entry.tree->ptr->padding.extent.row + )) { + break; + } + + // Transform edit into the child's coordinate space. + Edit child_edit = { + .start = length_saturating_sub(edit.start, child_left), + .old_end = length_saturating_sub(edit.old_end, child_left), + .new_end = length_saturating_sub(edit.new_end, child_left), + }; + + // Interpret all inserted text as applying to the *first* child that touches the edit. + // Subsequent children are only never have any text inserted into them; they are only + // shrunk to compensate for the edit. + if ( + child_right.bytes > edit.start.bytes || + (child_right.bytes == edit.start.bytes && is_pure_insertion) + ) { + edit.new_end = edit.start; + } + + // Children that occur before the edit are not reshaped by the edit. + else { + child_edit.old_end = child_edit.start; + child_edit.new_end = child_edit.start; + } + + // Queue processing of this child's subtree. + array_push(&stack, ((EditEntry) { + .tree = child, + .edit = child_edit, + })); + } + } + + array_delete(&stack); + return self; +} + +Subtree ts_subtree_last_external_token(Subtree tree) { + if (!ts_subtree_has_external_tokens(tree)) return NULL_SUBTREE; + while (tree.ptr->child_count > 0) { + for (uint32_t i = tree.ptr->child_count - 1; i + 1 > 0; i--) { + Subtree child = ts_subtree_children(tree)[i]; + if (ts_subtree_has_external_tokens(child)) { + tree = child; + break; + } + } + } + return tree; +} + +static size_t ts_subtree__write_char_to_string(char *str, size_t n, int32_t chr) { + if (chr == -1) + return snprintf(str, n, "INVALID"); + else if (chr == '\0') + return snprintf(str, n, "'\\0'"); + else if (chr == '\n') + return snprintf(str, n, "'\\n'"); + else if (chr == '\t') + return snprintf(str, n, "'\\t'"); + else if (chr == '\r') + return snprintf(str, n, "'\\r'"); + else if (0 < chr && chr < 128 && isprint(chr)) + return snprintf(str, n, "'%c'", chr); + else + return snprintf(str, n, "%d", chr); +} + +static const char *const ROOT_FIELD = "__ROOT__"; + +static size_t ts_subtree__write_to_string( + Subtree self, char *string, size_t limit, + const t_language *language, bool include_all, + t_symbol alias_symbol, bool alias_is_named, const char *field_name +) { + if (!self.ptr) return snprintf(string, limit, "(NULL)"); + + char *cursor = string; + char **writer = (limit > 1) ? &cursor : &string; + bool is_root = field_name == ROOT_FIELD; + bool is_visible = + include_all || + ts_subtree_missing(self) || + ( + alias_symbol + ? alias_is_named + : ts_subtree_visible(self) && ts_subtree_named(self) + ); + + if (is_visible) { + if (!is_root) { + cursor += snprintf(*writer, limit, " "); + if (field_name) { + cursor += snprintf(*writer, limit, "%s: ", field_name); + } + } + + if (ts_subtree_is_error(self) && ts_subtree_child_count(self) == 0 && self.ptr->size.bytes > 0) { + cursor += snprintf(*writer, limit, "(UNEXPECTED "); + cursor += ts_subtree__write_char_to_string(*writer, limit, self.ptr->lookahead_char); + } else { + t_symbol symbol = alias_symbol ? alias_symbol : ts_subtree_symbol(self); + const char *symbol_name = ts_language_symbol_name(language, symbol); + if (ts_subtree_missing(self)) { + cursor += snprintf(*writer, limit, "(MISSING "); + if (alias_is_named || ts_subtree_named(self)) { + cursor += snprintf(*writer, limit, "%s", symbol_name); + } else { + cursor += snprintf(*writer, limit, "\"%s\"", symbol_name); + } + } else { + cursor += snprintf(*writer, limit, "(%s", symbol_name); + } + } + } else if (is_root) { + t_symbol symbol = alias_symbol ? alias_symbol : ts_subtree_symbol(self); + const char *symbol_name = ts_language_symbol_name(language, symbol); + if (ts_subtree_child_count(self) > 0) { + cursor += snprintf(*writer, limit, "(%s", symbol_name); + } else if (ts_subtree_named(self)) { + cursor += snprintf(*writer, limit, "(%s)", symbol_name); + } else { + cursor += snprintf(*writer, limit, "(\"%s\")", symbol_name); + } + } + + if (ts_subtree_child_count(self)) { + const t_symbol *alias_sequence = ts_language_alias_sequence(language, self.ptr->production_id); + const TSFieldMapEntry *field_map, *field_map_end; + ts_language_field_map( + language, + self.ptr->production_id, + &field_map, + &field_map_end + ); + + uint32_t structural_child_index = 0; + for (uint32_t i = 0; i < self.ptr->child_count; i++) { + Subtree child = ts_subtree_children(self)[i]; + if (ts_subtree_extra(child)) { + cursor += ts_subtree__write_to_string( + child, *writer, limit, + language, include_all, + 0, false, NULL + ); + } else { + t_symbol subtree_alias_symbol = alias_sequence + ? alias_sequence[structural_child_index] + : 0; + bool subtree_alias_is_named = subtree_alias_symbol + ? ts_language_symbol_metadata(language, subtree_alias_symbol).named + : false; + + const char *child_field_name = is_visible ? NULL : field_name; + for (const TSFieldMapEntry *map = field_map; map < field_map_end; map++) { + if (!map->inherited && map->child_index == structural_child_index) { + child_field_name = language->field_names[map->field_id]; + break; + } + } + + cursor += ts_subtree__write_to_string( + child, *writer, limit, + language, include_all, + subtree_alias_symbol, subtree_alias_is_named, child_field_name + ); + structural_child_index++; + } + } + } + + if (is_visible) cursor += snprintf(*writer, limit, ")"); + + return cursor - string; +} + +char *ts_subtree_string( + Subtree self, + t_symbol alias_symbol, + bool alias_is_named, + const t_language *language, + bool include_all +) { + char scratch_string[1]; + size_t size = ts_subtree__write_to_string( + self, scratch_string, 1, + language, include_all, + alias_symbol, alias_is_named, ROOT_FIELD + ) + 1; + char *result = ts_malloc(size * sizeof(char)); + ts_subtree__write_to_string( + self, result, size, + language, include_all, + alias_symbol, alias_is_named, ROOT_FIELD + ); + return result; +} + +void ts_subtree__print_dot_graph(const Subtree *self, uint32_t start_offset, + const t_language *language, t_symbol alias_symbol, + FILE *f) { + t_symbol subtree_symbol = ts_subtree_symbol(*self); + t_symbol symbol = alias_symbol ? alias_symbol : subtree_symbol; + uint32_t end_offset = start_offset + ts_subtree_total_bytes(*self); + fprintf(f, "tree_%p [label=\"", (void *)self); + ts_language_write_symbol_as_dot_string(language, f, symbol); + fprintf(f, "\""); + + if (ts_subtree_child_count(*self) == 0) fprintf(f, ", shape=plaintext"); + if (ts_subtree_extra(*self)) fprintf(f, ", fontcolor=gray"); + + fprintf(f, ", tooltip=\"" + "range: %u - %u\n" + "state: %d\n" + "error-cost: %u\n" + "has-changes: %u\n" + "depends-on-column: %u\n" + "descendant-count: %u\n" + "repeat-depth: %u\n" + "lookahead-bytes: %u", + start_offset, end_offset, + ts_subtree_parse_state(*self), + ts_subtree_error_cost(*self), + ts_subtree_has_changes(*self), + ts_subtree_depends_on_column(*self), + ts_subtree_visible_descendant_count(*self), + ts_subtree_repeat_depth(*self), + ts_subtree_lookahead_bytes(*self) + ); + + if (ts_subtree_is_error(*self) && ts_subtree_child_count(*self) == 0 && self->ptr->lookahead_char != 0) { + fprintf(f, "\ncharacter: '%c'", self->ptr->lookahead_char); + } + + fprintf(f, "\"]\n"); + + uint32_t child_start_offset = start_offset; + uint32_t child_info_offset = + language->max_alias_sequence_length * + ts_subtree_production_id(*self); + for (uint32_t i = 0, n = ts_subtree_child_count(*self); i < n; i++) { + const Subtree *child = &ts_subtree_children(*self)[i]; + t_symbol subtree_alias_symbol = 0; + if (!ts_subtree_extra(*child) && child_info_offset) { + subtree_alias_symbol = language->alias_sequences[child_info_offset]; + child_info_offset++; + } + ts_subtree__print_dot_graph(child, child_start_offset, language, subtree_alias_symbol, f); + fprintf(f, "tree_%p -> tree_%p [tooltip=%u]\n", (void *)self, (void *)child, i); + child_start_offset += ts_subtree_total_bytes(*child); + } +} + +void ts_subtree_print_dot_graph(Subtree self, const t_language *language, FILE *f) { + fprintf(f, "digraph tree {\n"); + fprintf(f, "edge [arrowhead=none]\n"); + ts_subtree__print_dot_graph(&self, 0, language, 0, f); + fprintf(f, "}\n"); +} + +const ExternalScannerState *ts_subtree_external_scanner_state(Subtree self) { + static const ExternalScannerState empty_state = {{.short_data = {0}}, .length = 0}; + if ( + self.ptr && + !self.data.is_inline && + self.ptr->has_external_tokens && + self.ptr->child_count == 0 + ) { + return &self.ptr->external_scanner_state; + } else { + return &empty_state; + } +} + +bool ts_subtree_external_scanner_state_eq(Subtree self, Subtree other) { + const ExternalScannerState *state_self = ts_subtree_external_scanner_state(self); + const ExternalScannerState *state_other = ts_subtree_external_scanner_state(other); + return ts_external_scanner_state_eq( + state_self, + ts_external_scanner_state_data(state_other), + state_other->length + ); +} + + +#include "src/api.h" +#include "src/array.h" +#include "src/get_changed_ranges.h" +#include "src/length.h" +#include "src/subtree.h" +#include "src/tree_cursor.h" +#include "src/tree.h" + +t_tree *ts_tree_new( + Subtree root, const t_language *language, + const t_range *included_ranges, unsigned included_range_count +) { + t_tree *result = ts_malloc(sizeof(t_tree)); + result->root = root; + result->language = ts_language_copy(language); + result->included_ranges = ts_calloc(included_range_count, sizeof(t_range)); + memcpy(result->included_ranges, included_ranges, included_range_count * sizeof(t_range)); + result->included_range_count = included_range_count; + return result; +} + +t_tree *ts_tree_copy(const t_tree *self) { + ts_subtree_retain(self->root); + return ts_tree_new(self->root, self->language, self->included_ranges, self->included_range_count); +} + +void ts_tree_delete(t_tree *self) { + if (!self) return; + + SubtreePool pool = ts_subtree_pool_new(0); + ts_subtree_release(&pool, self->root); + ts_subtree_pool_delete(&pool); + ts_language_delete(self->language); + ts_free(self->included_ranges); + ts_free(self); +} + +t_parse_node ts_tree_root_node(const t_tree *self) { + return ts_node_new(self, &self->root, ts_subtree_padding(self->root), 0); +} + +t_parse_node ts_tree_root_node_with_offset( + const t_tree *self, + uint32_t offset_bytes, + t_point offset_extent +) { + Length offset = {offset_bytes, offset_extent}; + return ts_node_new(self, &self->root, length_add(offset, ts_subtree_padding(self->root)), 0); +} + +const t_language *ts_tree_language(const t_tree *self) { + return self->language; +} + +void ts_tree_edit(t_tree *self, const t_input_edit *edit) { + for (unsigned i = 0; i < self->included_range_count; i++) { + t_range *range = &self->included_ranges[i]; + if (range->end_byte >= edit->old_end_byte) { + if (range->end_byte != UINT32_MAX) { + range->end_byte = edit->new_end_byte + (range->end_byte - edit->old_end_byte); + range->end_point = point_add( + edit->new_end_point, + point_sub(range->end_point, edit->old_end_point) + ); + if (range->end_byte < edit->new_end_byte) { + range->end_byte = UINT32_MAX; + range->end_point = POINT_MAX; + } + } + } else if (range->end_byte > edit->start_byte) { + range->end_byte = edit->start_byte; + range->end_point = edit->start_point; + } + if (range->start_byte >= edit->old_end_byte) { + range->start_byte = edit->new_end_byte + (range->start_byte - edit->old_end_byte); + range->start_point = point_add( + edit->new_end_point, + point_sub(range->start_point, edit->old_end_point) + ); + if (range->start_byte < edit->new_end_byte) { + range->start_byte = UINT32_MAX; + range->start_point = POINT_MAX; + } + } else if (range->start_byte > edit->start_byte) { + range->start_byte = edit->start_byte; + range->start_point = edit->start_point; + } + } + + SubtreePool pool = ts_subtree_pool_new(0); + self->root = ts_subtree_edit(self->root, edit, &pool); + ts_subtree_pool_delete(&pool); +} + +t_range *ts_tree_included_ranges(const t_tree *self, uint32_t *length) { + *length = self->included_range_count; + t_range *ranges = ts_calloc(self->included_range_count, sizeof(t_range)); + memcpy(ranges, self->included_ranges, self->included_range_count * sizeof(t_range)); + return ranges; +} + +t_range *ts_tree_get_changed_ranges(const t_tree *old_tree, const t_tree *new_tree, uint32_t *length) { + TreeCursor cursor1 = {NULL, array_new(), 0}; + TreeCursor cursor2 = {NULL, array_new(), 0}; + ts_tree_cursor_init(&cursor1, ts_tree_root_node(old_tree)); + ts_tree_cursor_init(&cursor2, ts_tree_root_node(new_tree)); + + TSRangeArray included_range_differences = array_new(); + ts_range_array_get_changed_ranges( + old_tree->included_ranges, old_tree->included_range_count, + new_tree->included_ranges, new_tree->included_range_count, + &included_range_differences + ); + + t_range *result; + *length = ts_subtree_get_changed_ranges( + &old_tree->root, &new_tree->root, &cursor1, &cursor2, + old_tree->language, &included_range_differences, &result + ); + + array_delete(&included_range_differences); + array_delete(&cursor1.stack); + array_delete(&cursor2.stack); + return result; +} + +#ifdef _WIN32 + +#include +#include + +int _ts_dup(HANDLE handle) { + HANDLE dup_handle; + if (!DuplicateHandle( + GetCurrentProcess(), handle, + GetCurrentProcess(), &dup_handle, + 0, FALSE, DUPLICATE_SAME_ACCESS + )) return -1; + + return _open_osfhandle((intptr_t)dup_handle, 0); +} + +void ts_tree_print_dot_graph(const TSTree *self, int fd) { + FILE *file = _fdopen(_ts_dup((HANDLE)_get_osfhandle(fd)), "a"); + ts_subtree_print_dot_graph(self->root, self->language, file); + fclose(file); +} + +#else + +#include + +int _ts_dup(int file_descriptor) { + return dup(file_descriptor); +} + +void ts_tree_print_dot_graph(const t_tree *self, int file_descriptor) { + FILE *file = fdopen(_ts_dup(file_descriptor), "a"); + ts_subtree_print_dot_graph(self->root, self->language, file); + fclose(file); +} + +#endif +#include "src/api.h" +#include "src/alloc.h" +#include "src/tree_cursor.h" +#include "src/language.h" +#include "src/tree.h" + +typedef struct { + Subtree parent; + const t_tree *tree; + Length position; + uint32_t child_index; + uint32_t structural_child_index; + uint32_t descendant_index; + const t_symbol *alias_sequence; +} CursorChildIterator; + +// CursorChildIterator + +static inline bool ts_tree_cursor_is_entry_visible(const TreeCursor *self, uint32_t index) { + TreeCursorEntry *entry = &self->stack.contents[index]; + if (index == 0 || ts_subtree_visible(*entry->subtree)) { + return true; + } else if (!ts_subtree_extra(*entry->subtree)) { + TreeCursorEntry *parent_entry = &self->stack.contents[index - 1]; + return ts_language_alias_at( + self->tree->language, + parent_entry->subtree->ptr->production_id, + entry->structural_child_index + ); + } else { + return false; + } +} + +static inline CursorChildIterator ts_tree_cursor_iterate_children(const TreeCursor *self) { + TreeCursorEntry *last_entry = array_back(&self->stack); + if (ts_subtree_child_count(*last_entry->subtree) == 0) { + return (CursorChildIterator) {NULL_SUBTREE, self->tree, length_zero(), 0, 0, 0, NULL}; + } + const t_symbol *alias_sequence = ts_language_alias_sequence( + self->tree->language, + last_entry->subtree->ptr->production_id + ); + + uint32_t descendant_index = last_entry->descendant_index; + if (ts_tree_cursor_is_entry_visible(self, self->stack.size - 1)) { + descendant_index += 1; + } + + return (CursorChildIterator) { + .tree = self->tree, + .parent = *last_entry->subtree, + .position = last_entry->position, + .child_index = 0, + .structural_child_index = 0, + .descendant_index = descendant_index, + .alias_sequence = alias_sequence, + }; +} + +static inline bool ts_tree_cursor_child_iterator_next( + CursorChildIterator *self, + TreeCursorEntry *result, + bool *visible +) { + if (!self->parent.ptr || self->child_index == self->parent.ptr->child_count) return false; + const Subtree *child = &ts_subtree_children(self->parent)[self->child_index]; + *result = (TreeCursorEntry) { + .subtree = child, + .position = self->position, + .child_index = self->child_index, + .structural_child_index = self->structural_child_index, + .descendant_index = self->descendant_index, + }; + *visible = ts_subtree_visible(*child); + bool extra = ts_subtree_extra(*child); + if (!extra) { + if (self->alias_sequence) { + *visible |= self->alias_sequence[self->structural_child_index]; + } + self->structural_child_index++; + } + + self->descendant_index += ts_subtree_visible_descendant_count(*child); + if (*visible) { + self->descendant_index += 1; + } + + self->position = length_add(self->position, ts_subtree_size(*child)); + self->child_index++; + + if (self->child_index < self->parent.ptr->child_count) { + Subtree next_child = ts_subtree_children(self->parent)[self->child_index]; + self->position = length_add(self->position, ts_subtree_padding(next_child)); + } + + return true; +} + +// Return a position that, when `b` is added to it, yields `a`. This +// can only be computed if `b` has zero rows. Otherwise, this function +// returns `LENGTH_UNDEFINED`, and the caller needs to recompute +// the position some other way. +static inline Length length_backtrack(Length a, Length b) { + if (length_is_undefined(a) || b.extent.row != 0) { + return LENGTH_UNDEFINED; + } + + Length result; + result.bytes = a.bytes - b.bytes; + result.extent.row = a.extent.row; + result.extent.column = a.extent.column - b.extent.column; + return result; +} + +static inline bool ts_tree_cursor_child_iterator_previous( + CursorChildIterator *self, + TreeCursorEntry *result, + bool *visible +) { + // this is mostly a reverse `ts_tree_cursor_child_iterator_next` taking into + // account unsigned underflow + if (!self->parent.ptr || (int8_t)self->child_index == -1) return false; + const Subtree *child = &ts_subtree_children(self->parent)[self->child_index]; + *result = (TreeCursorEntry) { + .subtree = child, + .position = self->position, + .child_index = self->child_index, + .structural_child_index = self->structural_child_index, + }; + *visible = ts_subtree_visible(*child); + bool extra = ts_subtree_extra(*child); + if (!extra && self->alias_sequence) { + *visible |= self->alias_sequence[self->structural_child_index]; + self->structural_child_index--; + } + + self->position = length_backtrack(self->position, ts_subtree_padding(*child)); + self->child_index--; + + // unsigned can underflow so compare it to child_count + if (self->child_index < self->parent.ptr->child_count) { + Subtree previous_child = ts_subtree_children(self->parent)[self->child_index]; + Length size = ts_subtree_size(previous_child); + self->position = length_backtrack(self->position, size); + } + + return true; +} + +// TSTreeCursor - lifecycle + +t_tree_cursor ts_tree_cursor_new(t_parse_node node) { + t_tree_cursor self = {NULL, NULL, {0, 0, 0}}; + ts_tree_cursor_init((TreeCursor *)&self, node); + return self; +} + +void ts_tree_cursor_reset(t_tree_cursor *_self, t_parse_node node) { + ts_tree_cursor_init((TreeCursor *)_self, node); +} + +void ts_tree_cursor_init(TreeCursor *self, t_parse_node node) { + self->tree = node.tree; + self->root_alias_symbol = node.context[3]; + array_clear(&self->stack); + array_push(&self->stack, ((TreeCursorEntry) { + .subtree = (const Subtree *)node.id, + .position = { + ts_node_start_byte(node), + ts_node_start_point(node) + }, + .child_index = 0, + .structural_child_index = 0, + .descendant_index = 0, + })); +} + +void ts_tree_cursor_delete(t_tree_cursor *_self) { + TreeCursor *self = (TreeCursor *)_self; + array_delete(&self->stack); +} + +// TSTreeCursor - walking the tree + +TreeCursorStep ts_tree_cursor_goto_first_child_internal(t_tree_cursor *_self) { + TreeCursor *self = (TreeCursor *)_self; + bool visible; + TreeCursorEntry entry; + CursorChildIterator iterator = ts_tree_cursor_iterate_children(self); + while (ts_tree_cursor_child_iterator_next(&iterator, &entry, &visible)) { + if (visible) { + array_push(&self->stack, entry); + return TreeCursorStepVisible; + } + if (ts_subtree_visible_child_count(*entry.subtree) > 0) { + array_push(&self->stack, entry); + return TreeCursorStepHidden; + } + } + return TreeCursorStepNone; +} + +bool ts_tree_cursor_goto_first_child(t_tree_cursor *self) { + for (;;) { + switch (ts_tree_cursor_goto_first_child_internal(self)) { + case TreeCursorStepHidden: + continue; + case TreeCursorStepVisible: + return true; + default: + return false; + } + } + return false; +} + +TreeCursorStep ts_tree_cursor_goto_last_child_internal(t_tree_cursor *_self) { + TreeCursor *self = (TreeCursor *)_self; + bool visible; + TreeCursorEntry entry; + CursorChildIterator iterator = ts_tree_cursor_iterate_children(self); + if (!iterator.parent.ptr || iterator.parent.ptr->child_count == 0) return TreeCursorStepNone; + + TreeCursorEntry last_entry = {0}; + TreeCursorStep last_step = TreeCursorStepNone; + while (ts_tree_cursor_child_iterator_next(&iterator, &entry, &visible)) { + if (visible) { + last_entry = entry; + last_step = TreeCursorStepVisible; + } + else if (ts_subtree_visible_child_count(*entry.subtree) > 0) { + last_entry = entry; + last_step = TreeCursorStepHidden; + } + } + if (last_entry.subtree) { + array_push(&self->stack, last_entry); + return last_step; + } + + return TreeCursorStepNone; +} + +bool ts_tree_cursor_goto_last_child(t_tree_cursor *self) { + for (;;) { + switch (ts_tree_cursor_goto_last_child_internal(self)) { + case TreeCursorStepHidden: + continue; + case TreeCursorStepVisible: + return true; + default: + return false; + } + } + return false; +} + +static inline int64_t ts_tree_cursor_goto_first_child_for_byte_and_point( + t_tree_cursor *_self, + uint32_t goal_byte, + t_point goal_point +) { + TreeCursor *self = (TreeCursor *)_self; + uint32_t initial_size = self->stack.size; + uint32_t visible_child_index = 0; + + bool did_descend; + do { + did_descend = false; + + bool visible; + TreeCursorEntry entry; + CursorChildIterator iterator = ts_tree_cursor_iterate_children(self); + while (ts_tree_cursor_child_iterator_next(&iterator, &entry, &visible)) { + Length entry_end = length_add(entry.position, ts_subtree_size(*entry.subtree)); + bool at_goal = entry_end.bytes >= goal_byte && point_gte(entry_end.extent, goal_point); + uint32_t visible_child_count = ts_subtree_visible_child_count(*entry.subtree); + if (at_goal) { + if (visible) { + array_push(&self->stack, entry); + return visible_child_index; + } + if (visible_child_count > 0) { + array_push(&self->stack, entry); + did_descend = true; + break; + } + } else if (visible) { + visible_child_index++; + } else { + visible_child_index += visible_child_count; + } + } + } while (did_descend); + + self->stack.size = initial_size; + return -1; +} + +int64_t ts_tree_cursor_goto_first_child_for_byte(t_tree_cursor *self, uint32_t goal_byte) { + return ts_tree_cursor_goto_first_child_for_byte_and_point(self, goal_byte, POINT_ZERO); +} + +int64_t ts_tree_cursor_goto_first_child_for_point(t_tree_cursor *self, t_point goal_point) { + return ts_tree_cursor_goto_first_child_for_byte_and_point(self, 0, goal_point); +} + +TreeCursorStep ts_tree_cursor_goto_sibling_internal( + t_tree_cursor *_self, + bool (*advance)(CursorChildIterator *, TreeCursorEntry *, bool *)) { + TreeCursor *self = (TreeCursor *)_self; + uint32_t initial_size = self->stack.size; + + while (self->stack.size > 1) { + TreeCursorEntry entry = array_pop(&self->stack); + CursorChildIterator iterator = ts_tree_cursor_iterate_children(self); + iterator.child_index = entry.child_index; + iterator.structural_child_index = entry.structural_child_index; + iterator.position = entry.position; + iterator.descendant_index = entry.descendant_index; + + bool visible = false; + advance(&iterator, &entry, &visible); + if (visible && self->stack.size + 1 < initial_size) break; + + while (advance(&iterator, &entry, &visible)) { + if (visible) { + array_push(&self->stack, entry); + return TreeCursorStepVisible; + } + + if (ts_subtree_visible_child_count(*entry.subtree)) { + array_push(&self->stack, entry); + return TreeCursorStepHidden; + } + } + } + + self->stack.size = initial_size; + return TreeCursorStepNone; +} + +TreeCursorStep ts_tree_cursor_goto_next_sibling_internal(t_tree_cursor *_self) { + return ts_tree_cursor_goto_sibling_internal(_self, ts_tree_cursor_child_iterator_next); +} + +bool ts_tree_cursor_goto_next_sibling(t_tree_cursor *self) { + switch (ts_tree_cursor_goto_next_sibling_internal(self)) { + case TreeCursorStepHidden: + ts_tree_cursor_goto_first_child(self); + return true; + case TreeCursorStepVisible: + return true; + default: + return false; + } +} + +TreeCursorStep ts_tree_cursor_goto_previous_sibling_internal(t_tree_cursor *_self) { + // since subtracting across row loses column information, we may have to + // restore it + TreeCursor *self = (TreeCursor *)_self; + + // for that, save current position before traversing + TreeCursorStep step = ts_tree_cursor_goto_sibling_internal( + _self, ts_tree_cursor_child_iterator_previous); + if (step == TreeCursorStepNone) + return step; + + // if length is already valid, there's no need to recompute it + if (!length_is_undefined(array_back(&self->stack)->position)) + return step; + + // restore position from the parent node + const TreeCursorEntry *parent = &self->stack.contents[self->stack.size - 2]; + Length position = parent->position; + uint32_t child_index = array_back(&self->stack)->child_index; + const Subtree *children = ts_subtree_children((*(parent->subtree))); + + if (child_index > 0) { + // skip first child padding since its position should match the position of the parent + position = length_add(position, ts_subtree_size(children[0])); + for (uint32_t i = 1; i < child_index; ++i) { + position = length_add(position, ts_subtree_total_size(children[i])); + } + position = length_add(position, ts_subtree_padding(children[child_index])); + } + + array_back(&self->stack)->position = position; + + return step; +} + +bool ts_tree_cursor_goto_previous_sibling(t_tree_cursor *self) { + switch (ts_tree_cursor_goto_previous_sibling_internal(self)) { + case TreeCursorStepHidden: + ts_tree_cursor_goto_last_child(self); + return true; + case TreeCursorStepVisible: + return true; + default: + return false; + } +} + +bool ts_tree_cursor_goto_parent(t_tree_cursor *_self) { + TreeCursor *self = (TreeCursor *)_self; + for (unsigned i = self->stack.size - 2; i + 1 > 0; i--) { + if (ts_tree_cursor_is_entry_visible(self, i)) { + self->stack.size = i + 1; + return true; + } + } + return false; +} + +void ts_tree_cursor_goto_descendant( + t_tree_cursor *_self, + uint32_t goal_descendant_index +) { + TreeCursor *self = (TreeCursor *)_self; + + // Ascend to the lowest ancestor that contains the goal node. + for (;;) { + uint32_t i = self->stack.size - 1; + TreeCursorEntry *entry = &self->stack.contents[i]; + uint32_t next_descendant_index = + entry->descendant_index + + (ts_tree_cursor_is_entry_visible(self, i) ? 1 : 0) + + ts_subtree_visible_descendant_count(*entry->subtree); + if ( + (entry->descendant_index <= goal_descendant_index) && + (next_descendant_index > goal_descendant_index) + ) { + break; + } else if (self->stack.size <= 1) { + return; + } else { + self->stack.size--; + } + } + + // Descend to the goal node. + bool did_descend = true; + do { + did_descend = false; + bool visible; + TreeCursorEntry entry; + CursorChildIterator iterator = ts_tree_cursor_iterate_children(self); + if (iterator.descendant_index > goal_descendant_index) { + return; + } + + while (ts_tree_cursor_child_iterator_next(&iterator, &entry, &visible)) { + if (iterator.descendant_index > goal_descendant_index) { + array_push(&self->stack, entry); + if (visible && entry.descendant_index == goal_descendant_index) { + return; + } else { + did_descend = true; + break; + } + } + } + } while (did_descend); +} + +uint32_t ts_tree_cursor_current_descendant_index(const t_tree_cursor *_self) { + const TreeCursor *self = (const TreeCursor *)_self; + TreeCursorEntry *last_entry = array_back(&self->stack); + return last_entry->descendant_index; +} + +t_parse_node ts_tree_cursor_current_node(const t_tree_cursor *_self) { + const TreeCursor *self = (const TreeCursor *)_self; + TreeCursorEntry *last_entry = array_back(&self->stack); + t_symbol alias_symbol = self->root_alias_symbol; + if (self->stack.size > 1 && !ts_subtree_extra(*last_entry->subtree)) { + TreeCursorEntry *parent_entry = &self->stack.contents[self->stack.size - 2]; + alias_symbol = ts_language_alias_at( + self->tree->language, + parent_entry->subtree->ptr->production_id, + last_entry->structural_child_index + ); + } + return ts_node_new( + self->tree, + last_entry->subtree, + last_entry->position, + alias_symbol + ); +} + +// Private - Get various facts about the current node that are needed +// when executing tree queries. +void ts_tree_cursor_current_status( + const t_tree_cursor *_self, + t_field_id *field_id, + bool *has_later_siblings, + bool *has_later_named_siblings, + bool *can_have_later_siblings_with_this_field, + t_symbol *supertypes, + unsigned *supertype_count +) { + const TreeCursor *self = (const TreeCursor *)_self; + unsigned max_supertypes = *supertype_count; + *field_id = 0; + *supertype_count = 0; + *has_later_siblings = false; + *has_later_named_siblings = false; + *can_have_later_siblings_with_this_field = false; + + // Walk up the tree, visiting the current node and its invisible ancestors, + // because fields can refer to nodes through invisible *wrapper* nodes, + for (unsigned i = self->stack.size - 1; i > 0; i--) { + TreeCursorEntry *entry = &self->stack.contents[i]; + TreeCursorEntry *parent_entry = &self->stack.contents[i - 1]; + + const t_symbol *alias_sequence = ts_language_alias_sequence( + self->tree->language, + parent_entry->subtree->ptr->production_id + ); + + #define subtree_symbol(subtree, structural_child_index) \ + (( \ + !ts_subtree_extra(subtree) && \ + alias_sequence && \ + alias_sequence[structural_child_index] \ + ) ? \ + alias_sequence[structural_child_index] : \ + ts_subtree_symbol(subtree)) + + // Stop walking up when a visible ancestor is found. + t_symbol entry_symbol = subtree_symbol( + *entry->subtree, + entry->structural_child_index + ); + TSSymbolMetadata entry_metadata = ts_language_symbol_metadata( + self->tree->language, + entry_symbol + ); + if (i != self->stack.size - 1 && entry_metadata.visible) break; + + // Record any supertypes + if (entry_metadata.supertype && *supertype_count < max_supertypes) { + supertypes[*supertype_count] = entry_symbol; + (*supertype_count)++; + } + + // Determine if the current node has later siblings. + if (!*has_later_siblings) { + unsigned sibling_count = parent_entry->subtree->ptr->child_count; + unsigned structural_child_index = entry->structural_child_index; + if (!ts_subtree_extra(*entry->subtree)) structural_child_index++; + for (unsigned j = entry->child_index + 1; j < sibling_count; j++) { + Subtree sibling = ts_subtree_children(*parent_entry->subtree)[j]; + TSSymbolMetadata sibling_metadata = ts_language_symbol_metadata( + self->tree->language, + subtree_symbol(sibling, structural_child_index) + ); + if (sibling_metadata.visible) { + *has_later_siblings = true; + if (*has_later_named_siblings) break; + if (sibling_metadata.named) { + *has_later_named_siblings = true; + break; + } + } else if (ts_subtree_visible_child_count(sibling) > 0) { + *has_later_siblings = true; + if (*has_later_named_siblings) break; + if (sibling.ptr->named_child_count > 0) { + *has_later_named_siblings = true; + break; + } + } + if (!ts_subtree_extra(sibling)) structural_child_index++; + } + } + + #undef subtree_symbol + + if (!ts_subtree_extra(*entry->subtree)) { + const TSFieldMapEntry *field_map, *field_map_end; + ts_language_field_map( + self->tree->language, + parent_entry->subtree->ptr->production_id, + &field_map, &field_map_end + ); + + // Look for a field name associated with the current node. + if (!*field_id) { + for (const TSFieldMapEntry *map = field_map; map < field_map_end; map++) { + if (!map->inherited && map->child_index == entry->structural_child_index) { + *field_id = map->field_id; + break; + } + } + } + + // Determine if the current node can have later siblings with the same field name. + if (*field_id) { + for (const TSFieldMapEntry *map = field_map; map < field_map_end; map++) { + if ( + map->field_id == *field_id && + map->child_index > entry->structural_child_index + ) { + *can_have_later_siblings_with_this_field = true; + break; + } + } + } + } + } +} + +uint32_t ts_tree_cursor_current_depth(const t_tree_cursor *_self) { + const TreeCursor *self = (const TreeCursor *)_self; + uint32_t depth = 0; + for (unsigned i = 1; i < self->stack.size; i++) { + if (ts_tree_cursor_is_entry_visible(self, i)) { + depth++; + } + } + return depth; +} + +t_parse_node ts_tree_cursor_parent_node(const t_tree_cursor *_self) { + const TreeCursor *self = (const TreeCursor *)_self; + for (int i = (int)self->stack.size - 2; i >= 0; i--) { + TreeCursorEntry *entry = &self->stack.contents[i]; + bool is_visible = true; + t_symbol alias_symbol = 0; + if (i > 0) { + TreeCursorEntry *parent_entry = &self->stack.contents[i - 1]; + alias_symbol = ts_language_alias_at( + self->tree->language, + parent_entry->subtree->ptr->production_id, + entry->structural_child_index + ); + is_visible = (alias_symbol != 0) || ts_subtree_visible(*entry->subtree); + } + if (is_visible) { + return ts_node_new( + self->tree, + entry->subtree, + entry->position, + alias_symbol + ); + } + } + return ts_node_new(NULL, NULL, length_zero(), 0); +} + +t_field_id ts_tree_cursor_current_field_id(const t_tree_cursor *_self) { + const TreeCursor *self = (const TreeCursor *)_self; + + // Walk up the tree, visiting the current node and its invisible ancestors. + for (unsigned i = self->stack.size - 1; i > 0; i--) { + TreeCursorEntry *entry = &self->stack.contents[i]; + TreeCursorEntry *parent_entry = &self->stack.contents[i - 1]; + + // Stop walking up when another visible node is found. + if ( + i != self->stack.size - 1 && + ts_tree_cursor_is_entry_visible(self, i) + ) break; + + if (ts_subtree_extra(*entry->subtree)) break; + + const TSFieldMapEntry *field_map, *field_map_end; + ts_language_field_map( + self->tree->language, + parent_entry->subtree->ptr->production_id, + &field_map, &field_map_end + ); + for (const TSFieldMapEntry *map = field_map; map < field_map_end; map++) { + if (!map->inherited && map->child_index == entry->structural_child_index) { + return map->field_id; + } + } + } + return 0; +} + +const char *ts_tree_cursor_current_field_name(const t_tree_cursor *_self) { + t_field_id id = ts_tree_cursor_current_field_id(_self); + if (id) { + const TreeCursor *self = (const TreeCursor *)_self; + return self->tree->language->field_names[id]; + } else { + return NULL; + } +} + +t_tree_cursor ts_tree_cursor_copy(const t_tree_cursor *_cursor) { + const TreeCursor *cursor = (const TreeCursor *)_cursor; + t_tree_cursor res = {NULL, NULL, {0, 0}}; + TreeCursor *copy = (TreeCursor *)&res; + copy->tree = cursor->tree; + copy->root_alias_symbol = cursor->root_alias_symbol; + array_init(©->stack); + array_push_all(©->stack, &cursor->stack); + return res; +} + +void ts_tree_cursor_reset_to(t_tree_cursor *_dst, const t_tree_cursor *_src) { + const TreeCursor *cursor = (const TreeCursor *)_src; + TreeCursor *copy = (TreeCursor *)_dst; + copy->tree = cursor->tree; + copy->root_alias_symbol = cursor->root_alias_symbol; + array_clear(©->stack); + array_push_all(©->stack, &cursor->stack); +} diff --git a/parser/src/api.h b/parser/src/api.h index deb2364e..d423b229 100644 --- a/parser/src/api.h +++ b/parser/src/api.h @@ -7,10 +7,6 @@ #endif #endif -#ifdef __cplusplus -extern "C" { -#endif - #include #include #include @@ -38,108 +34,108 @@ extern "C" { /* Section - Types */ /*******************/ -typedef uint16_t TSStateId; -typedef uint16_t TSSymbol; -typedef uint16_t TSFieldId; -typedef struct TSLanguage TSLanguage; -typedef struct TSParser TSParser; -typedef struct TSTree TSTree; -typedef struct TSQuery TSQuery; -typedef struct TSQueryCursor TSQueryCursor; -typedef struct TSLookaheadIterator TSLookaheadIterator; +typedef uint16_t t_state_id; +typedef uint16_t t_symbol; +typedef uint16_t t_field_id; +typedef struct t_language t_language; +typedef struct t_parser t_parser; +typedef struct t_tree t_tree; +typedef struct t_query t_query; +typedef struct t_query_cursor t_query_cursor; +typedef struct t_lookahead_iterator t_lookahead_iterator; -typedef enum TSInputEncoding { +typedef enum t_input_encoding { TSInputEncodingUTF8, TSInputEncodingUTF16, -} TSInputEncoding; +} t_input_encoding; -typedef enum TSSymbolType { +typedef enum t_symbol_type { TSSymbolTypeRegular, TSSymbolTypeAnonymous, TSSymbolTypeAuxiliary, -} TSSymbolType; +} t_symbol_type; -typedef struct TSPoint { +typedef struct t_point { uint32_t row; uint32_t column; -} TSPoint; +} t_point; -typedef struct TSRange { - TSPoint start_point; - TSPoint end_point; +typedef struct t_range { + t_point start_point; + t_point end_point; uint32_t start_byte; uint32_t end_byte; -} TSRange; +} t_range; -typedef struct TSInput { +typedef struct t_input { void *payload; - const char *(*read)(void *payload, uint32_t byte_index, TSPoint position, uint32_t *bytes_read); - TSInputEncoding encoding; -} TSInput; + const char *(*read)(void *payload, uint32_t byte_index, t_point position, uint32_t *bytes_read); + t_input_encoding encoding; +} t_input; -typedef enum TSLogType { +typedef enum t_log_type { TSLogTypeParse, TSLogTypeLex, -} TSLogType; +} t_log_type; -typedef struct TSLogger { +typedef struct t_logger { void *payload; - void (*log)(void *payload, TSLogType log_type, const char *buffer); -} TSLogger; + void (*log)(void *payload, t_log_type log_type, const char *buffer); +} t_logger; -typedef struct TSInputEdit { +typedef struct t_input_edit { uint32_t start_byte; uint32_t old_end_byte; uint32_t new_end_byte; - TSPoint start_point; - TSPoint old_end_point; - TSPoint new_end_point; -} TSInputEdit; + t_point start_point; + t_point old_end_point; + t_point new_end_point; +} t_input_edit; -typedef struct TSNode { +typedef struct t_parse_node { uint32_t context[4]; const void *id; - const TSTree *tree; -} TSNode; + const t_tree *tree; +} t_parse_node; -typedef struct TSTreeCursor { +typedef struct t_tree_cursor { const void *tree; const void *id; uint32_t context[3]; -} TSTreeCursor; +} t_tree_cursor; -typedef struct TSQueryCapture { - TSNode node; +typedef struct t_query_capture { + t_parse_node node; uint32_t index; -} TSQueryCapture; +} t_query_capture; -typedef enum TSQuantifier { +typedef enum t_quantifier { TSQuantifierZero = 0, // must match the array initialization value TSQuantifierZeroOrOne, TSQuantifierZeroOrMore, TSQuantifierOne, TSQuantifierOneOrMore, -} TSQuantifier; +} t_quantifier; -typedef struct TSQueryMatch { +typedef struct t_query_match { uint32_t id; uint16_t pattern_index; uint16_t capture_count; - const TSQueryCapture *captures; -} TSQueryMatch; + const t_query_capture *captures; +} t_query_match; -typedef enum TSQueryPredicateStepType { +typedef enum t_query_predicate_step_type { TSQueryPredicateStepTypeDone, TSQueryPredicateStepTypeCapture, TSQueryPredicateStepTypeString, -} TSQueryPredicateStepType; +} t_query_predicate_step_type; -typedef struct TSQueryPredicateStep { - TSQueryPredicateStepType type; +typedef struct t_query_predicate_step { + t_query_predicate_step_type type; uint32_t value_id; -} TSQueryPredicateStep; +} t_query_predicate_step; -typedef enum TSQueryError { +typedef enum t_query_error { TSQueryErrorNone = 0, TSQueryErrorSyntax, TSQueryErrorNodeType, @@ -147,7 +143,7 @@ typedef enum TSQueryError { TSQueryErrorCapture, TSQueryErrorStructure, TSQueryErrorLanguage, -} TSQueryError; +} t_query_error; /********************/ /* Section - Parser */ @@ -156,17 +152,17 @@ typedef enum TSQueryError { /** * Create a new parser. */ -TSParser *ts_parser_new(void); +t_parser *ts_parser_new(void); /** * Delete the parser, freeing all of the memory that it used. */ -void ts_parser_delete(TSParser *self); +void ts_parser_delete(t_parser *self); /** * Get the parser's current language. */ -const TSLanguage *ts_parser_language(const TSParser *self); +const t_language *ts_parser_language(const t_parser *self); /** * Set the language that the parser should use for parsing. @@ -178,7 +174,7 @@ const TSLanguage *ts_parser_language(const TSParser *self); * and compare it to this library's [`TREE_SITTER_LANGUAGE_VERSION`] and * [`TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION`] constants. */ -bool ts_parser_set_language(TSParser *self, const TSLanguage *language); +bool ts_parser_set_language(t_parser *self, const t_language *language); /** * Set the ranges of text that the parser should include when parsing. @@ -203,8 +199,8 @@ bool ts_parser_set_language(TSParser *self, const TSLanguage *language); * this function returns `true` */ bool ts_parser_set_included_ranges( - TSParser *self, - const TSRange *ranges, + t_parser *self, + const t_range *ranges, uint32_t count ); @@ -215,8 +211,8 @@ bool ts_parser_set_included_ranges( * or write to it. The length of the array will be written to the given * `count` pointer. */ -const TSRange *ts_parser_included_ranges( - const TSParser *self, +const t_range *ts_parser_included_ranges( + const t_parser *self, uint32_t *count ); @@ -263,10 +259,10 @@ const TSRange *ts_parser_included_ranges( * [`encoding`]: TSInput::encoding * [`bytes_read`]: TSInput::read */ -TSTree *ts_parser_parse( - TSParser *self, - const TSTree *old_tree, - TSInput input +t_tree *ts_parser_parse( + t_parser *self, + const t_tree *old_tree, + t_input input ); /** @@ -275,9 +271,9 @@ TSTree *ts_parser_parse( * above. The second two parameters indicate the location of the buffer and its * length in bytes. */ -TSTree *ts_parser_parse_string( - TSParser *self, - const TSTree *old_tree, +t_tree *ts_parser_parse_string( + t_parser *self, + const t_tree *old_tree, const char *string, uint32_t length ); @@ -288,12 +284,12 @@ TSTree *ts_parser_parse_string( * [`ts_parser_parse_string`] method above. The final parameter indicates whether * the text is encoded as UTF8 or UTF16. */ -TSTree *ts_parser_parse_string_encoding( - TSParser *self, - const TSTree *old_tree, +t_tree *ts_parser_parse_string_encoding( + t_parser *self, + const t_tree *old_tree, const char *string, uint32_t length, - TSInputEncoding encoding + t_input_encoding encoding ); /** @@ -305,7 +301,7 @@ TSTree *ts_parser_parse_string_encoding( * and instead intend to use this parser to parse some other document, you must * call [`ts_parser_reset`] first. */ -void ts_parser_reset(TSParser *self); +void ts_parser_reset(t_parser *self); /** * Set the maximum duration in microseconds that parsing should be allowed to @@ -314,12 +310,12 @@ void ts_parser_reset(TSParser *self); * If parsing takes longer than this, it will halt early, returning NULL. * See [`ts_parser_parse`] for more information. */ -void ts_parser_set_timeout_micros(TSParser *self, uint64_t timeout_micros); +void ts_parser_set_timeout_micros(t_parser *self, uint64_t timeout_micros); /** * Get the duration in microseconds that parsing is allowed to take. */ -uint64_t ts_parser_timeout_micros(const TSParser *self); +uint64_t ts_parser_timeout_micros(const t_parser *self); /** * Set the parser's current cancellation flag pointer. @@ -328,12 +324,12 @@ uint64_t ts_parser_timeout_micros(const TSParser *self); * from this pointer during parsing. If it reads a non-zero value, it will * halt early, returning NULL. See [`ts_parser_parse`] for more information. */ -void ts_parser_set_cancellation_flag(TSParser *self, const size_t *flag); +void ts_parser_set_cancellation_flag(t_parser *self, const size_t *flag); /** * Get the parser's current cancellation flag pointer. */ -const size_t *ts_parser_cancellation_flag(const TSParser *self); +const size_t *ts_parser_cancellation_flag(const t_parser *self); /** * Set the logger that a parser should use during parsing. @@ -342,12 +338,12 @@ const size_t *ts_parser_cancellation_flag(const TSParser *self); * previously assigned, the caller is responsible for releasing any memory * owned by the previous logger. */ -void ts_parser_set_logger(TSParser *self, TSLogger logger); +void ts_parser_set_logger(t_parser *self, t_logger logger); /** * Get the parser's current logger. */ -TSLogger ts_parser_logger(const TSParser *self); +t_logger ts_parser_logger(const t_parser *self); /** * Set the file descriptor to which the parser should write debugging graphs @@ -355,7 +351,7 @@ TSLogger ts_parser_logger(const TSParser *self); * to pipe these graphs directly to a `dot(1)` process in order to generate * SVG output. You can turn off this logging by passing a negative number. */ -void ts_parser_print_dot_graphs(TSParser *self, int fd); +void ts_parser_print_dot_graphs(t_parser *self, int fd); /******************/ /* Section - Tree */ @@ -367,39 +363,39 @@ void ts_parser_print_dot_graphs(TSParser *self, int fd); * You need to copy a syntax tree in order to use it on more than one thread at * a time, as syntax trees are not thread safe. */ -TSTree *ts_tree_copy(const TSTree *self); +t_tree *ts_tree_copy(const t_tree *self); /** * Delete the syntax tree, freeing all of the memory that it used. */ -void ts_tree_delete(TSTree *self); +void ts_tree_delete(t_tree *self); /** * Get the root node of the syntax tree. */ -TSNode ts_tree_root_node(const TSTree *self); +t_parse_node ts_tree_root_node(const t_tree *self); /** * Get the root node of the syntax tree, but with its position * shifted forward by the given offset. */ -TSNode ts_tree_root_node_with_offset( - const TSTree *self, +t_parse_node ts_tree_root_node_with_offset( + const t_tree *self, uint32_t offset_bytes, - TSPoint offset_extent + t_point offset_extent ); /** * Get the language that was used to parse the syntax tree. */ -const TSLanguage *ts_tree_language(const TSTree *self); +const t_language *ts_tree_language(const t_tree *self); /** * Get the array of included ranges that was used to parse the syntax tree. * * The returned pointer must be freed by the caller. */ -TSRange *ts_tree_included_ranges(const TSTree *self, uint32_t *length); +t_range *ts_tree_included_ranges(const t_tree *self, uint32_t *length); /** * Edit the syntax tree to keep it in sync with source code that has been @@ -408,7 +404,7 @@ TSRange *ts_tree_included_ranges(const TSTree *self, uint32_t *length); * You must describe the edit both in terms of byte offsets and in terms of * (row, column) coordinates. */ -void ts_tree_edit(TSTree *self, const TSInputEdit *edit); +void ts_tree_edit(t_tree *self, const t_input_edit *edit); /** * Compare an old edited syntax tree to a new syntax tree representing the same @@ -424,16 +420,16 @@ void ts_tree_edit(TSTree *self, const TSInputEdit *edit); * for freeing it using `free`. The length of the array will be written to the * given `length` pointer. */ -TSRange *ts_tree_get_changed_ranges( - const TSTree *old_tree, - const TSTree *new_tree, +t_range *ts_tree_get_changed_ranges( + const t_tree *old_tree, + const t_tree *new_tree, uint32_t *length ); /** * Write a DOT graph describing the syntax tree to the given file. */ -void ts_tree_print_dot_graph(const TSTree *self, int file_descriptor); +void ts_tree_print_dot_graph(const t_tree *self, int file_descriptor); /******************/ /* Section - Node */ @@ -442,50 +438,50 @@ void ts_tree_print_dot_graph(const TSTree *self, int file_descriptor); /** * Get the node's type as a null-terminated string. */ -const char *ts_node_type(TSNode self); +const char *ts_node_type(t_parse_node self); /** * Get the node's type as a numerical id. */ -TSSymbol ts_node_symbol(TSNode self); +t_symbol ts_node_symbol(t_parse_node self); /** * Get the node's language. */ -const TSLanguage *ts_node_language(TSNode self); +const t_language *ts_node_language(t_parse_node self); /** * Get the node's type as it appears in the grammar ignoring aliases as a * null-terminated string. */ -const char *ts_node_grammar_type(TSNode self); +const char *ts_node_grammar_type(t_parse_node self); /** * Get the node's type as a numerical id as it appears in the grammar ignoring * aliases. This should be used in [`ts_language_next_state`] instead of * [`ts_node_symbol`]. */ -TSSymbol ts_node_grammar_symbol(TSNode self); +t_symbol ts_node_grammar_symbol(t_parse_node self); /** * Get the node's start byte. */ -uint32_t ts_node_start_byte(TSNode self); +uint32_t ts_node_start_byte(t_parse_node self); /** * Get the node's start position in terms of rows and columns. */ -TSPoint ts_node_start_point(TSNode self); +t_point ts_node_start_point(t_parse_node self); /** * Get the node's end byte. */ -uint32_t ts_node_end_byte(TSNode self); +uint32_t ts_node_end_byte(t_parse_node self); /** * Get the node's end position in terms of rows and columns. */ -TSPoint ts_node_end_point(TSNode self); +t_point ts_node_end_point(t_parse_node self); /** * Get an S-expression representing the node as a string. @@ -493,107 +489,107 @@ TSPoint ts_node_end_point(TSNode self); * This string is allocated with `malloc` and the caller is responsible for * freeing it using `free`. */ -char *ts_node_string(TSNode self); +char *ts_node_string(t_parse_node self); /** * Check if the node is null. Functions like [`ts_node_child`] and * [`ts_node_next_sibling`] will return a null node to indicate that no such node * was found. */ -bool ts_node_is_null(TSNode self); +bool ts_node_is_null(t_parse_node self); /** * Check if the node is *named*. Named nodes correspond to named rules in the * grammar, whereas *anonymous* nodes correspond to string literals in the * grammar. */ -bool ts_node_is_named(TSNode self); +bool ts_node_is_named(t_parse_node self); /** * Check if the node is *missing*. Missing nodes are inserted by the parser in * order to recover from certain kinds of syntax errors. */ -bool ts_node_is_missing(TSNode self); +bool ts_node_is_missing(t_parse_node self); /** * Check if the node is *extra*. Extra nodes represent things like comments, * which are not required the grammar, but can appear anywhere. */ -bool ts_node_is_extra(TSNode self); +bool ts_node_is_extra(t_parse_node self); /** * Check if a syntax node has been edited. */ -bool ts_node_has_changes(TSNode self); +bool ts_node_has_changes(t_parse_node self); /** * Check if the node is a syntax error or contains any syntax errors. */ -bool ts_node_has_error(TSNode self); +bool ts_node_has_error(t_parse_node self); /** * Check if the node is a syntax error. */ -bool ts_node_is_error(TSNode self); +bool ts_node_is_error(t_parse_node self); /** * Get this node's parse state. */ -TSStateId ts_node_parse_state(TSNode self); +t_state_id ts_node_parse_state(t_parse_node self); /** * Get the parse state after this node. */ -TSStateId ts_node_next_parse_state(TSNode self); +t_state_id ts_node_next_parse_state(t_parse_node self); /** * Get the node's immediate parent. * Prefer [`ts_node_child_containing_descendant`] for * iterating over the node's ancestors. */ -TSNode ts_node_parent(TSNode self); +t_parse_node ts_node_parent(t_parse_node self); /** * Get the node's child that contains `descendant`. */ -TSNode ts_node_child_containing_descendant(TSNode self, TSNode descendant); +t_parse_node ts_node_child_containing_descendant(t_parse_node self, t_parse_node descendant); /** * Get the node's child at the given index, where zero represents the first * child. */ -TSNode ts_node_child(TSNode self, uint32_t child_index); +t_parse_node ts_node_child(t_parse_node self, uint32_t child_index); /** * Get the field name for node's child at the given index, where zero represents * the first child. Returns NULL, if no field is found. */ -const char *ts_node_field_name_for_child(TSNode self, uint32_t child_index); +const char *ts_node_field_name_for_child(t_parse_node self, uint32_t child_index); /** * Get the node's number of children. */ -uint32_t ts_node_child_count(TSNode self); +uint32_t ts_node_child_count(t_parse_node self); /** * Get the node's *named* child at the given index. * * See also [`ts_node_is_named`]. */ -TSNode ts_node_named_child(TSNode self, uint32_t child_index); +t_parse_node ts_node_named_child(t_parse_node self, uint32_t child_index); /** * Get the node's number of *named* children. * * See also [`ts_node_is_named`]. */ -uint32_t ts_node_named_child_count(TSNode self); +uint32_t ts_node_named_child_count(t_parse_node self); /** * Get the node's child with the given field name. */ -TSNode ts_node_child_by_field_name( - TSNode self, +t_parse_node ts_node_child_by_field_name( + t_parse_node self, const char *name, uint32_t name_length ); @@ -604,48 +600,48 @@ TSNode ts_node_child_by_field_name( * You can convert a field name to an id using the * [`ts_language_field_id_for_name`] function. */ -TSNode ts_node_child_by_field_id(TSNode self, TSFieldId field_id); +t_parse_node ts_node_child_by_field_id(t_parse_node self, t_field_id field_id); /** * Get the node's next / previous sibling. */ -TSNode ts_node_next_sibling(TSNode self); -TSNode ts_node_prev_sibling(TSNode self); +t_parse_node ts_node_next_sibling(t_parse_node self); +t_parse_node ts_node_prev_sibling(t_parse_node self); /** * Get the node's next / previous *named* sibling. */ -TSNode ts_node_next_named_sibling(TSNode self); -TSNode ts_node_prev_named_sibling(TSNode self); +t_parse_node ts_node_next_named_sibling(t_parse_node self); +t_parse_node ts_node_prev_named_sibling(t_parse_node self); /** * Get the node's first child that extends beyond the given byte offset. */ -TSNode ts_node_first_child_for_byte(TSNode self, uint32_t byte); +t_parse_node ts_node_first_child_for_byte(t_parse_node self, uint32_t byte); /** * Get the node's first named child that extends beyond the given byte offset. */ -TSNode ts_node_first_named_child_for_byte(TSNode self, uint32_t byte); +t_parse_node ts_node_first_named_child_for_byte(t_parse_node self, uint32_t byte); /** * Get the node's number of descendants, including one for the node itself. */ -uint32_t ts_node_descendant_count(TSNode self); +uint32_t ts_node_descendant_count(t_parse_node self); /** * Get the smallest node within this node that spans the given range of bytes * or (row, column) positions. */ -TSNode ts_node_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end); -TSNode ts_node_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end); +t_parse_node ts_node_descendant_for_byte_range(t_parse_node self, uint32_t start, uint32_t end); +t_parse_node ts_node_descendant_for_point_range(t_parse_node self, t_point start, t_point end); /** * Get the smallest named node within this node that spans the given range of * bytes or (row, column) positions. */ -TSNode ts_node_named_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end); -TSNode ts_node_named_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end); +t_parse_node ts_node_named_descendant_for_byte_range(t_parse_node self, uint32_t start, uint32_t end); +t_parse_node ts_node_named_descendant_for_point_range(t_parse_node self, t_point start, t_point end); /** * Edit the node to keep it in-sync with source code that has been edited. @@ -656,12 +652,12 @@ TSNode ts_node_named_descendant_for_point_range(TSNode self, TSPoint start, TSPo * when you have a [`TSNode`] instance that you want to keep and continue to use * after an edit. */ -void ts_node_edit(TSNode *self, const TSInputEdit *edit); +void ts_node_edit(t_parse_node *self, const t_input_edit *edit); /** * Check if two nodes are identical. */ -bool ts_node_eq(TSNode self, TSNode other); +bool ts_node_eq(t_parse_node self, t_parse_node other); /************************/ /* Section - TreeCursor */ @@ -674,17 +670,17 @@ bool ts_node_eq(TSNode self, TSNode other); * possible using the [`TSNode`] functions. It is a mutable object that is always * on a certain syntax node, and can be moved imperatively to different nodes. */ -TSTreeCursor ts_tree_cursor_new(TSNode node); +t_tree_cursor ts_tree_cursor_new(t_parse_node node); /** * Delete a tree cursor, freeing all of the memory that it used. */ -void ts_tree_cursor_delete(TSTreeCursor *self); +void ts_tree_cursor_delete(t_tree_cursor *self); /** * Re-initialize a tree cursor to start at a different node. */ -void ts_tree_cursor_reset(TSTreeCursor *self, TSNode node); +void ts_tree_cursor_reset(t_tree_cursor *self, t_parse_node node); /** * Re-initialize a tree cursor to the same position as another cursor. @@ -692,12 +688,12 @@ void ts_tree_cursor_reset(TSTreeCursor *self, TSNode node); * Unlike [`ts_tree_cursor_reset`], this will not lose parent information and * allows reusing already created cursors. */ -void ts_tree_cursor_reset_to(TSTreeCursor *dst, const TSTreeCursor *src); +void ts_tree_cursor_reset_to(t_tree_cursor *dst, const t_tree_cursor *src); /** * Get the tree cursor's current node. */ -TSNode ts_tree_cursor_current_node(const TSTreeCursor *self); +t_parse_node ts_tree_cursor_current_node(const t_tree_cursor *self); /** * Get the field name of the tree cursor's current node. @@ -705,7 +701,7 @@ TSNode ts_tree_cursor_current_node(const TSTreeCursor *self); * This returns `NULL` if the current node doesn't have a field. * See also [`ts_node_child_by_field_name`]. */ -const char *ts_tree_cursor_current_field_name(const TSTreeCursor *self); +const char *ts_tree_cursor_current_field_name(const t_tree_cursor *self); /** * Get the field id of the tree cursor's current node. @@ -713,7 +709,7 @@ const char *ts_tree_cursor_current_field_name(const TSTreeCursor *self); * This returns zero if the current node doesn't have a field. * See also [`ts_node_child_by_field_id`], [`ts_language_field_id_for_name`]. */ -TSFieldId ts_tree_cursor_current_field_id(const TSTreeCursor *self); +t_field_id ts_tree_cursor_current_field_id(const t_tree_cursor *self); /** * Move the cursor to the parent of its current node. @@ -721,7 +717,7 @@ TSFieldId ts_tree_cursor_current_field_id(const TSTreeCursor *self); * This returns `true` if the cursor successfully moved, and returns `false` * if there was no parent node (the cursor was already on the root node). */ -bool ts_tree_cursor_goto_parent(TSTreeCursor *self); +bool ts_tree_cursor_goto_parent(t_tree_cursor *self); /** * Move the cursor to the next sibling of its current node. @@ -729,7 +725,7 @@ bool ts_tree_cursor_goto_parent(TSTreeCursor *self); * This returns `true` if the cursor successfully moved, and returns `false` * if there was no next sibling node. */ -bool ts_tree_cursor_goto_next_sibling(TSTreeCursor *self); +bool ts_tree_cursor_goto_next_sibling(t_tree_cursor *self); /** * Move the cursor to the previous sibling of its current node. @@ -742,7 +738,7 @@ bool ts_tree_cursor_goto_next_sibling(TSTreeCursor *self); * the worst case, this will need to iterate through all the children upto the * previous sibling node to recalculate its position. */ -bool ts_tree_cursor_goto_previous_sibling(TSTreeCursor *self); +bool ts_tree_cursor_goto_previous_sibling(t_tree_cursor *self); /** * Move the cursor to the first child of its current node. @@ -750,7 +746,7 @@ bool ts_tree_cursor_goto_previous_sibling(TSTreeCursor *self); * This returns `true` if the cursor successfully moved, and returns `false` * if there were no children. */ -bool ts_tree_cursor_goto_first_child(TSTreeCursor *self); +bool ts_tree_cursor_goto_first_child(t_tree_cursor *self); /** * Move the cursor to the last child of its current node. @@ -762,26 +758,26 @@ bool ts_tree_cursor_goto_first_child(TSTreeCursor *self); * because it needs to iterate through all the children to compute the child's * position. */ -bool ts_tree_cursor_goto_last_child(TSTreeCursor *self); +bool ts_tree_cursor_goto_last_child(t_tree_cursor *self); /** * Move the cursor to the node that is the nth descendant of * the original node that the cursor was constructed with, where * zero represents the original node itself. */ -void ts_tree_cursor_goto_descendant(TSTreeCursor *self, uint32_t goal_descendant_index); +void ts_tree_cursor_goto_descendant(t_tree_cursor *self, uint32_t goal_descendant_index); /** * Get the index of the cursor's current node out of all of the * descendants of the original node that the cursor was constructed with. */ -uint32_t ts_tree_cursor_current_descendant_index(const TSTreeCursor *self); +uint32_t ts_tree_cursor_current_descendant_index(const t_tree_cursor *self); /** * Get the depth of the cursor's current node relative to the original * node that the cursor was constructed with. */ -uint32_t ts_tree_cursor_current_depth(const TSTreeCursor *self); +uint32_t ts_tree_cursor_current_depth(const t_tree_cursor *self); /** * Move the cursor to the first child of its current node that extends beyond @@ -790,10 +786,10 @@ uint32_t ts_tree_cursor_current_depth(const TSTreeCursor *self); * This returns the index of the child node if one was found, and returns -1 * if no such child was found. */ -int64_t ts_tree_cursor_goto_first_child_for_byte(TSTreeCursor *self, uint32_t goal_byte); -int64_t ts_tree_cursor_goto_first_child_for_point(TSTreeCursor *self, TSPoint goal_point); +int64_t ts_tree_cursor_goto_first_child_for_byte(t_tree_cursor *self, uint32_t goal_byte); +int64_t ts_tree_cursor_goto_first_child_for_point(t_tree_cursor *self, t_point goal_point); -TSTreeCursor ts_tree_cursor_copy(const TSTreeCursor *cursor); +t_tree_cursor ts_tree_cursor_copy(const t_tree_cursor *cursor); /*******************/ /* Section - Query */ @@ -810,25 +806,25 @@ TSTreeCursor ts_tree_cursor_copy(const TSTreeCursor *cursor); * 1. The byte offset of the error is written to the `error_offset` parameter. * 2. The type of error is written to the `error_type` parameter. */ -TSQuery *ts_query_new( - const TSLanguage *language, +t_query *ts_query_new( + const t_language *language, const char *source, uint32_t source_len, uint32_t *error_offset, - TSQueryError *error_type + t_query_error *error_type ); /** * Delete a query, freeing all of the memory that it used. */ -void ts_query_delete(TSQuery *self); +void ts_query_delete(t_query *self); /** * Get the number of patterns, captures, or string literals in the query. */ -uint32_t ts_query_pattern_count(const TSQuery *self); -uint32_t ts_query_capture_count(const TSQuery *self); -uint32_t ts_query_string_count(const TSQuery *self); +uint32_t ts_query_pattern_count(const t_query *self); +uint32_t ts_query_capture_count(const t_query *self); +uint32_t ts_query_string_count(const t_query *self); /** * Get the byte offset where the given pattern starts in the query's source. @@ -836,7 +832,7 @@ uint32_t ts_query_string_count(const TSQuery *self); * This can be useful when combining queries by concatenating their source * code strings. */ -uint32_t ts_query_start_byte_for_pattern(const TSQuery *self, uint32_t pattern_index); +uint32_t ts_query_start_byte_for_pattern(const t_query *self, uint32_t pattern_index); /** * Get all of the predicates for the given pattern in the query. @@ -854,8 +850,8 @@ uint32_t ts_query_start_byte_for_pattern(const TSQuery *self, uint32_t pattern_i * that represent the end of an individual predicate. If a pattern has two * predicates, then there will be two steps with this `type` in the array. */ -const TSQueryPredicateStep *ts_query_predicates_for_pattern( - const TSQuery *self, +const t_query_predicate_step *ts_query_predicates_for_pattern( + const t_query *self, uint32_t pattern_index, uint32_t *step_count ); @@ -863,7 +859,7 @@ const TSQueryPredicateStep *ts_query_predicates_for_pattern( /* * Check if the given pattern in the query has a single root node. */ -bool ts_query_is_pattern_rooted(const TSQuery *self, uint32_t pattern_index); +bool ts_query_is_pattern_rooted(const t_query *self, uint32_t pattern_index); /* * Check if the given pattern in the query is 'non local'. @@ -873,13 +869,13 @@ bool ts_query_is_pattern_rooted(const TSQuery *self, uint32_t pattern_index); * patterns disable certain optimizations that would otherwise be possible * when executing a query on a specific range of a syntax tree. */ -bool ts_query_is_pattern_non_local(const TSQuery *self, uint32_t pattern_index); +bool ts_query_is_pattern_non_local(const t_query *self, uint32_t pattern_index); /* * Check if a given pattern is guaranteed to match once a given step is reached. * The step is specified by its byte offset in the query's source code. */ -bool ts_query_is_pattern_guaranteed_at_step(const TSQuery *self, uint32_t byte_offset); +bool ts_query_is_pattern_guaranteed_at_step(const t_query *self, uint32_t byte_offset); /** * Get the name and length of one of the query's captures, or one of the @@ -887,7 +883,7 @@ bool ts_query_is_pattern_guaranteed_at_step(const TSQuery *self, uint32_t byte_o * numeric id based on the order that it appeared in the query's source. */ const char *ts_query_capture_name_for_id( - const TSQuery *self, + const t_query *self, uint32_t index, uint32_t *length ); @@ -896,14 +892,14 @@ const char *ts_query_capture_name_for_id( * Get the quantifier of the query's captures. Each capture is * associated * with a numeric id based on the order that it appeared in the query's source. */ -TSQuantifier ts_query_capture_quantifier_for_id( - const TSQuery *self, +t_quantifier ts_query_capture_quantifier_for_id( + const t_query *self, uint32_t pattern_index, uint32_t capture_index ); const char *ts_query_string_value_for_id( - const TSQuery *self, + const t_query *self, uint32_t index, uint32_t *length ); @@ -915,7 +911,7 @@ const char *ts_query_string_value_for_id( * any resource usage associated with recording the capture. Currently, there * is no way to undo this. */ -void ts_query_disable_capture(TSQuery *self, const char *name, uint32_t length); +void ts_query_disable_capture(t_query *self, const char *name, uint32_t length); /** * Disable a certain pattern within a query. @@ -923,7 +919,7 @@ void ts_query_disable_capture(TSQuery *self, const char *name, uint32_t length); * This prevents the pattern from matching and removes most of the overhead * associated with the pattern. Currently, there is no way to undo this. */ -void ts_query_disable_pattern(TSQuery *self, uint32_t pattern_index); +void ts_query_disable_pattern(t_query *self, uint32_t pattern_index); /** * Create a new cursor for executing a given query. @@ -947,17 +943,17 @@ void ts_query_disable_pattern(TSQuery *self, uint32_t pattern_index); * You can then start executing another query on another node by calling * [`ts_query_cursor_exec`] again. */ -TSQueryCursor *ts_query_cursor_new(void); +t_query_cursor *ts_query_cursor_new(void); /** * Delete a query cursor, freeing all of the memory that it used. */ -void ts_query_cursor_delete(TSQueryCursor *self); +void ts_query_cursor_delete(t_query_cursor *self); /** * Start running a given query on a given node. */ -void ts_query_cursor_exec(TSQueryCursor *self, const TSQuery *query, TSNode node); +void ts_query_cursor_exec(t_query_cursor *self, const t_query *query, t_parse_node node); /** * Manage the maximum number of in-progress matches allowed by this query @@ -970,16 +966,16 @@ void ts_query_cursor_exec(TSQueryCursor *self, const TSQuery *query, TSNode node * any number of pending matches, dynamically allocating new space for them as * needed as the query is executed. */ -bool ts_query_cursor_did_exceed_match_limit(const TSQueryCursor *self); -uint32_t ts_query_cursor_match_limit(const TSQueryCursor *self); -void ts_query_cursor_set_match_limit(TSQueryCursor *self, uint32_t limit); +bool ts_query_cursor_did_exceed_match_limit(const t_query_cursor *self); +uint32_t ts_query_cursor_match_limit(const t_query_cursor *self); +void ts_query_cursor_set_match_limit(t_query_cursor *self, uint32_t limit); /** * Set the range of bytes or (row, column) positions in which the query * will be executed. */ -void ts_query_cursor_set_byte_range(TSQueryCursor *self, uint32_t start_byte, uint32_t end_byte); -void ts_query_cursor_set_point_range(TSQueryCursor *self, TSPoint start_point, TSPoint end_point); +void ts_query_cursor_set_byte_range(t_query_cursor *self, uint32_t start_byte, uint32_t end_byte); +void ts_query_cursor_set_point_range(t_query_cursor *self, t_point start_point, t_point end_point); /** * Advance to the next match of the currently running query. @@ -987,8 +983,8 @@ void ts_query_cursor_set_point_range(TSQueryCursor *self, TSPoint start_point, T * If there is a match, write it to `*match` and return `true`. * Otherwise, return `false`. */ -bool ts_query_cursor_next_match(TSQueryCursor *self, TSQueryMatch *match); -void ts_query_cursor_remove_match(TSQueryCursor *self, uint32_t match_id); +bool ts_query_cursor_next_match(t_query_cursor *self, t_query_match *match); +void ts_query_cursor_remove_match(t_query_cursor *self, uint32_t match_id); /** * Advance to the next capture of the currently running query. @@ -997,8 +993,8 @@ void ts_query_cursor_remove_match(TSQueryCursor *self, uint32_t match_id); * the matche's capture list to `*capture_index`. Otherwise, return `false`. */ bool ts_query_cursor_next_capture( - TSQueryCursor *self, - TSQueryMatch *match, + t_query_cursor *self, + t_query_match *match, uint32_t *capture_index ); @@ -1016,7 +1012,7 @@ bool ts_query_cursor_next_capture( * * Set to `UINT32_MAX` to remove the maximum start depth. */ -void ts_query_cursor_set_max_start_depth(TSQueryCursor *self, uint32_t max_start_depth); +void ts_query_cursor_set_max_start_depth(t_query_cursor *self, uint32_t max_start_depth); /**********************/ /* Section - Language */ @@ -1025,34 +1021,34 @@ void ts_query_cursor_set_max_start_depth(TSQueryCursor *self, uint32_t max_start /** * Get another reference to the given language. */ -const TSLanguage *ts_language_copy(const TSLanguage *self); +const t_language *ts_language_copy(const t_language *self); /** * Free any dynamically-allocated resources for this language, if * this is the last reference. */ -void ts_language_delete(const TSLanguage *self); +void ts_language_delete(const t_language *self); /** * Get the number of distinct node types in the language. */ -uint32_t ts_language_symbol_count(const TSLanguage *self); +uint32_t ts_language_symbol_count(const t_language *self); /** * Get the number of valid states in this language. */ -uint32_t ts_language_state_count(const TSLanguage *self); +uint32_t ts_language_state_count(const t_language *self); /** * Get a node type string for the given numerical id. */ -const char *ts_language_symbol_name(const TSLanguage *self, TSSymbol symbol); +const char *ts_language_symbol_name(const t_language *self, t_symbol symbol); /** * Get the numerical id for the given node type string. */ -TSSymbol ts_language_symbol_for_name( - const TSLanguage *self, +t_symbol ts_language_symbol_for_name( + const t_language *self, const char *string, uint32_t length, bool is_named @@ -1061,17 +1057,17 @@ TSSymbol ts_language_symbol_for_name( /** * Get the number of distinct field names in the language. */ -uint32_t ts_language_field_count(const TSLanguage *self); +uint32_t ts_language_field_count(const t_language *self); /** * Get the field name string for the given numerical id. */ -const char *ts_language_field_name_for_id(const TSLanguage *self, TSFieldId id); +const char *ts_language_field_name_for_id(const t_language *self, t_field_id id); /** * Get the numerical id for the given field name string. */ -TSFieldId ts_language_field_id_for_name(const TSLanguage *self, const char *name, uint32_t name_length); +t_field_id ts_language_field_id_for_name(const t_language *self, const char *name, uint32_t name_length); /** * Check whether the given node type id belongs to named nodes, anonymous nodes, @@ -1079,7 +1075,7 @@ TSFieldId ts_language_field_id_for_name(const TSLanguage *self, const char *name * * See also [`ts_node_is_named`]. Hidden nodes are never returned from the API. */ -TSSymbolType ts_language_symbol_type(const TSLanguage *self, TSSymbol symbol); +t_symbol_type ts_language_symbol_type(const t_language *self, t_symbol symbol); /** * Get the ABI version number for this language. This version number is used @@ -1088,14 +1084,14 @@ TSSymbolType ts_language_symbol_type(const TSLanguage *self, TSSymbol symbol); * * See also [`ts_parser_set_language`]. */ -uint32_t ts_language_version(const TSLanguage *self); +uint32_t ts_language_version(const t_language *self); /** * Get the next parse state. Combine this with lookahead iterators to generate * completion suggestions or valid symbols in error nodes. Use * [`ts_node_grammar_symbol`] for valid symbols. */ -TSStateId ts_language_next_state(const TSLanguage *self, TSStateId state, TSSymbol symbol); +t_state_id ts_language_next_state(const t_language *self, t_state_id state, t_symbol symbol); /********************************/ /* Section - Lookahead Iterator */ @@ -1116,12 +1112,12 @@ TSStateId ts_language_next_state(const TSLanguage *self, TSStateId state, TSSymb * iterator on its first leaf node state. For `MISSING` nodes, a lookahead * iterator created on the previous non-extra leaf node may be appropriate. */ -TSLookaheadIterator *ts_lookahead_iterator_new(const TSLanguage *self, TSStateId state); +t_lookahead_iterator *ts_lookahead_iterator_new(const t_language *self, t_state_id state); /** * Delete a lookahead iterator freeing all the memory used. */ -void ts_lookahead_iterator_delete(TSLookaheadIterator *self); +void ts_lookahead_iterator_delete(t_lookahead_iterator *self); /** * Reset the lookahead iterator to another state. @@ -1129,7 +1125,7 @@ void ts_lookahead_iterator_delete(TSLookaheadIterator *self); * This returns `true` if the iterator was reset to the given state and `false` * otherwise. */ -bool ts_lookahead_iterator_reset_state(TSLookaheadIterator *self, TSStateId state); +bool ts_lookahead_iterator_reset_state(t_lookahead_iterator *self, t_state_id state); /** * Reset the lookahead iterator. @@ -1137,37 +1133,37 @@ bool ts_lookahead_iterator_reset_state(TSLookaheadIterator *self, TSStateId stat * This returns `true` if the language was set successfully and `false` * otherwise. */ -bool ts_lookahead_iterator_reset(TSLookaheadIterator *self, const TSLanguage *language, TSStateId state); +bool ts_lookahead_iterator_reset(t_lookahead_iterator *self, const t_language *language, t_state_id state); /** * Get the current language of the lookahead iterator. */ -const TSLanguage *ts_lookahead_iterator_language(const TSLookaheadIterator *self); +const t_language *ts_lookahead_iterator_language(const t_lookahead_iterator *self); /** * Advance the lookahead iterator to the next symbol. * * This returns `true` if there is a new symbol and `false` otherwise. */ -bool ts_lookahead_iterator_next(TSLookaheadIterator *self); +bool ts_lookahead_iterator_next(t_lookahead_iterator *self); /** * Get the current symbol of the lookahead iterator; */ -TSSymbol ts_lookahead_iterator_current_symbol(const TSLookaheadIterator *self); +t_symbol ts_lookahead_iterator_current_symbol(const t_lookahead_iterator *self); /** * Get the current symbol type of the lookahead iterator as a null terminated * string. */ -const char *ts_lookahead_iterator_current_symbol_name(const TSLookaheadIterator *self); +const char *ts_lookahead_iterator_current_symbol_name(const t_lookahead_iterator *self); /*************************************/ /* Section - WebAssembly Integration */ /************************************/ -typedef struct wasm_engine_t TSWasmEngine; -typedef struct TSWasmStore TSWasmStore; +typedef struct wasm_engine_t t_wasm_engine; +typedef struct t_wasm_store t_wasm_store; typedef enum { TSWasmErrorKindNone = 0, @@ -1175,25 +1171,25 @@ typedef enum { TSWasmErrorKindCompile, TSWasmErrorKindInstantiate, TSWasmErrorKindAllocate, -} TSWasmErrorKind; +} t_wasm_error_kind; typedef struct { - TSWasmErrorKind kind; + t_wasm_error_kind kind; char *message; -} TSWasmError; +} t_wasm_error; /** * Create a Wasm store. */ -TSWasmStore *ts_wasm_store_new( - TSWasmEngine *engine, - TSWasmError *error +t_wasm_store *ts_wasm_store_new( + t_wasm_engine *engine, + t_wasm_error *error ); /** * Free the memory associated with the given Wasm store. */ -void ts_wasm_store_delete(TSWasmStore *); +void ts_wasm_store_delete(t_wasm_store *); /** * Create a language from a buffer of Wasm. The resulting language behaves @@ -1202,36 +1198,36 @@ void ts_wasm_store_delete(TSWasmStore *); * can be used with any Wasm store, it doesn't need to be the same store that * was used to originally load it. */ -const TSLanguage *ts_wasm_store_load_language( - TSWasmStore *, +const t_language *ts_wasm_store_load_language( + t_wasm_store *, const char *name, const char *wasm, uint32_t wasm_len, - TSWasmError *error + t_wasm_error *error ); /** * Get the number of languages instantiated in the given wasm store. */ -size_t ts_wasm_store_language_count(const TSWasmStore *); +size_t ts_wasm_store_language_count(const t_wasm_store *); /** * Check if the language came from a Wasm module. If so, then in order to use * this language with a Parser, that parser must have a Wasm store assigned. */ -bool ts_language_is_wasm(const TSLanguage *); +bool ts_language_is_wasm(const t_language *); /** * Assign the given Wasm store to the parser. A parser must have a Wasm store * in order to use Wasm languages. */ -void ts_parser_set_wasm_store(TSParser *, TSWasmStore *); +void ts_parser_set_wasm_store(t_parser *, t_wasm_store *); /** * Remove the parser's current Wasm store and return it. This returns NULL if * the parser doesn't have a Wasm store. */ -TSWasmStore *ts_parser_take_wasm_store(TSParser *); +t_wasm_store *ts_parser_take_wasm_store(t_parser *); /**********************************/ /* Section - Global Configuration */ @@ -1260,9 +1256,6 @@ void ts_set_allocator( void (*new_free)(void *) ); -#ifdef __cplusplus -} -#endif #ifndef TREE_SITTER_HIDE_SYMBOLS #if defined(__GNUC__) || defined(__clang__) diff --git a/parser/src/get_changed_ranges.c b/parser/src/get_changed_ranges.c index bcf8da94..902e1a4f 100644 --- a/parser/src/get_changed_ranges.c +++ b/parser/src/get_changed_ranges.c @@ -13,7 +13,7 @@ static void ts_range_array_add( Length end ) { if (self->size > 0) { - TSRange *last_range = array_back(self); + t_range *last_range = array_back(self); if (start.bytes <= last_range->end_byte) { last_range->end_byte = end.bytes; last_range->end_point = end.extent; @@ -22,7 +22,7 @@ static void ts_range_array_add( } if (start.bytes < end.bytes) { - TSRange range = { start.extent, end.extent, start.bytes, end.bytes }; + t_range range = { start.extent, end.extent, start.bytes, end.bytes }; array_push(self, range); } } @@ -34,7 +34,7 @@ bool ts_range_array_intersects( uint32_t end_byte ) { for (unsigned i = start_index; i < self->size; i++) { - TSRange *range = &self->contents[i]; + t_range *range = &self->contents[i]; if (range->end_byte > start_byte) { if (range->start_byte >= end_byte) break; return true; @@ -44,8 +44,8 @@ bool ts_range_array_intersects( } void ts_range_array_get_changed_ranges( - const TSRange *old_ranges, unsigned old_range_count, - const TSRange *new_ranges, unsigned new_range_count, + const t_range *old_ranges, unsigned old_range_count, + const t_range *new_ranges, unsigned new_range_count, TSRangeArray *differences ) { unsigned new_index = 0; @@ -55,8 +55,8 @@ void ts_range_array_get_changed_ranges( bool in_new_range = false; while (old_index < old_range_count || new_index < new_range_count) { - const TSRange *old_range = &old_ranges[old_index]; - const TSRange *new_range = &new_ranges[new_index]; + const t_range *old_range = &old_ranges[old_index]; + const t_range *new_range = &new_ranges[new_index]; Length next_old_position; if (in_old_range) { @@ -105,7 +105,7 @@ void ts_range_array_get_changed_ranges( typedef struct { TreeCursor cursor; - const TSLanguage *language; + const t_language *language; unsigned visible_depth; bool in_padding; } Iterator; @@ -113,7 +113,7 @@ typedef struct { static Iterator iterator_new( TreeCursor *cursor, const Subtree *tree, - const TSLanguage *language + const t_language *language ) { array_clear(&cursor->stack); array_push(&cursor->stack, ((TreeCursorEntry) { @@ -170,7 +170,7 @@ static bool iterator_tree_is_visible(const Iterator *self) { static void iterator_get_visible_state( const Iterator *self, Subtree *tree, - TSSymbol *alias_symbol, + t_symbol *alias_symbol, uint32_t *start_byte ) { uint32_t i = self->cursor.stack.size - 1; @@ -309,8 +309,8 @@ static IteratorComparison iterator_compare( Subtree new_tree = NULL_SUBTREE; uint32_t old_start = 0; uint32_t new_start = 0; - TSSymbol old_alias_symbol = 0; - TSSymbol new_alias_symbol = 0; + t_symbol old_alias_symbol = 0; + t_symbol new_alias_symbol = 0; iterator_get_visible_state(old_iter, &old_tree, &old_alias_symbol, &old_start); iterator_get_visible_state(new_iter, &new_tree, &new_alias_symbol, &new_start); @@ -357,9 +357,9 @@ static inline void iterator_print_state(Iterator *self) { unsigned ts_subtree_get_changed_ranges( const Subtree *old_tree, const Subtree *new_tree, TreeCursor *cursor1, TreeCursor *cursor2, - const TSLanguage *language, + const t_language *language, const TSRangeArray *included_range_differences, - TSRange **ranges + t_range **ranges ) { TSRangeArray results = array_new(); @@ -475,7 +475,7 @@ unsigned ts_subtree_get_changed_ranges( // Keep track of the current position in the included range differences // array in order to avoid scanning the entire array on each iteration. while (included_range_difference_index < included_range_differences->size) { - const TSRange *range = &included_range_differences->contents[ + const t_range *range = &included_range_differences->contents[ included_range_difference_index ]; if (range->end_byte <= position.bytes) { diff --git a/parser/src/get_changed_ranges.h b/parser/src/get_changed_ranges.h index a1f1dbb4..982a7047 100644 --- a/parser/src/get_changed_ranges.h +++ b/parser/src/get_changed_ranges.h @@ -8,11 +8,11 @@ extern "C" { #include "./tree_cursor.h" #include "./subtree.h" -typedef Array(TSRange) TSRangeArray; +typedef Array(t_range) TSRangeArray; void ts_range_array_get_changed_ranges( - const TSRange *old_ranges, unsigned old_range_count, - const TSRange *new_ranges, unsigned new_range_count, + const t_range *old_ranges, unsigned old_range_count, + const t_range *new_ranges, unsigned new_range_count, TSRangeArray *differences ); @@ -24,9 +24,9 @@ bool ts_range_array_intersects( unsigned ts_subtree_get_changed_ranges( const Subtree *old_tree, const Subtree *new_tree, TreeCursor *cursor1, TreeCursor *cursor2, - const TSLanguage *language, + const t_language *language, const TSRangeArray *included_range_differences, - TSRange **ranges + t_range **ranges ); #ifdef __cplusplus diff --git a/parser/src/language.c b/parser/src/language.c index d3d6ef5e..5cf86906 100644 --- a/parser/src/language.c +++ b/parser/src/language.c @@ -3,34 +3,34 @@ #include "./api.h" #include -const TSLanguage *ts_language_copy(const TSLanguage *self) { +const t_language *ts_language_copy(const t_language *self) { return self; } -void ts_language_delete(const TSLanguage *self) { +void ts_language_delete(const t_language *self) { (void)(self); } -uint32_t ts_language_symbol_count(const TSLanguage *self) { +uint32_t ts_language_symbol_count(const t_language *self) { return self->symbol_count + self->alias_count; } -uint32_t ts_language_state_count(const TSLanguage *self) { +uint32_t ts_language_state_count(const t_language *self) { return self->state_count; } -uint32_t ts_language_version(const TSLanguage *self) { +uint32_t ts_language_version(const t_language *self) { return self->version; } -uint32_t ts_language_field_count(const TSLanguage *self) { +uint32_t ts_language_field_count(const t_language *self) { return self->field_count; } void ts_language_table_entry( - const TSLanguage *self, - TSStateId state, - TSSymbol symbol, + const t_language *self, + t_state_id state, + t_symbol symbol, TableEntry *result ) { if (symbol == ts_builtin_sym_error || symbol == ts_builtin_sym_error_repeat) { @@ -48,8 +48,8 @@ void ts_language_table_entry( } TSSymbolMetadata ts_language_symbol_metadata( - const TSLanguage *self, - TSSymbol symbol + const t_language *self, + t_symbol symbol ) { if (symbol == ts_builtin_sym_error) { return (TSSymbolMetadata) {.visible = true, .named = true}; @@ -60,18 +60,18 @@ TSSymbolMetadata ts_language_symbol_metadata( } } -TSSymbol ts_language_public_symbol( - const TSLanguage *self, - TSSymbol symbol +t_symbol ts_language_public_symbol( + const t_language *self, + t_symbol symbol ) { if (symbol == ts_builtin_sym_error) return symbol; return self->public_symbol_map[symbol]; } -TSStateId ts_language_next_state( - const TSLanguage *self, - TSStateId state, - TSSymbol symbol +t_state_id ts_language_next_state( + const t_language *self, + t_state_id state, + t_symbol symbol ) { if (symbol == ts_builtin_sym_error || symbol == ts_builtin_sym_error_repeat) { return 0; @@ -91,8 +91,8 @@ TSStateId ts_language_next_state( } const char *ts_language_symbol_name( - const TSLanguage *self, - TSSymbol symbol + const t_language *self, + t_symbol symbol ) { if (symbol == ts_builtin_sym_error) { return "ERROR"; @@ -105,15 +105,15 @@ const char *ts_language_symbol_name( } } -TSSymbol ts_language_symbol_for_name( - const TSLanguage *self, +t_symbol ts_language_symbol_for_name( + const t_language *self, const char *string, uint32_t length, bool is_named ) { if (!strncmp(string, "ERROR", length)) return ts_builtin_sym_error; uint16_t count = (uint16_t)ts_language_symbol_count(self); - for (TSSymbol i = 0; i < count; i++) { + for (t_symbol i = 0; i < count; i++) { TSSymbolMetadata metadata = ts_language_symbol_metadata(self, i); if ((!metadata.visible && !metadata.supertype) || metadata.named != is_named) continue; const char *symbol_name = self->symbol_names[i]; @@ -124,9 +124,9 @@ TSSymbol ts_language_symbol_for_name( return 0; } -TSSymbolType ts_language_symbol_type( - const TSLanguage *self, - TSSymbol symbol +t_symbol_type ts_language_symbol_type( + const t_language *self, + t_symbol symbol ) { TSSymbolMetadata metadata = ts_language_symbol_metadata(self, symbol); if (metadata.named && metadata.visible) { @@ -139,8 +139,8 @@ TSSymbolType ts_language_symbol_type( } const char *ts_language_field_name_for_id( - const TSLanguage *self, - TSFieldId id + const t_language *self, + t_field_id id ) { uint32_t count = ts_language_field_count(self); if (count && id <= count) { @@ -150,13 +150,13 @@ const char *ts_language_field_name_for_id( } } -TSFieldId ts_language_field_id_for_name( - const TSLanguage *self, +t_field_id ts_language_field_id_for_name( + const t_language *self, const char *name, uint32_t name_length ) { uint16_t count = (uint16_t)ts_language_field_count(self); - for (TSSymbol i = 1; i < count + 1; i++) { + for (t_symbol i = 1; i < count + 1; i++) { switch (strncmp(name, self->field_names[i], name_length)) { case 0: if (self->field_names[i][name_length] == 0) return i; @@ -170,47 +170,47 @@ TSFieldId ts_language_field_id_for_name( return 0; } -TSLookaheadIterator *ts_lookahead_iterator_new(const TSLanguage *self, TSStateId state) { +t_lookahead_iterator *ts_lookahead_iterator_new(const t_language *self, t_state_id state) { if (state >= self->state_count) return NULL; LookaheadIterator *iterator = ts_malloc(sizeof(LookaheadIterator)); *iterator = ts_language_lookaheads(self, state); - return (TSLookaheadIterator *)iterator; + return (t_lookahead_iterator *)iterator; } -void ts_lookahead_iterator_delete(TSLookaheadIterator *self) { +void ts_lookahead_iterator_delete(t_lookahead_iterator *self) { ts_free(self); } -bool ts_lookahead_iterator_reset_state(TSLookaheadIterator * self, TSStateId state) { +bool ts_lookahead_iterator_reset_state(t_lookahead_iterator * self, t_state_id state) { LookaheadIterator *iterator = (LookaheadIterator *)self; if (state >= iterator->language->state_count) return false; *iterator = ts_language_lookaheads(iterator->language, state); return true; } -const TSLanguage *ts_lookahead_iterator_language(const TSLookaheadIterator *self) { +const t_language *ts_lookahead_iterator_language(const t_lookahead_iterator *self) { const LookaheadIterator *iterator = (const LookaheadIterator *)self; return iterator->language; } -bool ts_lookahead_iterator_reset(TSLookaheadIterator *self, const TSLanguage *language, TSStateId state) { +bool ts_lookahead_iterator_reset(t_lookahead_iterator *self, const t_language *language, t_state_id state) { if (state >= language->state_count) return false; LookaheadIterator *iterator = (LookaheadIterator *)self; *iterator = ts_language_lookaheads(language, state); return true; } -bool ts_lookahead_iterator_next(TSLookaheadIterator *self) { +bool ts_lookahead_iterator_next(t_lookahead_iterator *self) { LookaheadIterator *iterator = (LookaheadIterator *)self; return ts_lookahead_iterator__next(iterator); } -TSSymbol ts_lookahead_iterator_current_symbol(const TSLookaheadIterator *self) { +t_symbol ts_lookahead_iterator_current_symbol(const t_lookahead_iterator *self) { const LookaheadIterator *iterator = (const LookaheadIterator *)self; return iterator->symbol; } -const char *ts_lookahead_iterator_current_symbol_name(const TSLookaheadIterator *self) { +const char *ts_lookahead_iterator_current_symbol_name(const t_lookahead_iterator *self) { const LookaheadIterator *iterator = (const LookaheadIterator *)self; return ts_language_symbol_name(iterator->language, iterator->symbol); } diff --git a/parser/src/language.h b/parser/src/language.h index 4e2769b4..94167b45 100644 --- a/parser/src/language.h +++ b/parser/src/language.h @@ -20,37 +20,37 @@ typedef struct { } TableEntry; typedef struct { - const TSLanguage *language; + const t_language *language; const uint16_t *data; const uint16_t *group_end; - TSStateId state; + t_state_id state; uint16_t table_value; uint16_t section_index; uint16_t group_count; bool is_small_state; const TSParseAction *actions; - TSSymbol symbol; - TSStateId next_state; + t_symbol symbol; + t_state_id next_state; uint16_t action_count; } LookaheadIterator; -void ts_language_table_entry(const TSLanguage *, TSStateId, TSSymbol, TableEntry *); +void ts_language_table_entry(const t_language *, t_state_id, t_symbol, TableEntry *); -TSSymbolMetadata ts_language_symbol_metadata(const TSLanguage *, TSSymbol); +TSSymbolMetadata ts_language_symbol_metadata(const t_language *, t_symbol); -TSSymbol ts_language_public_symbol(const TSLanguage *, TSSymbol); +t_symbol ts_language_public_symbol(const t_language *, t_symbol); -TSStateId ts_language_next_state(const TSLanguage *self, TSStateId state, TSSymbol symbol); +t_state_id ts_language_next_state(const t_language *self, t_state_id state, t_symbol symbol); -static inline bool ts_language_is_symbol_external(const TSLanguage *self, TSSymbol symbol) { +static inline bool ts_language_is_symbol_external(const t_language *self, t_symbol symbol) { return 0 < symbol && symbol < self->external_token_count + 1; } static inline const TSParseAction *ts_language_actions( - const TSLanguage *self, - TSStateId state, - TSSymbol symbol, + const t_language *self, + t_state_id state, + t_symbol symbol, uint32_t *count ) { TableEntry entry; @@ -60,9 +60,9 @@ static inline const TSParseAction *ts_language_actions( } static inline bool ts_language_has_reduce_action( - const TSLanguage *self, - TSStateId state, - TSSymbol symbol + const t_language *self, + t_state_id state, + t_symbol symbol ) { TableEntry entry; ts_language_table_entry(self, state, symbol, &entry); @@ -77,9 +77,9 @@ static inline bool ts_language_has_reduce_action( // states, this requires searching through the symbol groups to find // the given symbol. static inline uint16_t ts_language_lookup( - const TSLanguage *self, - TSStateId state, - TSSymbol symbol + const t_language *self, + t_state_id state, + t_symbol symbol ) { if (state >= self->large_state_count) { uint32_t index = self->small_parse_table_map[state - self->large_state_count]; @@ -99,9 +99,9 @@ static inline uint16_t ts_language_lookup( } static inline bool ts_language_has_actions( - const TSLanguage *self, - TSStateId state, - TSSymbol symbol + const t_language *self, + t_state_id state, + t_symbol symbol ) { return ts_language_lookup(self, state, symbol) != 0; } @@ -113,8 +113,8 @@ static inline bool ts_language_has_actions( // For 'small' parse states, this exploits the structure of the // table to only visit the valid symbols. static inline LookaheadIterator ts_language_lookaheads( - const TSLanguage *self, - TSStateId state + const t_language *self, + t_state_id state ) { bool is_small_state = state >= self->large_state_count; const uint16_t *data; @@ -186,8 +186,8 @@ static inline bool ts_lookahead_iterator__next(LookaheadIterator *self) { // Whether the state is a "primary state". If this returns false, it indicates that there exists // another state that behaves identically to this one with respect to query analysis. static inline bool ts_language_state_is_primary( - const TSLanguage *self, - TSStateId state + const t_language *self, + t_state_id state ) { if (self->version >= LANGUAGE_VERSION_WITH_PRIMARY_STATES) { return state == self->primary_state_ids[state]; @@ -197,7 +197,7 @@ static inline bool ts_language_state_is_primary( } static inline const bool *ts_language_enabled_external_tokens( - const TSLanguage *self, + const t_language *self, unsigned external_scanner_state ) { if (external_scanner_state == 0) { @@ -207,8 +207,8 @@ static inline const bool *ts_language_enabled_external_tokens( } } -static inline const TSSymbol *ts_language_alias_sequence( - const TSLanguage *self, +static inline const t_symbol *ts_language_alias_sequence( + const t_language *self, uint32_t production_id ) { return production_id ? @@ -216,8 +216,8 @@ static inline const TSSymbol *ts_language_alias_sequence( NULL; } -static inline TSSymbol ts_language_alias_at( - const TSLanguage *self, +static inline t_symbol ts_language_alias_at( + const t_language *self, uint32_t production_id, uint32_t child_index ) { @@ -227,7 +227,7 @@ static inline TSSymbol ts_language_alias_at( } static inline void ts_language_field_map( - const TSLanguage *self, + const t_language *self, uint32_t production_id, const TSFieldMapEntry **start, const TSFieldMapEntry **end @@ -244,17 +244,17 @@ static inline void ts_language_field_map( } static inline void ts_language_aliases_for_symbol( - const TSLanguage *self, - TSSymbol original_symbol, - const TSSymbol **start, - const TSSymbol **end + const t_language *self, + t_symbol original_symbol, + const t_symbol **start, + const t_symbol **end ) { *start = &self->public_symbol_map[original_symbol]; *end = *start + 1; unsigned idx = 0; for (;;) { - TSSymbol symbol = self->alias_map[idx++]; + t_symbol symbol = self->alias_map[idx++]; if (symbol == 0 || symbol > original_symbol) break; uint16_t count = self->alias_map[idx++]; if (symbol == original_symbol) { @@ -267,9 +267,9 @@ static inline void ts_language_aliases_for_symbol( } static inline void ts_language_write_symbol_as_dot_string( - const TSLanguage *self, + const t_language *self, FILE *f, - TSSymbol symbol + t_symbol symbol ) { const char *name = ts_language_symbol_name(self, symbol); for (const char *chr = name; *chr; chr++) { diff --git a/parser/src/length.h b/parser/src/length.h index 82003c02..83a947d1 100644 --- a/parser/src/length.h +++ b/parser/src/length.h @@ -8,7 +8,7 @@ typedef struct { uint32_t bytes; - TSPoint extent; + t_point extent; } Length; static const Length LENGTH_UNDEFINED = {0, {0, 1}}; diff --git a/parser/src/lexer.c b/parser/src/lexer.c index b6c19cf1..daf62f3d 100644 --- a/parser/src/lexer.c +++ b/parser/src/lexer.c @@ -23,7 +23,7 @@ static const int32_t BYTE_ORDER_MARK = 0xFEFF; -static const TSRange DEFAULT_RANGE = { +static const t_range DEFAULT_RANGE = { .start_point = { .row = 0, .column = 0, @@ -127,7 +127,7 @@ static void ts_lexer_goto(Lexer *self, Length position) { // Move to the first valid position at or after the given position. bool found_included_range = false; for (unsigned i = 0; i < self->included_range_count; i++) { - TSRange *included_range = &self->included_ranges[i]; + t_range *included_range = &self->included_ranges[i]; if ( included_range->end_byte > self->current_position.bytes && included_range->end_byte > included_range->start_byte @@ -163,7 +163,7 @@ static void ts_lexer_goto(Lexer *self, Length position) { // state - past the end of the included ranges. else { self->current_included_range_index = self->included_range_count; - TSRange *last_included_range = &self->included_ranges[self->included_range_count - 1]; + t_range *last_included_range = &self->included_ranges[self->included_range_count - 1]; self->current_position = (Length) { .bytes = last_included_range->end_byte, .extent = last_included_range->end_point, @@ -186,7 +186,7 @@ static void ts_lexer__do_advance(Lexer *self, bool skip) { } } - const TSRange *current_range = &self->included_ranges[self->current_included_range_index]; + const t_range *current_range = &self->included_ranges[self->current_included_range_index]; while ( self->current_position.bytes >= current_range->end_byte || current_range->end_byte == current_range->start_byte @@ -246,14 +246,14 @@ static void ts_lexer__mark_end(TSLexer *_self) { // If the lexer is right at the beginning of included range, // then the token should be considered to end at the *end* of the // previous included range, rather than here. - TSRange *current_included_range = &self->included_ranges[ + t_range *current_included_range = &self->included_ranges[ self->current_included_range_index ]; if ( self->current_included_range_index > 0 && self->current_position.bytes == current_included_range->start_byte ) { - TSRange *previous_included_range = current_included_range - 1; + t_range *previous_included_range = current_included_range - 1; self->token_end_position = (Length) { previous_included_range->end_byte, previous_included_range->end_point, @@ -296,7 +296,7 @@ static uint32_t ts_lexer__get_column(TSLexer *_self) { static bool ts_lexer__is_at_included_range_start(const TSLexer *_self) { const Lexer *self = (const Lexer *)_self; if (self->current_included_range_index < self->included_range_count) { - TSRange *current_range = &self->included_ranges[self->current_included_range_index]; + t_range *current_range = &self->included_ranges[self->current_included_range_index]; return self->current_position.bytes == current_range->start_byte; } else { return false; @@ -336,7 +336,7 @@ void ts_lexer_delete(Lexer *self) { ts_free(self->included_ranges); } -void ts_lexer_set_input(Lexer *self, TSInput input) { +void ts_lexer_set_input(Lexer *self, t_input input) { self->input = input; ts_lexer__clear_chunk(self); ts_lexer_goto(self, self->current_position); @@ -404,7 +404,7 @@ void ts_lexer_mark_end(Lexer *self) { bool ts_lexer_set_included_ranges( Lexer *self, - const TSRange *ranges, + const t_range *ranges, uint32_t count ) { if (count == 0 || !ranges) { @@ -413,7 +413,7 @@ bool ts_lexer_set_included_ranges( } else { uint32_t previous_byte = 0; for (unsigned i = 0; i < count; i++) { - const TSRange *range = &ranges[i]; + const t_range *range = &ranges[i]; if ( range->start_byte < previous_byte || range->end_byte < range->start_byte @@ -422,7 +422,7 @@ bool ts_lexer_set_included_ranges( } } - size_t size = count * sizeof(TSRange); + size_t size = count * sizeof(t_range); self->included_ranges = ts_realloc(self->included_ranges, size); memcpy(self->included_ranges, ranges, size); self->included_range_count = count; @@ -430,7 +430,7 @@ bool ts_lexer_set_included_ranges( return true; } -TSRange *ts_lexer_included_ranges(const Lexer *self, uint32_t *count) { +t_range *ts_lexer_included_ranges(const Lexer *self, uint32_t *count) { *count = self->included_range_count; return self->included_ranges; } diff --git a/parser/src/lexer.h b/parser/src/lexer.h index 1d9482b5..4b63629b 100644 --- a/parser/src/lexer.h +++ b/parser/src/lexer.h @@ -16,10 +16,10 @@ typedef struct { Length token_start_position; Length token_end_position; - TSRange *included_ranges; + t_range *included_ranges; const char *chunk; - TSInput input; - TSLogger logger; + t_input input; + t_logger logger; uint32_t included_range_count; uint32_t current_included_range_index; @@ -33,14 +33,14 @@ typedef struct { void ts_lexer_init(Lexer *); void ts_lexer_delete(Lexer *); -void ts_lexer_set_input(Lexer *, TSInput); +void ts_lexer_set_input(Lexer *, t_input); void ts_lexer_reset(Lexer *, Length); void ts_lexer_start(Lexer *); void ts_lexer_finish(Lexer *, uint32_t *); void ts_lexer_advance_to_end(Lexer *); void ts_lexer_mark_end(Lexer *); -bool ts_lexer_set_included_ranges(Lexer *self, const TSRange *ranges, uint32_t count); -TSRange *ts_lexer_included_ranges(const Lexer *self, uint32_t *count); +bool ts_lexer_set_included_ranges(Lexer *self, const t_range *ranges, uint32_t count); +t_range *ts_lexer_included_ranges(const Lexer *self, uint32_t *count); #ifdef __cplusplus } diff --git a/parser/src/node.c b/parser/src/node.c index 203d79b2..b1582632 100644 --- a/parser/src/node.c +++ b/parser/src/node.c @@ -5,58 +5,58 @@ typedef struct { Subtree parent; - const TSTree *tree; + const t_tree *tree; Length position; uint32_t child_index; uint32_t structural_child_index; - const TSSymbol *alias_sequence; + const t_symbol *alias_sequence; } NodeChildIterator; // TSNode - constructors -TSNode ts_node_new( - const TSTree *tree, +t_parse_node ts_node_new( + const t_tree *tree, const Subtree *subtree, Length position, - TSSymbol alias + t_symbol alias ) { - return (TSNode) { + return (t_parse_node) { {position.bytes, position.extent.row, position.extent.column, alias}, subtree, tree, }; } -static inline TSNode ts_node__null(void) { +static inline t_parse_node ts_node__null(void) { return ts_node_new(NULL, NULL, length_zero(), 0); } // TSNode - accessors -uint32_t ts_node_start_byte(TSNode self) { +uint32_t ts_node_start_byte(t_parse_node self) { return self.context[0]; } -TSPoint ts_node_start_point(TSNode self) { - return (TSPoint) {self.context[1], self.context[2]}; +t_point ts_node_start_point(t_parse_node self) { + return (t_point) {self.context[1], self.context[2]}; } -static inline uint32_t ts_node__alias(const TSNode *self) { +static inline uint32_t ts_node__alias(const t_parse_node *self) { return self->context[3]; } -static inline Subtree ts_node__subtree(TSNode self) { +static inline Subtree ts_node__subtree(t_parse_node self) { return *(const Subtree *)self.id; } // NodeChildIterator -static inline NodeChildIterator ts_node_iterate_children(const TSNode *node) { +static inline NodeChildIterator ts_node_iterate_children(const t_parse_node *node) { Subtree subtree = ts_node__subtree(*node); if (ts_subtree_child_count(subtree) == 0) { return (NodeChildIterator) {NULL_SUBTREE, node->tree, length_zero(), 0, 0, NULL}; } - const TSSymbol *alias_sequence = ts_language_alias_sequence( + const t_symbol *alias_sequence = ts_language_alias_sequence( node->tree->language, subtree.ptr->production_id ); @@ -76,11 +76,11 @@ static inline bool ts_node_child_iterator_done(NodeChildIterator *self) { static inline bool ts_node_child_iterator_next( NodeChildIterator *self, - TSNode *result + t_parse_node *result ) { if (!self->parent.ptr || ts_node_child_iterator_done(self)) return false; const Subtree *child = &ts_subtree_children(self->parent)[self->child_index]; - TSSymbol alias_symbol = 0; + t_symbol alias_symbol = 0; if (!ts_subtree_extra(*child)) { if (self->alias_sequence) { alias_symbol = self->alias_sequence[self->structural_child_index]; @@ -103,12 +103,12 @@ static inline bool ts_node_child_iterator_next( // TSNode - private -static inline bool ts_node__is_relevant(TSNode self, bool include_anonymous) { +static inline bool ts_node__is_relevant(t_parse_node self, bool include_anonymous) { Subtree tree = ts_node__subtree(self); if (include_anonymous) { return ts_subtree_visible(tree) || ts_node__alias(&self); } else { - TSSymbol alias = ts_node__alias(&self); + t_symbol alias = ts_node__alias(&self); if (alias) { return ts_language_symbol_metadata(self.tree->language, alias).named; } else { @@ -118,7 +118,7 @@ static inline bool ts_node__is_relevant(TSNode self, bool include_anonymous) { } static inline uint32_t ts_node__relevant_child_count( - TSNode self, + t_parse_node self, bool include_anonymous ) { Subtree tree = ts_node__subtree(self); @@ -133,18 +133,18 @@ static inline uint32_t ts_node__relevant_child_count( } } -static inline TSNode ts_node__child( - TSNode self, +static inline t_parse_node ts_node__child( + t_parse_node self, uint32_t child_index, bool include_anonymous ) { - TSNode result = self; + t_parse_node result = self; bool did_descend = true; while (did_descend) { did_descend = false; - TSNode child; + t_parse_node child; uint32_t index = 0; NodeChildIterator iterator = ts_node_iterate_children(&result); while (ts_node_child_iterator_next(&iterator, &child)) { @@ -184,21 +184,21 @@ static bool ts_subtree_has_trailing_empty_descendant( return false; } -static inline TSNode ts_node__prev_sibling(TSNode self, bool include_anonymous) { +static inline t_parse_node ts_node__prev_sibling(t_parse_node self, bool include_anonymous) { Subtree self_subtree = ts_node__subtree(self); bool self_is_empty = ts_subtree_total_bytes(self_subtree) == 0; uint32_t target_end_byte = ts_node_end_byte(self); - TSNode node = ts_node_parent(self); - TSNode earlier_node = ts_node__null(); + t_parse_node node = ts_node_parent(self); + t_parse_node earlier_node = ts_node__null(); bool earlier_node_is_relevant = false; while (!ts_node_is_null(node)) { - TSNode earlier_child = ts_node__null(); + t_parse_node earlier_child = ts_node__null(); bool earlier_child_is_relevant = false; bool found_child_containing_target = false; - TSNode child; + t_parse_node child; NodeChildIterator iterator = ts_node_iterate_children(&node); while (ts_node_child_iterator_next(&iterator, &child)) { if (child.id == self.id) break; @@ -245,19 +245,19 @@ static inline TSNode ts_node__prev_sibling(TSNode self, bool include_anonymous) return ts_node__null(); } -static inline TSNode ts_node__next_sibling(TSNode self, bool include_anonymous) { +static inline t_parse_node ts_node__next_sibling(t_parse_node self, bool include_anonymous) { uint32_t target_end_byte = ts_node_end_byte(self); - TSNode node = ts_node_parent(self); - TSNode later_node = ts_node__null(); + t_parse_node node = ts_node_parent(self); + t_parse_node later_node = ts_node__null(); bool later_node_is_relevant = false; while (!ts_node_is_null(node)) { - TSNode later_child = ts_node__null(); + t_parse_node later_child = ts_node__null(); bool later_child_is_relevant = false; - TSNode child_containing_target = ts_node__null(); + t_parse_node child_containing_target = ts_node__null(); - TSNode child; + t_parse_node child; NodeChildIterator iterator = ts_node_iterate_children(&node); while (ts_node_child_iterator_next(&iterator, &child)) { if (iterator.position.bytes < target_end_byte) continue; @@ -296,18 +296,18 @@ static inline TSNode ts_node__next_sibling(TSNode self, bool include_anonymous) return ts_node__null(); } -static inline TSNode ts_node__first_child_for_byte( - TSNode self, +static inline t_parse_node ts_node__first_child_for_byte( + t_parse_node self, uint32_t goal, bool include_anonymous ) { - TSNode node = self; + t_parse_node node = self; bool did_descend = true; while (did_descend) { did_descend = false; - TSNode child; + t_parse_node child; NodeChildIterator iterator = ts_node_iterate_children(&node); while (ts_node_child_iterator_next(&iterator, &child)) { if (ts_node_end_byte(child) > goal) { @@ -325,20 +325,20 @@ static inline TSNode ts_node__first_child_for_byte( return ts_node__null(); } -static inline TSNode ts_node__descendant_for_byte_range( - TSNode self, +static inline t_parse_node ts_node__descendant_for_byte_range( + t_parse_node self, uint32_t range_start, uint32_t range_end, bool include_anonymous ) { - TSNode node = self; - TSNode last_visible_node = self; + t_parse_node node = self; + t_parse_node last_visible_node = self; bool did_descend = true; while (did_descend) { did_descend = false; - TSNode child; + t_parse_node child; NodeChildIterator iterator = ts_node_iterate_children(&node); while (ts_node_child_iterator_next(&iterator, &child)) { uint32_t node_end = iterator.position.bytes; @@ -364,23 +364,23 @@ static inline TSNode ts_node__descendant_for_byte_range( return last_visible_node; } -static inline TSNode ts_node__descendant_for_point_range( - TSNode self, - TSPoint range_start, - TSPoint range_end, +static inline t_parse_node ts_node__descendant_for_point_range( + t_parse_node self, + t_point range_start, + t_point range_end, bool include_anonymous ) { - TSNode node = self; - TSNode last_visible_node = self; + t_parse_node node = self; + t_parse_node last_visible_node = self; bool did_descend = true; while (did_descend) { did_descend = false; - TSNode child; + t_parse_node child; NodeChildIterator iterator = ts_node_iterate_children(&node); while (ts_node_child_iterator_next(&iterator, &child)) { - TSPoint node_end = iterator.position.extent; + t_point node_end = iterator.position.extent; // The end of this node must extend far enough forward to touch // the end of the range and exceed the start of the range. @@ -405,41 +405,41 @@ static inline TSNode ts_node__descendant_for_point_range( // TSNode - public -uint32_t ts_node_end_byte(TSNode self) { +uint32_t ts_node_end_byte(t_parse_node self) { return ts_node_start_byte(self) + ts_subtree_size(ts_node__subtree(self)).bytes; } -TSPoint ts_node_end_point(TSNode self) { +t_point ts_node_end_point(t_parse_node self) { return point_add(ts_node_start_point(self), ts_subtree_size(ts_node__subtree(self)).extent); } -TSSymbol ts_node_symbol(TSNode self) { - TSSymbol symbol = ts_node__alias(&self); +t_symbol ts_node_symbol(t_parse_node self) { + t_symbol symbol = ts_node__alias(&self); if (!symbol) symbol = ts_subtree_symbol(ts_node__subtree(self)); return ts_language_public_symbol(self.tree->language, symbol); } -const char *ts_node_type(TSNode self) { - TSSymbol symbol = ts_node__alias(&self); +const char *ts_node_type(t_parse_node self) { + t_symbol symbol = ts_node__alias(&self); if (!symbol) symbol = ts_subtree_symbol(ts_node__subtree(self)); return ts_language_symbol_name(self.tree->language, symbol); } -const TSLanguage *ts_node_language(TSNode self) { +const t_language *ts_node_language(t_parse_node self) { return self.tree->language; } -TSSymbol ts_node_grammar_symbol(TSNode self) { +t_symbol ts_node_grammar_symbol(t_parse_node self) { return ts_subtree_symbol(ts_node__subtree(self)); } -const char *ts_node_grammar_type(TSNode self) { - TSSymbol symbol = ts_subtree_symbol(ts_node__subtree(self)); +const char *ts_node_grammar_type(t_parse_node self) { + t_symbol symbol = ts_subtree_symbol(ts_node__subtree(self)); return ts_language_symbol_name(self.tree->language, symbol); } -char *ts_node_string(TSNode self) { - TSSymbol alias_symbol = ts_node__alias(&self); +char *ts_node_string(t_parse_node self) { + t_symbol alias_symbol = ts_node__alias(&self); return ts_subtree_string( ts_node__subtree(self), alias_symbol, @@ -449,52 +449,52 @@ char *ts_node_string(TSNode self) { ); } -bool ts_node_eq(TSNode self, TSNode other) { +bool ts_node_eq(t_parse_node self, t_parse_node other) { return self.tree == other.tree && self.id == other.id; } -bool ts_node_is_null(TSNode self) { +bool ts_node_is_null(t_parse_node self) { return self.id == 0; } -bool ts_node_is_extra(TSNode self) { +bool ts_node_is_extra(t_parse_node self) { return ts_subtree_extra(ts_node__subtree(self)); } -bool ts_node_is_named(TSNode self) { - TSSymbol alias = ts_node__alias(&self); +bool ts_node_is_named(t_parse_node self) { + t_symbol alias = ts_node__alias(&self); return alias ? ts_language_symbol_metadata(self.tree->language, alias).named : ts_subtree_named(ts_node__subtree(self)); } -bool ts_node_is_missing(TSNode self) { +bool ts_node_is_missing(t_parse_node self) { return ts_subtree_missing(ts_node__subtree(self)); } -bool ts_node_has_changes(TSNode self) { +bool ts_node_has_changes(t_parse_node self) { return ts_subtree_has_changes(ts_node__subtree(self)); } -bool ts_node_has_error(TSNode self) { +bool ts_node_has_error(t_parse_node self) { return ts_subtree_error_cost(ts_node__subtree(self)) > 0; } -bool ts_node_is_error(TSNode self) { - TSSymbol symbol = ts_node_symbol(self); +bool ts_node_is_error(t_parse_node self) { + t_symbol symbol = ts_node_symbol(self); return symbol == ts_builtin_sym_error; } -uint32_t ts_node_descendant_count(TSNode self) { +uint32_t ts_node_descendant_count(t_parse_node self) { return ts_subtree_visible_descendant_count(ts_node__subtree(self)) + 1; } -TSStateId ts_node_parse_state(TSNode self) { +t_state_id ts_node_parse_state(t_parse_node self) { return ts_subtree_parse_state(ts_node__subtree(self)); } -TSStateId ts_node_next_parse_state(TSNode self) { - const TSLanguage *language = self.tree->language; +t_state_id ts_node_next_parse_state(t_parse_node self) { + const t_language *language = self.tree->language; uint16_t state = ts_node_parse_state(self); if (state == TS_TREE_STATE_NONE) { return TS_TREE_STATE_NONE; @@ -503,12 +503,12 @@ TSStateId ts_node_next_parse_state(TSNode self) { return ts_language_next_state(language, state, symbol); } -TSNode ts_node_parent(TSNode self) { - TSNode node = ts_tree_root_node(self.tree); +t_parse_node ts_node_parent(t_parse_node self) { + t_parse_node node = ts_tree_root_node(self.tree); if (node.id == self.id) return ts_node__null(); while (true) { - TSNode next_node = ts_node_child_containing_descendant(node, self); + t_parse_node next_node = ts_node_child_containing_descendant(node, self); if (ts_node_is_null(next_node)) break; node = next_node; } @@ -516,7 +516,7 @@ TSNode ts_node_parent(TSNode self) { return node; } -TSNode ts_node_child_containing_descendant(TSNode self, TSNode subnode) { +t_parse_node ts_node_child_containing_descendant(t_parse_node self, t_parse_node subnode) { uint32_t start_byte = ts_node_start_byte(subnode); uint32_t end_byte = ts_node_end_byte(subnode); @@ -536,15 +536,15 @@ TSNode ts_node_child_containing_descendant(TSNode self, TSNode subnode) { return self; } -TSNode ts_node_child(TSNode self, uint32_t child_index) { +t_parse_node ts_node_child(t_parse_node self, uint32_t child_index) { return ts_node__child(self, child_index, true); } -TSNode ts_node_named_child(TSNode self, uint32_t child_index) { +t_parse_node ts_node_named_child(t_parse_node self, uint32_t child_index) { return ts_node__child(self, child_index, false); } -TSNode ts_node_child_by_field_id(TSNode self, TSFieldId field_id) { +t_parse_node ts_node_child_by_field_id(t_parse_node self, t_field_id field_id) { recur: if (!field_id || ts_node_child_count(self) == 0) return ts_node__null(); @@ -568,7 +568,7 @@ recur: if (field_map == field_map_end) return ts_node__null(); } - TSNode child; + t_parse_node child; NodeChildIterator iterator = ts_node_iterate_children(&self); while (ts_node_child_iterator_next(&iterator, &child)) { if (!ts_subtree_extra(ts_node__subtree(child))) { @@ -588,7 +588,7 @@ recur: // Otherwise, descend into this child, but if it doesn't contain // the field, continue searching subsequent children. else { - TSNode result = ts_node_child_by_field_id(child, field_id); + t_parse_node result = ts_node_child_by_field_id(child, field_id); if (result.id) return result; field_map++; if (field_map == field_map_end) return ts_node__null(); @@ -616,7 +616,7 @@ recur: return ts_node__null(); } -static inline const char *ts_node__field_name_from_language(TSNode self, uint32_t structural_child_index) { +static inline const char *ts_node__field_name_from_language(t_parse_node self, uint32_t structural_child_index) { const TSFieldMapEntry *field_map, *field_map_end; ts_language_field_map( self.tree->language, @@ -632,15 +632,15 @@ static inline const char *ts_node__field_name_from_language(TSNode self, uint32_ return NULL; } -const char *ts_node_field_name_for_child(TSNode self, uint32_t child_index) { - TSNode result = self; +const char *ts_node_field_name_for_child(t_parse_node self, uint32_t child_index) { + t_parse_node result = self; bool did_descend = true; const char *inherited_field_name = NULL; while (did_descend) { did_descend = false; - TSNode child; + t_parse_node child; uint32_t index = 0; NodeChildIterator iterator = ts_node_iterate_children(&result); while (ts_node_child_iterator_next(&iterator, &child)) { @@ -671,12 +671,12 @@ const char *ts_node_field_name_for_child(TSNode self, uint32_t child_index) { return NULL; } -TSNode ts_node_child_by_field_name( - TSNode self, +t_parse_node ts_node_child_by_field_name( + t_parse_node self, const char *name, uint32_t name_length ) { - TSFieldId field_id = ts_language_field_id_for_name( + t_field_id field_id = ts_language_field_id_for_name( self.tree->language, name, name_length @@ -684,7 +684,7 @@ TSNode ts_node_child_by_field_name( return ts_node_child_by_field_id(self, field_id); } -uint32_t ts_node_child_count(TSNode self) { +uint32_t ts_node_child_count(t_parse_node self) { Subtree tree = ts_node__subtree(self); if (ts_subtree_child_count(tree) > 0) { return tree.ptr->visible_child_count; @@ -693,7 +693,7 @@ uint32_t ts_node_child_count(TSNode self) { } } -uint32_t ts_node_named_child_count(TSNode self) { +uint32_t ts_node_named_child_count(t_parse_node self) { Subtree tree = ts_node__subtree(self); if (ts_subtree_child_count(tree) > 0) { return tree.ptr->named_child_count; @@ -702,65 +702,65 @@ uint32_t ts_node_named_child_count(TSNode self) { } } -TSNode ts_node_next_sibling(TSNode self) { +t_parse_node ts_node_next_sibling(t_parse_node self) { return ts_node__next_sibling(self, true); } -TSNode ts_node_next_named_sibling(TSNode self) { +t_parse_node ts_node_next_named_sibling(t_parse_node self) { return ts_node__next_sibling(self, false); } -TSNode ts_node_prev_sibling(TSNode self) { +t_parse_node ts_node_prev_sibling(t_parse_node self) { return ts_node__prev_sibling(self, true); } -TSNode ts_node_prev_named_sibling(TSNode self) { +t_parse_node ts_node_prev_named_sibling(t_parse_node self) { return ts_node__prev_sibling(self, false); } -TSNode ts_node_first_child_for_byte(TSNode self, uint32_t byte) { +t_parse_node ts_node_first_child_for_byte(t_parse_node self, uint32_t byte) { return ts_node__first_child_for_byte(self, byte, true); } -TSNode ts_node_first_named_child_for_byte(TSNode self, uint32_t byte) { +t_parse_node ts_node_first_named_child_for_byte(t_parse_node self, uint32_t byte) { return ts_node__first_child_for_byte(self, byte, false); } -TSNode ts_node_descendant_for_byte_range( - TSNode self, +t_parse_node ts_node_descendant_for_byte_range( + t_parse_node self, uint32_t start, uint32_t end ) { return ts_node__descendant_for_byte_range(self, start, end, true); } -TSNode ts_node_named_descendant_for_byte_range( - TSNode self, +t_parse_node ts_node_named_descendant_for_byte_range( + t_parse_node self, uint32_t start, uint32_t end ) { return ts_node__descendant_for_byte_range(self, start, end, false); } -TSNode ts_node_descendant_for_point_range( - TSNode self, - TSPoint start, - TSPoint end +t_parse_node ts_node_descendant_for_point_range( + t_parse_node self, + t_point start, + t_point end ) { return ts_node__descendant_for_point_range(self, start, end, true); } -TSNode ts_node_named_descendant_for_point_range( - TSNode self, - TSPoint start, - TSPoint end +t_parse_node ts_node_named_descendant_for_point_range( + t_parse_node self, + t_point start, + t_point end ) { return ts_node__descendant_for_point_range(self, start, end, false); } -void ts_node_edit(TSNode *self, const TSInputEdit *edit) { +void ts_node_edit(t_parse_node *self, const t_input_edit *edit) { uint32_t start_byte = ts_node_start_byte(*self); - TSPoint start_point = ts_node_start_point(*self); + t_point start_point = ts_node_start_point(*self); if (start_byte >= edit->old_end_byte) { start_byte = edit->new_end_byte + (start_byte - edit->old_end_byte); diff --git a/parser/src/parser.c b/parser/src/parser.c index ac145cea..7ad2d788 100644 --- a/parser/src/parser.c +++ b/parser/src/parser.c @@ -87,11 +87,11 @@ typedef struct { uint32_t byte_index; } TokenCache; -struct TSParser { +struct t_parser { Lexer lexer; Stack *stack; SubtreePool tree_pool; - const TSLanguage *language; + const t_language *language; ReduceActionSet reduce_actions; Subtree finished_tree; SubtreeArray trailing_extras; @@ -137,7 +137,7 @@ typedef struct { static const char *ts_string_input_read( void *_self, uint32_t byte, - TSPoint point, + t_point point, uint32_t *length ) { (void)point; @@ -153,7 +153,7 @@ static const char *ts_string_input_read( // Parser - Private -static void ts_parser__log(TSParser *self) { +static void ts_parser__log(t_parser *self) { if (self->lexer.logger.log) { self->lexer.logger.log( self->lexer.logger.payload, @@ -173,7 +173,7 @@ static void ts_parser__log(TSParser *self) { } static bool ts_parser__breakdown_top_of_stack( - TSParser *self, + t_parser *self, StackVersion version ) { bool did_break_down = false; @@ -187,7 +187,7 @@ static bool ts_parser__breakdown_top_of_stack( pending = false; for (uint32_t i = 0; i < pop.size; i++) { StackSlice slice = pop.contents[i]; - TSStateId state = ts_stack_state(self->stack, slice.version); + t_state_id state = ts_stack_state(self->stack, slice.version); Subtree parent = *array_front(&slice.subtrees); for (uint32_t j = 0, n = ts_subtree_child_count(parent); j < n; j++) { @@ -221,9 +221,9 @@ static bool ts_parser__breakdown_top_of_stack( } static void ts_parser__breakdown_lookahead( - TSParser *self, + t_parser *self, Subtree *lookahead, - TSStateId state, + t_state_id state, ReusableNode *reusable_node ) { bool did_descend = false; @@ -243,7 +243,7 @@ static void ts_parser__breakdown_lookahead( } static ErrorComparison ts_parser__compare_versions( - TSParser *self, + t_parser *self, ErrorStatus a, ErrorStatus b ) { @@ -286,7 +286,7 @@ static ErrorComparison ts_parser__compare_versions( } static ErrorStatus ts_parser__version_status( - TSParser *self, + t_parser *self, StackVersion version ) { unsigned cost = ts_stack_error_cost(self->stack, version); @@ -301,7 +301,7 @@ static ErrorStatus ts_parser__version_status( } static bool ts_parser__better_version_exists( - TSParser *self, + t_parser *self, StackVersion version, bool is_in_error, unsigned cost @@ -337,13 +337,13 @@ static bool ts_parser__better_version_exists( return false; } -static bool ts_parser__call_main_lex_fn(TSParser *self, TSLexMode lex_mode) { +static bool ts_parser__call_main_lex_fn(t_parser *self, TSLexMode lex_mode) { return self->language->lex_fn(&self->lexer.data, lex_mode.lex_state); } -static bool ts_parser__call_keyword_lex_fn(TSParser *self, TSLexMode lex_mode) { +static bool ts_parser__call_keyword_lex_fn(t_parser *self, TSLexMode lex_mode) { (void)(lex_mode); return self->language->keyword_lex_fn(&self->lexer.data, 0); @@ -351,7 +351,7 @@ static bool ts_parser__call_keyword_lex_fn(TSParser *self, TSLexMode lex_mode) { } static void ts_parser__external_scanner_create( - TSParser *self + t_parser *self ) { if (self->language && self->language->external_scanner.states) { if (self->language->external_scanner.create) { @@ -361,7 +361,7 @@ if (self->language->external_scanner.create) { }} static void ts_parser__external_scanner_destroy( - TSParser *self + t_parser *self ) { if ( self->language && @@ -376,7 +376,7 @@ static void ts_parser__external_scanner_destroy( } static unsigned ts_parser__external_scanner_serialize( - TSParser *self + t_parser *self ) { uint32_t length = self->language->external_scanner.serialize( self->external_scanner_payload, @@ -388,7 +388,7 @@ static unsigned ts_parser__external_scanner_serialize( } static void ts_parser__external_scanner_deserialize( - TSParser *self, + t_parser *self, Subtree external_token ) { const char *data = NULL; @@ -408,8 +408,8 @@ static void ts_parser__external_scanner_deserialize( } static bool ts_parser__external_scanner_scan( - TSParser *self, - TSStateId external_lex_state + t_parser *self, + t_state_id external_lex_state ) { const bool *valid_external_tokens = ts_language_enabled_external_tokens( @@ -425,14 +425,14 @@ static bool ts_parser__external_scanner_scan( } static bool ts_parser__can_reuse_first_leaf( - TSParser *self, - TSStateId state, + t_parser *self, + t_state_id state, Subtree tree, TableEntry *table_entry ) { TSLexMode current_lex_mode = self->language->lex_modes[state]; - TSSymbol leaf_symbol = ts_subtree_leaf_symbol(tree); - TSStateId leaf_state = ts_subtree_leaf_parse_state(tree); + t_symbol leaf_symbol = ts_subtree_leaf_symbol(tree); + t_state_id leaf_state = ts_subtree_leaf_parse_state(tree); TSLexMode leaf_lex_mode = self->language->lex_modes[leaf_state]; // At the end of a non-terminal extra node, the lexer normally returns @@ -460,9 +460,9 @@ static bool ts_parser__can_reuse_first_leaf( } static Subtree ts_parser__lex( - TSParser *self, + t_parser *self, StackVersion version, - TSStateId parse_state + t_state_id parse_state ) { TSLexMode lex_mode = self->language->lex_modes[parse_state]; if (lex_mode.lex_state == (uint16_t)-1) { @@ -596,7 +596,7 @@ static Subtree ts_parser__lex( ); } else { bool is_keyword = false; - TSSymbol symbol = self->lexer.data.result_symbol; + t_symbol symbol = self->lexer.data.result_symbol; Length padding = length_sub(self->lexer.token_start_position, start_position); Length size = length_sub(self->lexer.token_end_position, self->lexer.token_start_position); uint32_t lookahead_bytes = lookahead_end_byte - self->lexer.token_end_position.bytes; @@ -651,8 +651,8 @@ static Subtree ts_parser__lex( } static Subtree ts_parser__get_cached_token( - TSParser *self, - TSStateId state, + t_parser *self, + t_state_id state, size_t position, Subtree last_external_token, TableEntry *table_entry @@ -672,7 +672,7 @@ static Subtree ts_parser__get_cached_token( } static void ts_parser__set_cached_token( - TSParser *self, + t_parser *self, uint32_t byte_index, Subtree last_external_token, Subtree token @@ -688,7 +688,7 @@ static void ts_parser__set_cached_token( } static bool ts_parser__has_included_range_difference( - const TSParser *self, + const t_parser *self, uint32_t start_position, uint32_t end_position ) { @@ -701,9 +701,9 @@ static bool ts_parser__has_included_range_difference( } static Subtree ts_parser__reuse_node( - TSParser *self, + t_parser *self, StackVersion version, - TSStateId *state, + t_state_id *state, uint32_t position, Subtree last_external_token, TableEntry *table_entry @@ -759,7 +759,7 @@ static Subtree ts_parser__reuse_node( continue; } - TSSymbol leaf_symbol = ts_subtree_leaf_symbol(result); + t_symbol leaf_symbol = ts_subtree_leaf_symbol(result); ts_language_table_entry(self->language, *state, leaf_symbol, table_entry); if (!ts_parser__can_reuse_first_leaf(self, *state, result, table_entry)) { LOG( @@ -783,7 +783,7 @@ static Subtree ts_parser__reuse_node( // // The decision is based on the trees' error costs (if any), their dynamic precedence, // and finally, as a default, by a recursive comparison of the trees' symbols. -static bool ts_parser__select_tree(TSParser *self, Subtree left, Subtree right) { +static bool ts_parser__select_tree(t_parser *self, Subtree left, Subtree right) { if (!left.ptr) return true; if (!right.ptr) return false; @@ -831,7 +831,7 @@ static bool ts_parser__select_tree(TSParser *self, Subtree left, Subtree right) // Determine if a given tree's children should be replaced by an alternative // array of children. static bool ts_parser__select_children( - TSParser *self, + t_parser *self, Subtree left, const SubtreeArray *children ) { @@ -856,9 +856,9 @@ static bool ts_parser__select_children( } static void ts_parser__shift( - TSParser *self, + t_parser *self, StackVersion version, - TSStateId state, + t_state_id state, Subtree lookahead, bool extra ) { @@ -879,9 +879,9 @@ static void ts_parser__shift( } static StackVersion ts_parser__reduce( - TSParser *self, + t_parser *self, StackVersion version, - TSSymbol symbol, + t_symbol symbol, uint32_t count, int dynamic_precedence, uint16_t production_id, @@ -957,8 +957,8 @@ static StackVersion ts_parser__reduce( } } - TSStateId state = ts_stack_state(self->stack, slice_version); - TSStateId next_state = ts_language_next_state(self->language, state, symbol); + t_state_id state = ts_stack_state(self->stack, slice_version); + t_state_id next_state = ts_language_next_state(self->language, state, symbol); if (end_of_non_terminal_extra && next_state == state) { parent.ptr->extra = true; } @@ -994,7 +994,7 @@ static StackVersion ts_parser__reduce( } static void ts_parser__accept( - TSParser *self, + t_parser *self, StackVersion version, Subtree lookahead ) { @@ -1047,9 +1047,9 @@ static void ts_parser__accept( } static bool ts_parser__do_all_potential_reductions( - TSParser *self, + t_parser *self, StackVersion starting_version, - TSSymbol lookahead_symbol + t_symbol lookahead_symbol ) { uint32_t initial_version_count = ts_stack_version_count(self->stack); @@ -1068,11 +1068,11 @@ static bool ts_parser__do_all_potential_reductions( } if (merged) continue; - TSStateId state = ts_stack_state(self->stack, version); + t_state_id state = ts_stack_state(self->stack, version); bool has_shift_action = false; array_clear(&self->reduce_actions); - TSSymbol first_symbol, end_symbol; + t_symbol first_symbol, end_symbol; if (lookahead_symbol != 0) { first_symbol = lookahead_symbol; end_symbol = lookahead_symbol + 1; @@ -1081,7 +1081,7 @@ static bool ts_parser__do_all_potential_reductions( end_symbol = self->language->token_count; } - for (TSSymbol symbol = first_symbol; symbol < end_symbol; symbol++) { + for (t_symbol symbol = first_symbol; symbol < end_symbol; symbol++) { TableEntry entry; ts_language_table_entry(self->language, state, symbol, &entry); for (uint32_t j = 0; j < entry.action_count; j++) { @@ -1137,10 +1137,10 @@ static bool ts_parser__do_all_potential_reductions( } static bool ts_parser__recover_to_state( - TSParser *self, + t_parser *self, StackVersion version, unsigned depth, - TSStateId goal_state + t_state_id goal_state ) { StackSliceArray pop = ts_stack_pop_count(self->stack, version, depth); StackVersion previous_version = STACK_VERSION_NONE; @@ -1196,7 +1196,7 @@ static bool ts_parser__recover_to_state( } static void ts_parser__recover( - TSParser *self, + t_parser *self, StackVersion version, Subtree lookahead ) { @@ -1373,7 +1373,7 @@ static void ts_parser__recover( } static void ts_parser__handle_error( - TSParser *self, + t_parser *self, StackVersion version, Subtree lookahead ) { @@ -1391,13 +1391,13 @@ static void ts_parser__handle_error( bool did_insert_missing_token = false; for (StackVersion v = version; v < version_count;) { if (!did_insert_missing_token) { - TSStateId state = ts_stack_state(self->stack, v); + t_state_id state = ts_stack_state(self->stack, v); for ( - TSSymbol missing_symbol = 1; + t_symbol missing_symbol = 1; missing_symbol < (uint16_t)self->language->token_count; missing_symbol++ ) { - TSStateId state_after_missing_symbol = ts_language_next_state( + t_state_id state_after_missing_symbol = ts_language_next_state( self->language, state, missing_symbol ); if (state_after_missing_symbol == 0 || state_after_missing_symbol == state) { @@ -1471,11 +1471,11 @@ static void ts_parser__handle_error( } static bool ts_parser__advance( - TSParser *self, + t_parser *self, StackVersion version, bool allow_node_reuse ) { - TSStateId state = ts_stack_state(self->stack, version); + t_state_id state = ts_stack_state(self->stack, version); uint32_t position = ts_stack_position(self->stack, version).bytes; Subtree last_external_token = ts_stack_last_external_token(self->stack, version); @@ -1548,7 +1548,7 @@ static bool ts_parser__advance( switch (action.type) { case TSParseActionTypeShift: { if (action.shift.repetition) break; - TSStateId next_state; + t_state_id next_state; if (action.shift.extra) { next_state = state; LOG("shift_extra"); @@ -1688,7 +1688,7 @@ static bool ts_parser__advance( } } -static unsigned ts_parser__condense_stack(TSParser *self) { +static unsigned ts_parser__condense_stack(t_parser *self) { bool made_changes = false; unsigned min_error_cost = UINT_MAX; for (StackVersion i = 0; i < ts_stack_version_count(self->stack); i++) { @@ -1788,7 +1788,7 @@ static unsigned ts_parser__condense_stack(TSParser *self) { return min_error_cost; } -static bool ts_parser_has_outstanding_parse(TSParser *self) { +static bool ts_parser_has_outstanding_parse(t_parser *self) { return ( self->external_scanner_payload || ts_stack_state(self->stack, 0) != 1 || @@ -1798,8 +1798,8 @@ static bool ts_parser_has_outstanding_parse(TSParser *self) { // Parser - Public -TSParser *ts_parser_new(void) { - TSParser *self = ts_calloc(1, sizeof(TSParser)); +t_parser *ts_parser_new(void) { + t_parser *self = ts_calloc(1, sizeof(t_parser)); ts_lexer_init(&self->lexer); array_init(&self->reduce_actions); array_reserve(&self->reduce_actions, 4); @@ -1822,7 +1822,7 @@ TSParser *ts_parser_new(void) { return self; } -void ts_parser_delete(TSParser *self) { +void ts_parser_delete(t_parser *self) { if (!self) return; ts_parser_set_language(self, NULL); @@ -1847,11 +1847,11 @@ void ts_parser_delete(TSParser *self) { ts_free(self); } -const TSLanguage *ts_parser_language(const TSParser *self) { +const t_language *ts_parser_language(const t_parser *self) { return self->language; } -bool ts_parser_set_language(TSParser *self, const TSLanguage *language) { +bool ts_parser_set_language(t_parser *self, const t_language *language) { ts_parser_reset(self); ts_language_delete(self->language); self->language = NULL; @@ -1869,15 +1869,15 @@ bool ts_parser_set_language(TSParser *self, const TSLanguage *language) { return true; } -TSLogger ts_parser_logger(const TSParser *self) { +t_logger ts_parser_logger(const t_parser *self) { return self->lexer.logger; } -void ts_parser_set_logger(TSParser *self, TSLogger logger) { +void ts_parser_set_logger(t_parser *self, t_logger logger) { self->lexer.logger = logger; } -void ts_parser_print_dot_graphs(TSParser *self, int fd) { +void ts_parser_print_dot_graphs(t_parser *self, int fd) { if (self->dot_graph_file) { fclose(self->dot_graph_file); } @@ -1893,35 +1893,35 @@ void ts_parser_print_dot_graphs(TSParser *self, int fd) { } } -const size_t *ts_parser_cancellation_flag(const TSParser *self) { +const size_t *ts_parser_cancellation_flag(const t_parser *self) { return (const size_t *)self->cancellation_flag; } -void ts_parser_set_cancellation_flag(TSParser *self, const size_t *flag) { +void ts_parser_set_cancellation_flag(t_parser *self, const size_t *flag) { self->cancellation_flag = (const volatile size_t *)flag; } -uint64_t ts_parser_timeout_micros(const TSParser *self) { +uint64_t ts_parser_timeout_micros(const t_parser *self) { return duration_to_micros(self->timeout_duration); } -void ts_parser_set_timeout_micros(TSParser *self, uint64_t timeout_micros) { +void ts_parser_set_timeout_micros(t_parser *self, uint64_t timeout_micros) { self->timeout_duration = duration_from_micros(timeout_micros); } bool ts_parser_set_included_ranges( - TSParser *self, - const TSRange *ranges, + t_parser *self, + const t_range *ranges, uint32_t count ) { return ts_lexer_set_included_ranges(&self->lexer, ranges, count); } -const TSRange *ts_parser_included_ranges(const TSParser *self, uint32_t *count) { +const t_range *ts_parser_included_ranges(const t_parser *self, uint32_t *count) { return ts_lexer_included_ranges(&self->lexer, count); } -void ts_parser_reset(TSParser *self) { +void ts_parser_reset(t_parser *self) { ts_parser__external_scanner_destroy(self); if (self->old_tree.ptr) { @@ -1941,12 +1941,12 @@ void ts_parser_reset(TSParser *self) { self->has_scanner_error = false; } -TSTree *ts_parser_parse( - TSParser *self, - const TSTree *old_tree, - TSInput input +t_tree *ts_parser_parse( + t_parser *self, + const t_tree *old_tree, + t_input input ) { - TSTree *result = NULL; + t_tree *result = NULL; if (!self->language || !input.read) return NULL; @@ -1973,7 +1973,7 @@ TSTree *ts_parser_parse( LOG("parse_after_edit"); LOG_TREE(self->old_tree); for (unsigned i = 0; i < self->included_range_differences.size; i++) { - TSRange *range = &self->included_range_differences.contents[i]; + t_range *range = &self->included_range_differences.contents[i]; LOG("different_included_range %u - %u", range->start_byte, range->end_byte); } } else { @@ -2037,7 +2037,7 @@ TSTree *ts_parser_parse( } while (self->included_range_difference_index < self->included_range_differences.size) { - TSRange *range = &self->included_range_differences.contents[self->included_range_difference_index]; + t_range *range = &self->included_range_differences.contents[self->included_range_difference_index]; if (range->end_byte <= position) { self->included_range_difference_index++; } else { @@ -2064,24 +2064,24 @@ exit: return result; } -TSTree *ts_parser_parse_string( - TSParser *self, - const TSTree *old_tree, +t_tree *ts_parser_parse_string( + t_parser *self, + const t_tree *old_tree, const char *string, uint32_t length ) { return ts_parser_parse_string_encoding(self, old_tree, string, length, TSInputEncodingUTF8); } -TSTree *ts_parser_parse_string_encoding( - TSParser *self, - const TSTree *old_tree, +t_tree *ts_parser_parse_string_encoding( + t_parser *self, + const t_tree *old_tree, const char *string, uint32_t length, - TSInputEncoding encoding + t_input_encoding encoding ) { TSStringInput input = {string, length}; - return ts_parser_parse(self, old_tree, (TSInput) { + return ts_parser_parse(self, old_tree, (t_input) { &input, ts_string_input_read, encoding, diff --git a/parser/src/parser.h b/parser/src/parser.h index 17f0e94b..fa49485b 100644 --- a/parser/src/parser.h +++ b/parser/src/parser.h @@ -9,7 +9,7 @@ extern "C" { #include #include -#define ts_builtin_sym_error ((TSSymbol)-1) +#define ts_builtin_sym_error ((t_symbol)-1) #define ts_builtin_sym_end 0 #define TREE_SITTER_SERIALIZATION_BUFFER_SIZE 1024 @@ -21,7 +21,7 @@ typedef struct TSLanguage TSLanguage; #endif typedef struct { - TSFieldId field_id; + t_field_id field_id; uint8_t child_index; bool inherited; } TSFieldMapEntry; @@ -41,7 +41,7 @@ typedef struct TSLexer TSLexer; struct TSLexer { int32_t lookahead; - TSSymbol result_symbol; + t_symbol result_symbol; void (*advance)(TSLexer *, bool); void (*mark_end)(TSLexer *); uint32_t (*get_column)(TSLexer *); @@ -59,14 +59,14 @@ typedef enum { typedef union { struct { uint8_t type; - TSStateId state; + t_state_id state; bool extra; bool repetition; } shift; struct { uint8_t type; uint8_t child_count; - TSSymbol symbol; + t_symbol symbol; int16_t dynamic_precedence; uint16_t production_id; } reduce; @@ -91,7 +91,7 @@ typedef struct { int32_t end; } TSCharacterRange; -struct TSLanguage { +struct t_language { uint32_t version; uint32_t symbol_count; uint32_t alias_count; @@ -111,23 +111,23 @@ struct TSLanguage { const TSFieldMapSlice *field_map_slices; const TSFieldMapEntry *field_map_entries; const TSSymbolMetadata *symbol_metadata; - const TSSymbol *public_symbol_map; + const t_symbol *public_symbol_map; const uint16_t *alias_map; - const TSSymbol *alias_sequences; + const t_symbol *alias_sequences; const TSLexMode *lex_modes; - bool (*lex_fn)(TSLexer *, TSStateId); - bool (*keyword_lex_fn)(TSLexer *, TSStateId); - TSSymbol keyword_capture_token; + bool (*lex_fn)(TSLexer *, t_state_id); + bool (*keyword_lex_fn)(TSLexer *, t_state_id); + t_symbol keyword_capture_token; struct { const bool *states; - const TSSymbol *symbol_map; + const t_symbol *symbol_map; void *(*create)(void); void (*destroy)(void *); bool (*scan)(void *, TSLexer *, const bool *symbol_whitelist); unsigned (*serialize)(void *, char *); void (*deserialize)(void *, const char *, unsigned); } external_scanner; - const TSStateId *primary_state_ids; + const t_state_id *primary_state_ids; }; static inline bool set_contains(TSCharacterRange *ranges, uint32_t len, int32_t lookahead) { diff --git a/parser/src/point.h b/parser/src/point.h index 1c8b7133..3723299e 100644 --- a/parser/src/point.h +++ b/parser/src/point.h @@ -3,56 +3,56 @@ #include "./api.h" -#define POINT_ZERO ((TSPoint) {0, 0}) -#define POINT_MAX ((TSPoint) {UINT32_MAX, UINT32_MAX}) +#define POINT_ZERO ((t_point) {0, 0}) +#define POINT_MAX ((t_point) {UINT32_MAX, UINT32_MAX}) -static inline TSPoint point__new(unsigned row, unsigned column) { - TSPoint result = {row, column}; +static inline t_point point__new(unsigned row, unsigned column) { + t_point result = {row, column}; return result; } -static inline TSPoint point_add(TSPoint a, TSPoint b) { +static inline t_point point_add(t_point a, t_point b) { if (b.row > 0) return point__new(a.row + b.row, b.column); else return point__new(a.row, a.column + b.column); } -static inline TSPoint point_sub(TSPoint a, TSPoint b) { +static inline t_point point_sub(t_point a, t_point b) { if (a.row > b.row) return point__new(a.row - b.row, a.column); else return point__new(0, a.column - b.column); } -static inline bool point_lte(TSPoint a, TSPoint b) { +static inline bool point_lte(t_point a, t_point b) { return (a.row < b.row) || (a.row == b.row && a.column <= b.column); } -static inline bool point_lt(TSPoint a, TSPoint b) { +static inline bool point_lt(t_point a, t_point b) { return (a.row < b.row) || (a.row == b.row && a.column < b.column); } -static inline bool point_gt(TSPoint a, TSPoint b) { +static inline bool point_gt(t_point a, t_point b) { return (a.row > b.row) || (a.row == b.row && a.column > b.column); } -static inline bool point_gte(TSPoint a, TSPoint b) { +static inline bool point_gte(t_point a, t_point b) { return (a.row > b.row) || (a.row == b.row && a.column >= b.column); } -static inline bool point_eq(TSPoint a, TSPoint b) { +static inline bool point_eq(t_point a, t_point b) { return a.row == b.row && a.column == b.column; } -static inline TSPoint point_min(TSPoint a, TSPoint b) { +static inline t_point point_min(t_point a, t_point b) { if (a.row < b.row || (a.row == b.row && a.column < b.column)) return a; else return b; } -static inline TSPoint point_max(TSPoint a, TSPoint b) { +static inline t_point point_max(t_point a, t_point b) { if (a.row > b.row || (a.row == b.row && a.column > b.column)) return a; else diff --git a/parser/src/query.c b/parser/src/query.c index c75700b8..ffded551 100644 --- a/parser/src/query.c +++ b/parser/src/query.c @@ -83,9 +83,9 @@ typedef struct { * even completed yet. */ typedef struct { - TSSymbol symbol; - TSSymbol supertype_symbol; - TSFieldId field; + t_symbol symbol; + t_symbol supertype_symbol; + t_field_id field; uint16_t capture_ids[MAX_STEP_CAPTURE_COUNT]; uint16_t depth; uint16_t alternative_index; @@ -191,7 +191,7 @@ typedef struct { bool needs_parent: 1; } QueryState; -typedef Array(TSQueryCapture) CaptureList; +typedef Array(t_query_capture) CaptureList; /* * CaptureListPool - A collection of *lists* of captures. Each query state needs @@ -218,10 +218,10 @@ typedef struct { * a query pattern, to determine at which steps the pattern might fail to match. */ typedef struct { - TSStateId parse_state; - TSSymbol parent_symbol; + t_state_id parse_state; + t_symbol parent_symbol; uint16_t child_index; - TSFieldId field_id: 15; + t_field_id field_id: 15; bool done: 1; } AnalysisStateEntry; @@ -229,7 +229,7 @@ typedef struct { AnalysisStateEntry stack[MAX_ANALYSIS_STATE_DEPTH]; uint16_t depth; uint16_t step_index; - TSSymbol root_symbol; + t_symbol root_symbol; } AnalysisState; typedef Array(AnalysisState *) AnalysisStateSet; @@ -240,7 +240,7 @@ typedef struct { AnalysisStateSet deeper_states; AnalysisStateSet state_pool; Array(uint16_t) final_step_indices; - Array(TSSymbol) finished_parent_symbols; + Array(t_symbol) finished_parent_symbols; bool did_abort; } QueryAnalysis; @@ -251,15 +251,15 @@ typedef struct { * downstream states. */ typedef struct { - TSStateId state; + t_state_id state; uint16_t production_id; uint8_t child_index: 7; bool done: 1; } AnalysisSubgraphNode; typedef struct { - TSSymbol symbol; - Array(TSStateId) start_states; + t_symbol symbol; + Array(t_state_id) start_states; Array(AnalysisSubgraphNode) nodes; } AnalysisSubgraph; @@ -271,7 +271,7 @@ typedef Array(AnalysisSubgraph) AnalysisSubgraphArray; * to which reduce actions. */ typedef struct { - TSStateId *contents; + t_state_id *contents; } StatePredecessorMap; /* @@ -279,28 +279,28 @@ typedef struct { * itself is immutable. The mutable state used in the process of executing the * query is stored in a `TSQueryCursor`. */ -struct TSQuery { +struct t_query { SymbolTable captures; SymbolTable predicate_values; Array(CaptureQuantifiers) capture_quantifiers; Array(QueryStep) steps; Array(PatternEntry) pattern_map; - Array(TSQueryPredicateStep) predicate_steps; + Array(t_query_predicate_step) predicate_steps; Array(QueryPattern) patterns; Array(StepOffset) step_offsets; - Array(TSFieldId) negated_fields; + Array(t_field_id) negated_fields; Array(char) string_buffer; - Array(TSSymbol) repeat_symbols_with_rootless_patterns; - const TSLanguage *language; + Array(t_symbol) repeat_symbols_with_rootless_patterns; + const t_language *language; uint16_t wildcard_root_pattern_count; }; /* * TSQueryCursor - A stateful struct used to execute a query on a tree. */ -struct TSQueryCursor { - const TSQuery *query; - TSTreeCursor cursor; +struct t_query_cursor { + const t_query *query; + t_tree_cursor cursor; Array(QueryState) states; Array(QueryState) finished_states; CaptureListPool capture_list_pool; @@ -308,8 +308,8 @@ struct TSQueryCursor { uint32_t max_start_depth; uint32_t start_byte; uint32_t end_byte; - TSPoint start_point; - TSPoint end_point; + t_point start_point; + t_point end_point; uint32_t next_state_id; bool on_visible_node; bool ascending; @@ -317,10 +317,10 @@ struct TSQueryCursor { bool did_exceed_match_limit; }; -static const TSQueryError PARENT_DONE = -1; +static const t_query_error PARENT_DONE = -1; static const uint16_t PATTERN_DONE_MARKER = UINT16_MAX; static const uint16_t NONE = UINT16_MAX; -static const TSSymbol WILDCARD_SYMBOL = 0; +static const t_symbol WILDCARD_SYMBOL = 0; /********** * Stream @@ -480,9 +480,9 @@ static void capture_list_pool_release(CaptureListPool *self, uint16_t id) { * Quantifiers **************/ -static TSQuantifier quantifier_mul( - TSQuantifier left, - TSQuantifier right +static t_quantifier quantifier_mul( + t_quantifier left, + t_quantifier right ) { switch (left) { @@ -529,9 +529,9 @@ static TSQuantifier quantifier_mul( return TSQuantifierZero; // to make compiler happy, but all cases should be covered above! } -static TSQuantifier quantifier_join( - TSQuantifier left, - TSQuantifier right +static t_quantifier quantifier_join( + t_quantifier left, + t_quantifier right ) { switch (left) { @@ -590,9 +590,9 @@ static TSQuantifier quantifier_join( return TSQuantifierZero; // to make compiler happy, but all cases should be covered above! } -static TSQuantifier quantifier_add( - TSQuantifier left, - TSQuantifier right +static t_quantifier quantifier_add( + t_quantifier left, + t_quantifier right ) { switch (left) { @@ -668,24 +668,24 @@ static void capture_quantifiers_replace( } // Return capture quantifier for the given capture id -static TSQuantifier capture_quantifier_for_id( +static t_quantifier capture_quantifier_for_id( const CaptureQuantifiers *self, uint16_t id ) { - return (self->size <= id) ? TSQuantifierZero : (TSQuantifier) *array_get(self, id); + return (self->size <= id) ? TSQuantifierZero : (t_quantifier) *array_get(self, id); } // Add the given quantifier to the current value for id static void capture_quantifiers_add_for_id( CaptureQuantifiers *self, uint16_t id, - TSQuantifier quantifier + t_quantifier quantifier ) { if (self->size <= id) { array_grow_by(self, id + 1 - self->size); } uint8_t *own_quantifier = array_get(self, id); - *own_quantifier = (uint8_t) quantifier_add((TSQuantifier) *own_quantifier, quantifier); + *own_quantifier = (uint8_t) quantifier_add((t_quantifier) *own_quantifier, quantifier); } // Point-wise add the given quantifiers to the current values @@ -699,18 +699,18 @@ static void capture_quantifiers_add_all( for (uint16_t id = 0; id < (uint16_t)quantifiers->size; id++) { uint8_t *quantifier = array_get(quantifiers, id); uint8_t *own_quantifier = array_get(self, id); - *own_quantifier = (uint8_t) quantifier_add((TSQuantifier) *own_quantifier, (TSQuantifier) *quantifier); + *own_quantifier = (uint8_t) quantifier_add((t_quantifier) *own_quantifier, (t_quantifier) *quantifier); } } // Join the given quantifier with the current values static void capture_quantifiers_mul( CaptureQuantifiers *self, - TSQuantifier quantifier + t_quantifier quantifier ) { for (uint16_t id = 0; id < (uint16_t)self->size; id++) { uint8_t *own_quantifier = array_get(self, id); - *own_quantifier = (uint8_t) quantifier_mul((TSQuantifier) *own_quantifier, quantifier); + *own_quantifier = (uint8_t) quantifier_mul((t_quantifier) *own_quantifier, quantifier); } } @@ -725,11 +725,11 @@ static void capture_quantifiers_join_all( for (uint32_t id = 0; id < quantifiers->size; id++) { uint8_t *quantifier = array_get(quantifiers, id); uint8_t *own_quantifier = array_get(self, id); - *own_quantifier = (uint8_t) quantifier_join((TSQuantifier) *own_quantifier, (TSQuantifier) *quantifier); + *own_quantifier = (uint8_t) quantifier_join((t_quantifier) *own_quantifier, (t_quantifier) *quantifier); } for (uint32_t id = quantifiers->size; id < self->size; id++) { uint8_t *own_quantifier = array_get(self, id); - *own_quantifier = (uint8_t) quantifier_join((TSQuantifier) *own_quantifier, TSQuantifierZero); + *own_quantifier = (uint8_t) quantifier_join((t_quantifier) *own_quantifier, TSQuantifierZero); } } @@ -797,7 +797,7 @@ static uint16_t symbol_table_insert_name( ************/ static QueryStep query_step__new( - TSSymbol symbol, + t_symbol symbol, uint16_t depth, bool is_immediate ) { @@ -851,12 +851,12 @@ static void query_step__remove_capture(QueryStep *self, uint16_t capture_id) { **********************/ static inline StatePredecessorMap state_predecessor_map_new( - const TSLanguage *language + const t_language *language ) { return (StatePredecessorMap) { .contents = ts_calloc( (size_t)language->state_count * (MAX_STATE_PREDECESSOR_COUNT + 1), - sizeof(TSStateId) + sizeof(t_state_id) ), }; } @@ -867,11 +867,11 @@ static inline void state_predecessor_map_delete(StatePredecessorMap *self) { static inline void state_predecessor_map_add( StatePredecessorMap *self, - TSStateId state, - TSStateId predecessor + t_state_id state, + t_state_id predecessor ) { size_t index = (size_t)state * (MAX_STATE_PREDECESSOR_COUNT + 1); - TSStateId *count = &self->contents[index]; + t_state_id *count = &self->contents[index]; if ( *count == 0 || (*count < MAX_STATE_PREDECESSOR_COUNT && self->contents[index + *count] != predecessor) @@ -881,9 +881,9 @@ static inline void state_predecessor_map_add( } } -static inline const TSStateId *state_predecessor_map_get( +static inline const t_state_id *state_predecessor_map_get( const StatePredecessorMap *self, - TSStateId state, + t_state_id state, unsigned *count ) { size_t index = (size_t)state * (MAX_STATE_PREDECESSOR_COUNT + 1); @@ -898,7 +898,7 @@ static inline const TSStateId *state_predecessor_map_get( static unsigned analysis_state__recursion_depth(const AnalysisState *self) { unsigned result = 0; for (unsigned i = 0; i < self->depth; i++) { - TSSymbol symbol = self->stack[i].parent_symbol; + t_symbol symbol = self->stack[i].parent_symbol; for (unsigned j = 0; j < i; j++) { if (self->stack[j].parent_symbol == symbol) { result++; @@ -948,7 +948,7 @@ static inline AnalysisStateEntry *analysis_state__top(AnalysisState *self) { return &self->stack[self->depth - 1]; } -static inline bool analysis_state__has_supertype(AnalysisState *self, TSSymbol symbol) { +static inline bool analysis_state__has_supertype(AnalysisState *self, t_symbol symbol) { for (unsigned i = 0; i < self->depth; i++) { if (self->stack[i].parent_symbol == symbol) return true; } @@ -1086,8 +1086,8 @@ static inline int analysis_subgraph_node__compare(const AnalysisSubgraphNode *se // If the symbol is not present `*result` is set to the index where the // symbol should be inserted. static inline bool ts_query__pattern_map_search( - const TSQuery *self, - TSSymbol needle, + const t_query *self, + t_symbol needle, uint32_t *result ) { uint32_t base_index = self->wildcard_root_pattern_count; @@ -1099,14 +1099,14 @@ static inline bool ts_query__pattern_map_search( while (size > 1) { uint32_t half_size = size / 2; uint32_t mid_index = base_index + half_size; - TSSymbol mid_symbol = self->steps.contents[ + t_symbol mid_symbol = self->steps.contents[ self->pattern_map.contents[mid_index].step_index ].symbol; if (needle > mid_symbol) base_index = mid_index; size -= half_size; } - TSSymbol symbol = self->steps.contents[ + t_symbol symbol = self->steps.contents[ self->pattern_map.contents[base_index].step_index ].symbol; @@ -1126,8 +1126,8 @@ static inline bool ts_query__pattern_map_search( // Insert a new pattern's start index into the pattern map, maintaining // the pattern map's ordering invariant. static inline void ts_query__pattern_map_insert( - TSQuery *self, - TSSymbol symbol, + t_query *self, + t_symbol symbol, PatternEntry new_entry ) { uint32_t index; @@ -1155,7 +1155,7 @@ static inline void ts_query__pattern_map_insert( // Walk the subgraph for this non-terminal, tracking all of the possible // sequences of progress within the pattern. static void ts_query__perform_analysis( - TSQuery *self, + t_query *self, const AnalysisSubgraphArray *subgraphs, QueryAnalysis *analysis ) { @@ -1251,9 +1251,9 @@ static void ts_query__perform_analysis( } } - const TSStateId parse_state = analysis_state__top(state)->parse_state; - const TSSymbol parent_symbol = analysis_state__top(state)->parent_symbol; - const TSFieldId parent_field_id = analysis_state__top(state)->field_id; + const t_state_id parse_state = analysis_state__top(state)->parse_state; + const t_symbol parent_symbol = analysis_state__top(state)->parent_symbol; + const t_field_id parent_field_id = analysis_state__top(state)->field_id; const unsigned child_index = analysis_state__top(state)->child_index; const QueryStep * const step = &self->steps.contents[state->step_index]; @@ -1266,7 +1266,7 @@ static void ts_query__perform_analysis( // are part of the subgraph for the current symbol. LookaheadIterator lookahead_iterator = ts_language_lookaheads(self->language, parse_state); while (ts_lookahead_iterator__next(&lookahead_iterator)) { - TSSymbol sym = lookahead_iterator.symbol; + t_symbol sym = lookahead_iterator.symbol; AnalysisSubgraphNode successor = { .state = parse_state, @@ -1301,13 +1301,13 @@ static void ts_query__perform_analysis( // Use the subgraph to determine what alias and field will eventually be applied // to this child node. - TSSymbol alias = ts_language_alias_at(self->language, node->production_id, child_index); - TSSymbol visible_symbol = alias + t_symbol alias = ts_language_alias_at(self->language, node->production_id, child_index); + t_symbol visible_symbol = alias ? alias : self->language->symbol_metadata[sym].visible ? self->language->public_symbol_map[sym] : 0; - TSFieldId field_id = parent_field_id; + t_field_id field_id = parent_field_id; if (!field_id) { const TSFieldMapEntry *field_map, *field_map_end; ts_language_field_map(self->language, node->production_id, &field_map, &field_map_end); @@ -1456,7 +1456,7 @@ static void ts_query__perform_analysis( } } -static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) { +static bool ts_query__analyze_patterns(t_query *self, unsigned *error_offset) { Array(uint16_t) non_rooted_pattern_start_steps = array_new(); for (unsigned i = 0; i < self->pattern_map.size; i++) { PatternEntry *pattern = &self->pattern_map.contents[i]; @@ -1515,11 +1515,11 @@ static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) { AnalysisSubgraphArray subgraphs = array_new(); for (unsigned i = 0; i < parent_step_indices.size; i++) { uint32_t parent_step_index = parent_step_indices.contents[i]; - TSSymbol parent_symbol = self->steps.contents[parent_step_index].symbol; + t_symbol parent_symbol = self->steps.contents[parent_step_index].symbol; AnalysisSubgraph subgraph = { .symbol = parent_symbol }; array_insert_sorted_by(&subgraphs, .symbol, subgraph); } - for (TSSymbol sym = (uint16_t)self->language->token_count; sym < (uint16_t)self->language->symbol_count; sym++) { + for (t_symbol sym = (uint16_t)self->language->token_count; sym < (uint16_t)self->language->symbol_count; sym++) { if (!ts_language_symbol_metadata(self->language, sym).visible) { AnalysisSubgraph subgraph = { .symbol = sym }; array_insert_sorted_by(&subgraphs, .symbol, subgraph); @@ -1533,7 +1533,7 @@ static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) { // with information about the node that would be created. // 3) A list of predecessor states for each state. StatePredecessorMap predecessor_map = state_predecessor_map_new(self->language); - for (TSStateId state = 1; state < (uint16_t)self->language->state_count; state++) { + for (t_state_id state = 1; state < (uint16_t)self->language->state_count; state++) { unsigned subgraph_index, exists; LookaheadIterator lookahead_iterator = ts_language_lookaheads(self->language, state); while (ts_lookahead_iterator__next(&lookahead_iterator)) { @@ -1541,14 +1541,14 @@ static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) { for (unsigned i = 0; i < lookahead_iterator.action_count; i++) { const TSParseAction *action = &lookahead_iterator.actions[i]; if (action->type == TSParseActionTypeReduce) { - const TSSymbol *aliases, *aliases_end; + const t_symbol *aliases, *aliases_end; ts_language_aliases_for_symbol( self->language, action->reduce.symbol, &aliases, &aliases_end ); - for (const TSSymbol *symbol = aliases; symbol < aliases_end; symbol++) { + for (const t_symbol *symbol = aliases; symbol < aliases_end; symbol++) { array_search_sorted_by( &subgraphs, .symbol, @@ -1569,7 +1569,7 @@ static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) { } } } else if (action->type == TSParseActionTypeShift && !action->shift.extra) { - TSStateId next_state = action->shift.state; + t_state_id next_state = action->shift.state; state_predecessor_map_add(&predecessor_map, next_state, state); } } @@ -1578,14 +1578,14 @@ static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) { state_predecessor_map_add(&predecessor_map, lookahead_iterator.next_state, state); } if (ts_language_state_is_primary(self->language, state)) { - const TSSymbol *aliases, *aliases_end; + const t_symbol *aliases, *aliases_end; ts_language_aliases_for_symbol( self->language, lookahead_iterator.symbol, &aliases, &aliases_end ); - for (const TSSymbol *symbol = aliases; symbol < aliases_end; symbol++) { + for (const t_symbol *symbol = aliases; symbol < aliases_end; symbol++) { array_search_sorted_by( &subgraphs, .symbol, @@ -1623,7 +1623,7 @@ static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) { AnalysisSubgraphNode node = array_pop(&next_nodes); if (node.child_index > 1) { unsigned predecessor_count; - const TSStateId *predecessors = state_predecessor_map_get( + const t_state_id *predecessors = state_predecessor_map_get( &predecessor_map, node.state, &predecessor_count @@ -1678,7 +1678,7 @@ static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) { for (unsigned i = 0; i < parent_step_indices.size; i++) { uint16_t parent_step_index = parent_step_indices.contents[i]; uint16_t parent_depth = self->steps.contents[parent_step_index].depth; - TSSymbol parent_symbol = self->steps.contents[parent_step_index].symbol; + t_symbol parent_symbol = self->steps.contents[parent_step_index].symbol; if (parent_symbol == ts_builtin_sym_error) continue; // Find the subgraph that corresponds to this pattern's root symbol. If the pattern's @@ -1701,7 +1701,7 @@ static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) { analysis_state_set__clear(&analysis.states, &analysis.state_pool); analysis_state_set__clear(&analysis.deeper_states, &analysis.state_pool); for (unsigned j = 0; j < subgraph->start_states.size; j++) { - TSStateId parse_state = subgraph->start_states.contents[j]; + t_state_id parse_state = subgraph->start_states.contents[j]; analysis_state_set__push(&analysis.states, &analysis.state_pool, &((AnalysisState) { .step_index = parent_step_index + 1, .stack = { @@ -1786,7 +1786,7 @@ static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) { end = start + pattern->predicate_steps.length, j = start; j < end; j++ ) { - TSQueryPredicateStep *step = &self->predicate_steps.contents[j]; + t_query_predicate_step *step = &self->predicate_steps.contents[j]; if (step->type == TSQueryPredicateStepTypeCapture) { uint16_t value_id = step->value_id; array_insert_sorted_by(&predicate_capture_ids, , value_id); @@ -1888,7 +1888,7 @@ static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) { if (metadata.visible || metadata.named) continue; for (uint32_t k = 0; k < subgraph->start_states.size; k++) { - TSStateId parse_state = subgraph->start_states.contents[k]; + t_state_id parse_state = subgraph->start_states.contents[k]; analysis_state_set__push(&analysis.states, &analysis.state_pool, &((AnalysisState) { .step_index = pattern_entry->step_index, .stack = { @@ -1921,7 +1921,7 @@ static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) { } for (unsigned k = 0; k < analysis.finished_parent_symbols.size; k++) { - TSSymbol symbol = analysis.finished_parent_symbols.contents[k]; + t_symbol symbol = analysis.finished_parent_symbols.contents[k]; array_insert_sorted_by(&self->repeat_symbols_with_rootless_patterns, , symbol); } } @@ -1955,9 +1955,9 @@ static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) { } static void ts_query__add_negated_fields( - TSQuery *self, + t_query *self, uint16_t step_index, - TSFieldId *field_ids, + t_field_id *field_ids, uint16_t field_count ) { QueryStep *step = &self->steps.contents[step_index]; @@ -1968,7 +1968,7 @@ static void ts_query__add_negated_fields( unsigned match_count = 0; unsigned start_i = 0; for (unsigned i = 0; i < self->negated_fields.size; i++) { - TSFieldId existing_field_id = self->negated_fields.contents[i]; + t_field_id existing_field_id = self->negated_fields.contents[i]; // At each zero value, terminate the match attempt. If we've exactly // matched the new field list, then reuse this index. Otherwise, @@ -2006,8 +2006,8 @@ static void ts_query__add_negated_fields( array_push(&self->negated_fields, 0); } -static TSQueryError ts_query__parse_string_literal( - TSQuery *self, +static t_query_error ts_query__parse_string_literal( + t_query *self, Stream *stream ) { const char *string_start = stream->input; @@ -2065,8 +2065,8 @@ static TSQueryError ts_query__parse_string_literal( // a higher level of abstraction, such as the Rust/JavaScript bindings. They // can contain '@'-prefixed capture names, double-quoted strings, and bare // symbols, which also represent strings. -static TSQueryError ts_query__parse_predicate( - TSQuery *self, +static t_query_error ts_query__parse_predicate( + t_query *self, Stream *stream ) { if (!stream_is_ident_start(stream)) return TSQueryErrorSyntax; @@ -2078,7 +2078,7 @@ static TSQueryError ts_query__parse_predicate( predicate_name, length ); - array_push(&self->predicate_steps, ((TSQueryPredicateStep) { + array_push(&self->predicate_steps, ((t_query_predicate_step) { .type = TSQueryPredicateStepTypeString, .value_id = id, })); @@ -2088,7 +2088,7 @@ static TSQueryError ts_query__parse_predicate( if (stream->next == ')') { stream_advance(stream); stream_skip_whitespace(stream); - array_push(&self->predicate_steps, ((TSQueryPredicateStep) { + array_push(&self->predicate_steps, ((t_query_predicate_step) { .type = TSQueryPredicateStepTypeDone, .value_id = 0, })); @@ -2116,7 +2116,7 @@ static TSQueryError ts_query__parse_predicate( return TSQueryErrorCapture; } - array_push(&self->predicate_steps, ((TSQueryPredicateStep) { + array_push(&self->predicate_steps, ((t_query_predicate_step) { .type = TSQueryPredicateStepTypeCapture, .value_id = capture_id, })); @@ -2124,14 +2124,14 @@ static TSQueryError ts_query__parse_predicate( // Parse a string literal else if (stream->next == '"') { - TSQueryError e = ts_query__parse_string_literal(self, stream); + t_query_error e = ts_query__parse_string_literal(self, stream); if (e) return e; uint16_t query_id = symbol_table_insert_name( &self->predicate_values, self->string_buffer.contents, self->string_buffer.size ); - array_push(&self->predicate_steps, ((TSQueryPredicateStep) { + array_push(&self->predicate_steps, ((t_query_predicate_step) { .type = TSQueryPredicateStepTypeString, .value_id = query_id, })); @@ -2147,7 +2147,7 @@ static TSQueryError ts_query__parse_predicate( symbol_start, symbol_length ); - array_push(&self->predicate_steps, ((TSQueryPredicateStep) { + array_push(&self->predicate_steps, ((t_query_predicate_step) { .type = TSQueryPredicateStepTypeString, .value_id = query_id, })); @@ -2169,8 +2169,8 @@ static TSQueryError ts_query__parse_predicate( // // The caller is responsible for passing in a dedicated CaptureQuantifiers. // These should not be shared between different calls to ts_query__parse_pattern! -static TSQueryError ts_query__parse_pattern( - TSQuery *self, +static t_query_error ts_query__parse_pattern( + t_query *self, Stream *stream, uint32_t depth, bool is_immediate, @@ -2202,7 +2202,7 @@ static TSQueryError ts_query__parse_pattern( CaptureQuantifiers branch_capture_quantifiers = capture_quantifiers_new(); for (;;) { uint32_t start_index = self->steps.size; - TSQueryError e = ts_query__parse_pattern( + t_query_error e = ts_query__parse_pattern( self, stream, depth, @@ -2269,7 +2269,7 @@ static TSQueryError ts_query__parse_pattern( stream_advance(stream); stream_skip_whitespace(stream); } - TSQueryError e = ts_query__parse_pattern( + t_query_error e = ts_query__parse_pattern( self, stream, depth, @@ -2304,7 +2304,7 @@ static TSQueryError ts_query__parse_pattern( // Otherwise, this parenthesis is the start of a named node. else { - TSSymbol symbol; + t_symbol symbol; // Parse a normal node name if (stream_is_ident_start(stream)) { @@ -2374,7 +2374,7 @@ static TSQueryError ts_query__parse_pattern( bool child_is_immediate = false; uint16_t last_child_step_index = 0; uint16_t negated_field_count = 0; - TSFieldId negated_field_ids[MAX_NEGATED_FIELD_COUNT]; + t_field_id negated_field_ids[MAX_NEGATED_FIELD_COUNT]; CaptureQuantifiers child_capture_quantifiers = capture_quantifiers_new(); for (;;) { // Parse a negated field assertion @@ -2390,7 +2390,7 @@ static TSQueryError ts_query__parse_pattern( uint32_t length = (uint32_t)(stream->input - field_name); stream_skip_whitespace(stream); - TSFieldId field_id = ts_language_field_id_for_name( + t_field_id field_id = ts_language_field_id_for_name( self->language, field_name, length @@ -2418,7 +2418,7 @@ static TSQueryError ts_query__parse_pattern( } uint16_t step_index = self->steps.size; - TSQueryError e = ts_query__parse_pattern( + t_query_error e = ts_query__parse_pattern( self, stream, depth + 1, @@ -2476,11 +2476,11 @@ static TSQueryError ts_query__parse_pattern( // Parse a double-quoted anonymous leaf node expression else if (stream->next == '"') { const char *string_start = stream->input; - TSQueryError e = ts_query__parse_string_literal(self, stream); + t_query_error e = ts_query__parse_string_literal(self, stream); if (e) return e; // Add a step for the node - TSSymbol symbol = ts_language_symbol_for_name( + t_symbol symbol = ts_language_symbol_for_name( self->language, self->string_buffer.contents, self->string_buffer.size, @@ -2510,7 +2510,7 @@ static TSQueryError ts_query__parse_pattern( // Parse the pattern CaptureQuantifiers field_capture_quantifiers = capture_quantifiers_new(); - TSQueryError e = ts_query__parse_pattern( + t_query_error e = ts_query__parse_pattern( self, stream, depth, @@ -2524,7 +2524,7 @@ static TSQueryError ts_query__parse_pattern( } // Add the field name to the first step of the pattern - TSFieldId field_id = ts_language_field_id_for_name( + t_field_id field_id = ts_language_field_id_for_name( self->language, field_name, length @@ -2561,7 +2561,7 @@ static TSQueryError ts_query__parse_pattern( stream_skip_whitespace(stream); // Parse suffixes modifiers for this pattern - TSQuantifier quantifier = TSQuantifierOne; + t_quantifier quantifier = TSQuantifierOne; for (;;) { // Parse the one-or-more operator. if (stream->next == '+') { @@ -2660,12 +2660,12 @@ static TSQueryError ts_query__parse_pattern( return 0; } -TSQuery *ts_query_new( - const TSLanguage *language, +t_query *ts_query_new( + const t_language *language, const char *source, uint32_t source_len, uint32_t *error_offset, - TSQueryError *error_type + t_query_error *error_type ) { if ( !language || @@ -2676,8 +2676,8 @@ TSQuery *ts_query_new( return NULL; } - TSQuery *self = ts_malloc(sizeof(TSQuery)); - *self = (TSQuery) { + t_query *self = ts_malloc(sizeof(t_query)); + *self = (t_query) { .steps = array_new(), .pattern_map = array_new(), .captures = symbol_table_new(), @@ -2794,7 +2794,7 @@ TSQuery *ts_query_new( return self; } -void ts_query_delete(TSQuery *self) { +void ts_query_delete(t_query *self) { if (self) { array_delete(&self->steps); array_delete(&self->pattern_map); @@ -2816,28 +2816,28 @@ void ts_query_delete(TSQuery *self) { } } -uint32_t ts_query_pattern_count(const TSQuery *self) { +uint32_t ts_query_pattern_count(const t_query *self) { return self->patterns.size; } -uint32_t ts_query_capture_count(const TSQuery *self) { +uint32_t ts_query_capture_count(const t_query *self) { return self->captures.slices.size; } -uint32_t ts_query_string_count(const TSQuery *self) { +uint32_t ts_query_string_count(const t_query *self) { return self->predicate_values.slices.size; } const char *ts_query_capture_name_for_id( - const TSQuery *self, + const t_query *self, uint32_t index, uint32_t *length ) { return symbol_table_name_for_id(&self->captures, index, length); } -TSQuantifier ts_query_capture_quantifier_for_id( - const TSQuery *self, +t_quantifier ts_query_capture_quantifier_for_id( + const t_query *self, uint32_t pattern_index, uint32_t capture_index ) { @@ -2846,15 +2846,15 @@ TSQuantifier ts_query_capture_quantifier_for_id( } const char *ts_query_string_value_for_id( - const TSQuery *self, + const t_query *self, uint32_t index, uint32_t *length ) { return symbol_table_name_for_id(&self->predicate_values, index, length); } -const TSQueryPredicateStep *ts_query_predicates_for_pattern( - const TSQuery *self, +const t_query_predicate_step *ts_query_predicates_for_pattern( + const t_query *self, uint32_t pattern_index, uint32_t *step_count ) { @@ -2867,14 +2867,14 @@ const TSQueryPredicateStep *ts_query_predicates_for_pattern( } uint32_t ts_query_start_byte_for_pattern( - const TSQuery *self, + const t_query *self, uint32_t pattern_index ) { return self->patterns.contents[pattern_index].start_byte; } bool ts_query_is_pattern_rooted( - const TSQuery *self, + const t_query *self, uint32_t pattern_index ) { for (unsigned i = 0; i < self->pattern_map.size; i++) { @@ -2887,7 +2887,7 @@ bool ts_query_is_pattern_rooted( } bool ts_query_is_pattern_non_local( - const TSQuery *self, + const t_query *self, uint32_t pattern_index ) { if (pattern_index < self->patterns.size) { @@ -2898,7 +2898,7 @@ bool ts_query_is_pattern_non_local( } bool ts_query_is_pattern_guaranteed_at_step( - const TSQuery *self, + const t_query *self, uint32_t byte_offset ) { uint32_t step_index = UINT32_MAX; @@ -2915,7 +2915,7 @@ bool ts_query_is_pattern_guaranteed_at_step( } bool ts_query__step_is_fallible( - const TSQuery *self, + const t_query *self, uint16_t step_index ) { assert((uint32_t)step_index + 1 < self->steps.size); @@ -2929,7 +2929,7 @@ bool ts_query__step_is_fallible( } void ts_query_disable_capture( - TSQuery *self, + t_query *self, const char *name, uint32_t length ) { @@ -2945,7 +2945,7 @@ void ts_query_disable_capture( } void ts_query_disable_pattern( - TSQuery *self, + t_query *self, uint32_t pattern_index ) { // Remove the given pattern from the pattern map. Its steps will still @@ -2963,9 +2963,9 @@ void ts_query_disable_pattern( * QueryCursor ***************/ -TSQueryCursor *ts_query_cursor_new(void) { - TSQueryCursor *self = ts_malloc(sizeof(TSQueryCursor)); - *self = (TSQueryCursor) { +t_query_cursor *ts_query_cursor_new(void) { + t_query_cursor *self = ts_malloc(sizeof(t_query_cursor)); + *self = (t_query_cursor) { .did_exceed_match_limit = false, .ascending = false, .halted = false, @@ -2983,7 +2983,7 @@ TSQueryCursor *ts_query_cursor_new(void) { return self; } -void ts_query_cursor_delete(TSQueryCursor *self) { +void ts_query_cursor_delete(t_query_cursor *self) { array_delete(&self->states); array_delete(&self->finished_states); ts_tree_cursor_delete(&self->cursor); @@ -2991,15 +2991,15 @@ void ts_query_cursor_delete(TSQueryCursor *self) { ts_free(self); } -bool ts_query_cursor_did_exceed_match_limit(const TSQueryCursor *self) { +bool ts_query_cursor_did_exceed_match_limit(const t_query_cursor *self) { return self->did_exceed_match_limit; } -uint32_t ts_query_cursor_match_limit(const TSQueryCursor *self) { +uint32_t ts_query_cursor_match_limit(const t_query_cursor *self) { return self->capture_list_pool.max_capture_list_count; } -void ts_query_cursor_set_match_limit(TSQueryCursor *self, uint32_t limit) { +void ts_query_cursor_set_match_limit(t_query_cursor *self, uint32_t limit) { self->capture_list_pool.max_capture_list_count = limit; } @@ -3010,9 +3010,9 @@ void ts_query_cursor_set_match_limit(TSQueryCursor *self, uint32_t limit) { #endif void ts_query_cursor_exec( - TSQueryCursor *self, - const TSQuery *query, - TSNode node + t_query_cursor *self, + const t_query *query, + t_parse_node node ) { if (query) { LOG("query steps:\n"); @@ -3054,7 +3054,7 @@ void ts_query_cursor_exec( } void ts_query_cursor_set_byte_range( - TSQueryCursor *self, + t_query_cursor *self, uint32_t start_byte, uint32_t end_byte ) { @@ -3066,9 +3066,9 @@ void ts_query_cursor_set_byte_range( } void ts_query_cursor_set_point_range( - TSQueryCursor *self, - TSPoint start_point, - TSPoint end_point + t_query_cursor *self, + t_point start_point, + t_point end_point ) { if (end_point.row == 0 && end_point.column == 0) { end_point = POINT_MAX; @@ -3080,7 +3080,7 @@ void ts_query_cursor_set_point_range( // Search through all of the in-progress states, and find the captured // node that occurs earliest in the document. static bool ts_query_cursor__first_in_progress_capture( - TSQueryCursor *self, + t_query_cursor *self, uint32_t *state_index, uint32_t *byte_offset, uint32_t *pattern_index, @@ -3102,7 +3102,7 @@ static bool ts_query_cursor__first_in_progress_capture( continue; } - TSNode node = captures->contents[state->consumed_capture_count].node; + t_parse_node node = captures->contents[state->consumed_capture_count].node; if ( ts_node_end_byte(node) <= self->start_byte || point_lte(ts_node_end_point(node), self->start_point) @@ -3135,7 +3135,7 @@ static bool ts_query_cursor__first_in_progress_capture( } // Determine which node is first in a depth-first traversal -int ts_query_cursor__compare_nodes(TSNode left, TSNode right) { +int ts_query_cursor__compare_nodes(t_parse_node left, t_parse_node right) { if (left.id != right.id) { uint32_t left_start = ts_node_start_byte(left); uint32_t right_start = ts_node_start_byte(right); @@ -3151,7 +3151,7 @@ int ts_query_cursor__compare_nodes(TSNode left, TSNode right) { // Determine if either state contains a superset of the other state's captures. void ts_query_cursor__compare_captures( - TSQueryCursor *self, + t_query_cursor *self, QueryState *left_state, QueryState *right_state, bool *left_contains_right, @@ -3171,8 +3171,8 @@ void ts_query_cursor__compare_captures( for (;;) { if (i < left_captures->size) { if (j < right_captures->size) { - TSQueryCapture *left = &left_captures->contents[i]; - TSQueryCapture *right = &right_captures->contents[j]; + t_query_capture *left = &left_captures->contents[i]; + t_query_capture *right = &right_captures->contents[j]; if (left->node.id == right->node.id && left->index == right->index) { i++; j++; @@ -3208,7 +3208,7 @@ void ts_query_cursor__compare_captures( } static void ts_query_cursor__add_state( - TSQueryCursor *self, + t_query_cursor *self, const PatternEntry *pattern ) { QueryStep *step = &self->query->steps.contents[pattern->step_index]; @@ -3272,7 +3272,7 @@ static void ts_query_cursor__add_state( // pool, this will steal the capture list from another existing state, and mark that // other state as 'dead'. static CaptureList *ts_query_cursor__prepare_to_capture( - TSQueryCursor *self, + t_query_cursor *self, QueryState *state, unsigned state_index_to_preserve ) { @@ -3319,10 +3319,10 @@ static CaptureList *ts_query_cursor__prepare_to_capture( } static void ts_query_cursor__capture( - TSQueryCursor *self, + t_query_cursor *self, QueryState *state, QueryStep *step, - TSNode node + t_parse_node node ) { if (state->dead) return; CaptureList *capture_list = ts_query_cursor__prepare_to_capture(self, state, UINT32_MAX); @@ -3334,7 +3334,7 @@ static void ts_query_cursor__capture( for (unsigned j = 0; j < MAX_STEP_CAPTURE_COUNT; j++) { uint16_t capture_id = step->capture_ids[j]; if (step->capture_ids[j] == NONE) break; - array_push(capture_list, ((TSQueryCapture) { node, capture_id })); + array_push(capture_list, ((t_query_capture) { node, capture_id })); LOG( " capture node. type:%s, pattern:%u, capture_id:%u, capture_count:%u\n", ts_node_type(node), @@ -3349,7 +3349,7 @@ static void ts_query_cursor__capture( // the given state in the `states` array. Ensures that the given state reference is // still valid, even if the states array is reallocated. static QueryState *ts_query_cursor__copy_state( - TSQueryCursor *self, + t_query_cursor *self, QueryState **state_ref ) { const QueryState *state = *state_ref; @@ -3374,7 +3374,7 @@ static QueryState *ts_query_cursor__copy_state( } static inline bool ts_query_cursor__should_descend( - TSQueryCursor *self, + t_query_cursor *self, bool node_intersects_range ) { @@ -3432,7 +3432,7 @@ static inline bool ts_query_cursor__should_descend( // `finished_states` array. Multiple patterns can finish on the same node. If // there are no more matches, return `false`. static inline bool ts_query_cursor__advance( - TSQueryCursor *self, + t_query_cursor *self, bool stop_on_definite_step ) { bool did_match = false; @@ -3530,8 +3530,8 @@ static inline bool ts_query_cursor__advance( // Enter a new node. else { // Get the properties of the current node. - TSNode node = ts_tree_cursor_current_node(&self->cursor); - TSNode parent_node = ts_tree_cursor_parent_node(&self->cursor); + t_parse_node node = ts_tree_cursor_current_node(&self->cursor); + t_parse_node parent_node = ts_tree_cursor_parent_node(&self->cursor); bool parent_precedes_range = !ts_node_is_null(parent_node) && ( ts_node_end_byte(parent_node) <= self->start_byte || point_lte(ts_node_end_point(parent_node), self->start_point) @@ -3552,13 +3552,13 @@ static inline bool ts_query_cursor__advance( bool node_intersects_range = !node_precedes_range && !node_follows_range; if (self->on_visible_node) { - TSSymbol symbol = ts_node_symbol(node); + t_symbol symbol = ts_node_symbol(node); bool is_named = ts_node_is_named(node); bool has_later_siblings; bool has_later_named_siblings; bool can_have_later_siblings_with_this_field; - TSFieldId field_id = 0; - TSSymbol supertypes[8] = {0}; + t_field_id field_id = 0; + t_symbol supertypes[8] = {0}; unsigned supertype_count = 8; ts_tree_cursor_current_status( &self->cursor, @@ -3682,9 +3682,9 @@ static inline bool ts_query_cursor__advance( } if (step->negated_field_list_id) { - TSFieldId *negated_field_ids = &self->query->negated_fields.contents[step->negated_field_list_id]; + t_field_id *negated_field_ids = &self->query->negated_fields.contents[step->negated_field_list_id]; for (;;) { - TSFieldId negated_field_id = *negated_field_ids; + t_field_id negated_field_id = *negated_field_ids; if (negated_field_id) { negated_field_ids++; if (ts_node_child_by_field_id(node, negated_field_id).id) { @@ -3738,7 +3738,7 @@ static inline bool ts_query_cursor__advance( // actually points to the *second* step of the pattern, then check // that the node has a parent, and capture the parent node if necessary. if (state->needs_parent) { - TSNode parent = ts_tree_cursor_parent_node(&self->cursor); + t_parse_node parent = ts_tree_cursor_parent_node(&self->cursor); if (ts_node_is_null(parent)) { LOG(" missing parent node\n"); state->dead = true; @@ -3942,8 +3942,8 @@ static inline bool ts_query_cursor__advance( } bool ts_query_cursor_next_match( - TSQueryCursor *self, - TSQueryMatch *match + t_query_cursor *self, + t_query_match *match ) { if (self->finished_states.size == 0) { if (!ts_query_cursor__advance(self, false)) { @@ -3967,7 +3967,7 @@ bool ts_query_cursor_next_match( } void ts_query_cursor_remove_match( - TSQueryCursor *self, + t_query_cursor *self, uint32_t match_id ) { for (unsigned i = 0; i < self->finished_states.size; i++) { @@ -3998,8 +3998,8 @@ void ts_query_cursor_remove_match( } bool ts_query_cursor_next_capture( - TSQueryCursor *self, - TSQueryMatch *match, + t_query_cursor *self, + t_query_match *match, uint32_t *capture_index ) { // The goal here is to return captures in order, even though they may not @@ -4041,7 +4041,7 @@ bool ts_query_cursor_next_capture( continue; } - TSNode node = captures->contents[state->consumed_capture_count].node; + t_parse_node node = captures->contents[state->consumed_capture_count].node; bool node_precedes_range = ( ts_node_end_byte(node) <= self->start_byte || @@ -4125,7 +4125,7 @@ bool ts_query_cursor_next_capture( } void ts_query_cursor_set_max_start_depth( - TSQueryCursor *self, + t_query_cursor *self, uint32_t max_start_depth ) { self->max_start_depth = max_start_depth; diff --git a/parser/src/reduce_action.h b/parser/src/reduce_action.h index 2d95b8bc..fbc6c1d3 100644 --- a/parser/src/reduce_action.h +++ b/parser/src/reduce_action.h @@ -10,7 +10,7 @@ extern "C" { typedef struct { uint32_t count; - TSSymbol symbol; + t_symbol symbol; int dynamic_precedence; unsigned short production_id; } ReduceAction; diff --git a/parser/src/stack.c b/parser/src/stack.c index 98d8c561..8f7816ca 100644 --- a/parser/src/stack.c +++ b/parser/src/stack.c @@ -27,7 +27,7 @@ typedef struct { } StackLink; struct StackNode { - TSStateId state; + t_state_id state; Length position; StackLink links[MAX_LINK_COUNT]; short unsigned int link_count; @@ -139,7 +139,7 @@ static StackNode *stack_node_new( StackNode *previous_node, Subtree subtree, bool is_pending, - TSStateId state, + t_state_id state, StackNodeArray *pool ) { StackNode *node = pool->size > 0 @@ -460,7 +460,7 @@ uint32_t ts_stack_version_count(const Stack *self) { return self->heads.size; } -TSStateId ts_stack_state(const Stack *self, StackVersion version) { +t_state_id ts_stack_state(const Stack *self, StackVersion version) { return array_get(&self->heads, version)->node->state; } @@ -503,7 +503,7 @@ void ts_stack_push( StackVersion version, Subtree subtree, bool pending, - TSStateId state + t_state_id state ) { StackHead *head = array_get(&self->heads, version); StackNode *new_node = stack_node_new(head->node, subtree, pending, state, &self->node_pool); @@ -593,7 +593,7 @@ typedef struct { forceinline StackAction summarize_stack_callback(void *payload, const StackIterator *iterator) { SummarizeStackSession *session = payload; - TSStateId state = iterator->node->state; + t_state_id state = iterator->node->state; unsigned depth = iterator->subtree_count; if (depth > session->max_depth) return StackActionStop; for (unsigned i = session->summary->size - 1; i + 1 > 0; i--) { @@ -764,7 +764,7 @@ void ts_stack_clear(Stack *self) { })); } -bool ts_stack_print_dot_graph(Stack *self, const TSLanguage *language, FILE *f) { +bool ts_stack_print_dot_graph(Stack *self, const t_language *language, FILE *f) { array_reserve(&self->iterators, 32); if (!f) f = stderr; diff --git a/parser/src/stack.h b/parser/src/stack.h index 86abbc9d..1f40c25a 100644 --- a/parser/src/stack.h +++ b/parser/src/stack.h @@ -24,7 +24,7 @@ typedef Array(StackSlice) StackSliceArray; typedef struct { Length position; unsigned depth; - TSStateId state; + t_state_id state; } StackSummaryEntry; typedef Array(StackSummaryEntry) StackSummary; @@ -39,7 +39,7 @@ uint32_t ts_stack_version_count(const Stack *); // Get the state at the top of the given version of the stack. If the stack is // empty, this returns the initial state, 0. -TSStateId ts_stack_state(const Stack *, StackVersion); +t_state_id ts_stack_state(const Stack *, StackVersion); // Get the last external token associated with a given version of the stack. Subtree ts_stack_last_external_token(const Stack *, StackVersion); @@ -55,7 +55,7 @@ Length ts_stack_position(const Stack *, StackVersion); // This transfers ownership of the tree to the Stack. Callers that // need to retain ownership of the tree for their own purposes should // first retain the tree. -void ts_stack_push(Stack *, StackVersion, Subtree , bool, TSStateId); +void ts_stack_push(Stack *, StackVersion, Subtree , bool, t_state_id); // Pop the given number of entries from the given version of the stack. This // operation can increase the number of stack versions by revealing multiple @@ -122,9 +122,9 @@ void ts_stack_remove_version(Stack *, StackVersion); void ts_stack_clear(Stack *); -bool ts_stack_print_dot_graph(Stack *, const TSLanguage *, FILE *); +bool ts_stack_print_dot_graph(Stack *, const t_language *, FILE *); -typedef void (*StackIterateCallback)(void *, TSStateId, uint32_t); +typedef void (*StackIterateCallback)(void *, t_state_id, uint32_t); #ifdef __cplusplus } diff --git a/parser/src/subtree.c b/parser/src/subtree.c index 4524e182..e3a33ce7 100644 --- a/parser/src/subtree.c +++ b/parser/src/subtree.c @@ -163,10 +163,10 @@ static inline bool ts_subtree_can_inline(Length padding, Length size, uint32_t l } Subtree ts_subtree_new_leaf( - SubtreePool *pool, TSSymbol symbol, Length padding, Length size, - uint32_t lookahead_bytes, TSStateId parse_state, + SubtreePool *pool, t_symbol symbol, Length padding, Length size, + uint32_t lookahead_bytes, t_state_id parse_state, bool has_external_tokens, bool depends_on_column, - bool is_keyword, const TSLanguage *language + bool is_keyword, const t_language *language ) { TSSymbolMetadata metadata = ts_language_symbol_metadata(language, symbol); bool extra = symbol == ts_builtin_sym_end; @@ -224,8 +224,8 @@ Subtree ts_subtree_new_leaf( void ts_subtree_set_symbol( MutableSubtree *self, - TSSymbol symbol, - const TSLanguage *language + t_symbol symbol, + const t_language *language ) { TSSymbolMetadata metadata = ts_language_symbol_metadata(language, symbol); if (self->data.is_inline) { @@ -242,7 +242,7 @@ void ts_subtree_set_symbol( Subtree ts_subtree_new_error( SubtreePool *pool, int32_t lookahead_char, Length padding, Length size, - uint32_t bytes_scanned, TSStateId parse_state, const TSLanguage *language + uint32_t bytes_scanned, t_state_id parse_state, const t_language *language ) { Subtree result = ts_subtree_new_leaf( pool, ts_builtin_sym_error, padding, size, bytes_scanned, @@ -291,13 +291,13 @@ MutableSubtree ts_subtree_make_mut(SubtreePool *pool, Subtree self) { static void ts_subtree__compress( MutableSubtree self, unsigned count, - const TSLanguage *language, + const t_language *language, MutableSubtreeArray *stack ) { unsigned initial_stack_size = stack->size; MutableSubtree tree = self; - TSSymbol symbol = tree.ptr->symbol; + t_symbol symbol = tree.ptr->symbol; for (unsigned i = 0; i < count; i++) { if (tree.ptr->ref_count > 1 || tree.ptr->child_count < 2) break; @@ -334,7 +334,7 @@ static void ts_subtree__compress( } } -void ts_subtree_balance(Subtree self, SubtreePool *pool, const TSLanguage *language) { +void ts_subtree_balance(Subtree self, SubtreePool *pool, const t_language *language) { array_clear(&pool->tree_stack); if (ts_subtree_child_count(self) > 0 && self.ptr->ref_count == 1) { @@ -369,7 +369,7 @@ void ts_subtree_balance(Subtree self, SubtreePool *pool, const TSLanguage *langu // Assign all of the node's properties that depend on its children. void ts_subtree_summarize_children( MutableSubtree self, - const TSLanguage *language + const t_language *language ) { assert(!self.data.is_inline); @@ -384,7 +384,7 @@ void ts_subtree_summarize_children( self.ptr->dynamic_precedence = 0; uint32_t structural_index = 0; - const TSSymbol *alias_sequence = ts_language_alias_sequence(language, self.ptr->production_id); + const t_symbol *alias_sequence = ts_language_alias_sequence(language, self.ptr->production_id); uint32_t lookahead_end_byte = 0; const Subtree *children = ts_subtree_children(self); @@ -504,10 +504,10 @@ void ts_subtree_summarize_children( // // This takes ownership of the children array. MutableSubtree ts_subtree_new_node( - TSSymbol symbol, + t_symbol symbol, SubtreeArray *children, unsigned production_id, - const TSLanguage *language + const t_language *language ) { TSSymbolMetadata metadata = ts_language_symbol_metadata(language, symbol); bool fragile = symbol == ts_builtin_sym_error || symbol == ts_builtin_sym_error_repeat; @@ -549,7 +549,7 @@ MutableSubtree ts_subtree_new_node( Subtree ts_subtree_new_error_node( SubtreeArray *children, bool extra, - const TSLanguage *language + const t_language *language ) { MutableSubtree result = ts_subtree_new_node( ts_builtin_sym_error, children, 0, language @@ -564,10 +564,10 @@ Subtree ts_subtree_new_error_node( // having any effect on the parse state. Subtree ts_subtree_new_missing_leaf( SubtreePool *pool, - TSSymbol symbol, + t_symbol symbol, Length padding, uint32_t lookahead_bytes, - const TSLanguage *language + const t_language *language ) { Subtree result = ts_subtree_new_leaf( pool, symbol, padding, length_zero(), lookahead_bytes, @@ -656,7 +656,7 @@ static inline void ts_subtree_set_has_changes(MutableSubtree *self) { } } -Subtree ts_subtree_edit(Subtree self, const TSInputEdit *input_edit, SubtreePool *pool) { +Subtree ts_subtree_edit(Subtree self, const t_input_edit *input_edit, SubtreePool *pool) { typedef struct { Subtree *tree; Edit edit; @@ -847,8 +847,8 @@ static const char *const ROOT_FIELD = "__ROOT__"; static size_t ts_subtree__write_to_string( Subtree self, char *string, size_t limit, - const TSLanguage *language, bool include_all, - TSSymbol alias_symbol, bool alias_is_named, const char *field_name + const t_language *language, bool include_all, + t_symbol alias_symbol, bool alias_is_named, const char *field_name ) { if (!self.ptr) return snprintf(string, limit, "(NULL)"); @@ -876,7 +876,7 @@ static size_t ts_subtree__write_to_string( cursor += snprintf(*writer, limit, "(UNEXPECTED "); cursor += ts_subtree__write_char_to_string(*writer, limit, self.ptr->lookahead_char); } else { - TSSymbol symbol = alias_symbol ? alias_symbol : ts_subtree_symbol(self); + t_symbol symbol = alias_symbol ? alias_symbol : ts_subtree_symbol(self); const char *symbol_name = ts_language_symbol_name(language, symbol); if (ts_subtree_missing(self)) { cursor += snprintf(*writer, limit, "(MISSING "); @@ -890,7 +890,7 @@ static size_t ts_subtree__write_to_string( } } } else if (is_root) { - TSSymbol symbol = alias_symbol ? alias_symbol : ts_subtree_symbol(self); + t_symbol symbol = alias_symbol ? alias_symbol : ts_subtree_symbol(self); const char *symbol_name = ts_language_symbol_name(language, symbol); if (ts_subtree_child_count(self) > 0) { cursor += snprintf(*writer, limit, "(%s", symbol_name); @@ -902,7 +902,7 @@ static size_t ts_subtree__write_to_string( } if (ts_subtree_child_count(self)) { - const TSSymbol *alias_sequence = ts_language_alias_sequence(language, self.ptr->production_id); + const t_symbol *alias_sequence = ts_language_alias_sequence(language, self.ptr->production_id); const TSFieldMapEntry *field_map, *field_map_end; ts_language_field_map( language, @@ -921,7 +921,7 @@ static size_t ts_subtree__write_to_string( 0, false, NULL ); } else { - TSSymbol subtree_alias_symbol = alias_sequence + t_symbol subtree_alias_symbol = alias_sequence ? alias_sequence[structural_child_index] : 0; bool subtree_alias_is_named = subtree_alias_symbol @@ -953,9 +953,9 @@ static size_t ts_subtree__write_to_string( char *ts_subtree_string( Subtree self, - TSSymbol alias_symbol, + t_symbol alias_symbol, bool alias_is_named, - const TSLanguage *language, + const t_language *language, bool include_all ) { char scratch_string[1]; @@ -974,10 +974,10 @@ char *ts_subtree_string( } void ts_subtree__print_dot_graph(const Subtree *self, uint32_t start_offset, - const TSLanguage *language, TSSymbol alias_symbol, + const t_language *language, t_symbol alias_symbol, FILE *f) { - TSSymbol subtree_symbol = ts_subtree_symbol(*self); - TSSymbol symbol = alias_symbol ? alias_symbol : subtree_symbol; + t_symbol subtree_symbol = ts_subtree_symbol(*self); + t_symbol symbol = alias_symbol ? alias_symbol : subtree_symbol; uint32_t end_offset = start_offset + ts_subtree_total_bytes(*self); fprintf(f, "tree_%p [label=\"", (void *)self); ts_language_write_symbol_as_dot_string(language, f, symbol); @@ -1017,7 +1017,7 @@ void ts_subtree__print_dot_graph(const Subtree *self, uint32_t start_offset, ts_subtree_production_id(*self); for (uint32_t i = 0, n = ts_subtree_child_count(*self); i < n; i++) { const Subtree *child = &ts_subtree_children(*self)[i]; - TSSymbol subtree_alias_symbol = 0; + t_symbol subtree_alias_symbol = 0; if (!ts_subtree_extra(*child) && child_info_offset) { subtree_alias_symbol = language->alias_sequences[child_info_offset]; child_info_offset++; @@ -1028,7 +1028,7 @@ void ts_subtree__print_dot_graph(const Subtree *self, uint32_t start_offset, } } -void ts_subtree_print_dot_graph(Subtree self, const TSLanguage *language, FILE *f) { +void ts_subtree_print_dot_graph(Subtree self, const t_language *language, FILE *f) { fprintf(f, "digraph tree {\n"); fprintf(f, "edge [arrowhead=none]\n"); ts_subtree__print_dot_graph(&self, 0, language, 0, f); diff --git a/parser/src/subtree.h b/parser/src/subtree.h index 58c7e483..4b218fa6 100644 --- a/parser/src/subtree.h +++ b/parser/src/subtree.h @@ -115,8 +115,8 @@ typedef struct { uint32_t lookahead_bytes; uint32_t error_cost; uint32_t child_count; - TSSymbol symbol; - TSStateId parse_state; + t_symbol symbol; + t_state_id parse_state; bool visible : 1; bool named : 1; @@ -140,8 +140,8 @@ typedef struct { uint16_t repeat_depth; uint16_t production_id; struct { - TSSymbol symbol; - TSStateId parse_state; + t_symbol symbol; + t_state_id parse_state; } first_leaf; }; @@ -188,40 +188,40 @@ SubtreePool ts_subtree_pool_new(uint32_t capacity); void ts_subtree_pool_delete(SubtreePool *); Subtree ts_subtree_new_leaf( - SubtreePool *, TSSymbol, Length, Length, uint32_t, - TSStateId, bool, bool, bool, const TSLanguage * + SubtreePool *, t_symbol, Length, Length, uint32_t, + t_state_id, bool, bool, bool, const t_language * ); Subtree ts_subtree_new_error( - SubtreePool *, int32_t, Length, Length, uint32_t, TSStateId, const TSLanguage * + SubtreePool *, int32_t, Length, Length, uint32_t, t_state_id, const t_language * ); -MutableSubtree ts_subtree_new_node(TSSymbol, SubtreeArray *, unsigned, const TSLanguage *); -Subtree ts_subtree_new_error_node(SubtreeArray *, bool, const TSLanguage *); -Subtree ts_subtree_new_missing_leaf(SubtreePool *, TSSymbol, Length, uint32_t, const TSLanguage *); +MutableSubtree ts_subtree_new_node(t_symbol, SubtreeArray *, unsigned, const t_language *); +Subtree ts_subtree_new_error_node(SubtreeArray *, bool, const t_language *); +Subtree ts_subtree_new_missing_leaf(SubtreePool *, t_symbol, Length, uint32_t, const t_language *); MutableSubtree ts_subtree_make_mut(SubtreePool *, Subtree); void ts_subtree_retain(Subtree); void ts_subtree_release(SubtreePool *, Subtree); int ts_subtree_compare(Subtree, Subtree, SubtreePool *); -void ts_subtree_set_symbol(MutableSubtree *, TSSymbol, const TSLanguage *); -void ts_subtree_summarize(MutableSubtree, const Subtree *, uint32_t, const TSLanguage *); -void ts_subtree_summarize_children(MutableSubtree, const TSLanguage *); -void ts_subtree_balance(Subtree, SubtreePool *, const TSLanguage *); -Subtree ts_subtree_edit(Subtree, const TSInputEdit *edit, SubtreePool *); -char *ts_subtree_string(Subtree, TSSymbol, bool, const TSLanguage *, bool include_all); -void ts_subtree_print_dot_graph(Subtree, const TSLanguage *, FILE *); +void ts_subtree_set_symbol(MutableSubtree *, t_symbol, const t_language *); +void ts_subtree_summarize(MutableSubtree, const Subtree *, uint32_t, const t_language *); +void ts_subtree_summarize_children(MutableSubtree, const t_language *); +void ts_subtree_balance(Subtree, SubtreePool *, const t_language *); +Subtree ts_subtree_edit(Subtree, const t_input_edit *edit, SubtreePool *); +char *ts_subtree_string(Subtree, t_symbol, bool, const t_language *, bool include_all); +void ts_subtree_print_dot_graph(Subtree, const t_language *, FILE *); Subtree ts_subtree_last_external_token(Subtree); const ExternalScannerState *ts_subtree_external_scanner_state(Subtree self); bool ts_subtree_external_scanner_state_eq(Subtree, Subtree); #define SUBTREE_GET(self, name) ((self).data.is_inline ? (self).data.name : (self).ptr->name) -static inline TSSymbol ts_subtree_symbol(Subtree self) { return SUBTREE_GET(self, symbol); } +static inline t_symbol ts_subtree_symbol(Subtree self) { return SUBTREE_GET(self, symbol); } static inline bool ts_subtree_visible(Subtree self) { return SUBTREE_GET(self, visible); } static inline bool ts_subtree_named(Subtree self) { return SUBTREE_GET(self, named); } static inline bool ts_subtree_extra(Subtree self) { return SUBTREE_GET(self, extra); } static inline bool ts_subtree_has_changes(Subtree self) { return SUBTREE_GET(self, has_changes); } static inline bool ts_subtree_missing(Subtree self) { return SUBTREE_GET(self, is_missing); } static inline bool ts_subtree_is_keyword(Subtree self) { return SUBTREE_GET(self, is_keyword); } -static inline TSStateId ts_subtree_parse_state(Subtree self) { return SUBTREE_GET(self, parse_state); } +static inline t_state_id ts_subtree_parse_state(Subtree self) { return SUBTREE_GET(self, parse_state); } static inline uint32_t ts_subtree_lookahead_bytes(Subtree self) { return SUBTREE_GET(self, lookahead_bytes); } #undef SUBTREE_GET @@ -245,13 +245,13 @@ static inline void ts_subtree_set_extra(MutableSubtree *self, bool is_extra) { } } -static inline TSSymbol ts_subtree_leaf_symbol(Subtree self) { +static inline t_symbol ts_subtree_leaf_symbol(Subtree self) { if (self.data.is_inline) return self.data.symbol; if (self.ptr->child_count == 0) return self.ptr->symbol; return self.ptr->first_leaf.symbol; } -static inline TSStateId ts_subtree_leaf_parse_state(Subtree self) { +static inline t_state_id ts_subtree_leaf_parse_state(Subtree self) { if (self.data.is_inline) return self.data.parse_state; if (self.ptr->child_count == 0) return self.ptr->parse_state; return self.ptr->first_leaf.parse_state; diff --git a/parser/src/tree.c b/parser/src/tree.c index 328a7984..fd25e53f 100644 --- a/parser/src/tree.c +++ b/parser/src/tree.c @@ -8,25 +8,25 @@ #include "./tree_cursor.h" #include "./tree.h" -TSTree *ts_tree_new( - Subtree root, const TSLanguage *language, - const TSRange *included_ranges, unsigned included_range_count +t_tree *ts_tree_new( + Subtree root, const t_language *language, + const t_range *included_ranges, unsigned included_range_count ) { - TSTree *result = ts_malloc(sizeof(TSTree)); + t_tree *result = ts_malloc(sizeof(t_tree)); result->root = root; result->language = ts_language_copy(language); - result->included_ranges = ts_calloc(included_range_count, sizeof(TSRange)); - memcpy(result->included_ranges, included_ranges, included_range_count * sizeof(TSRange)); + result->included_ranges = ts_calloc(included_range_count, sizeof(t_range)); + memcpy(result->included_ranges, included_ranges, included_range_count * sizeof(t_range)); result->included_range_count = included_range_count; return result; } -TSTree *ts_tree_copy(const TSTree *self) { +t_tree *ts_tree_copy(const t_tree *self) { ts_subtree_retain(self->root); return ts_tree_new(self->root, self->language, self->included_ranges, self->included_range_count); } -void ts_tree_delete(TSTree *self) { +void ts_tree_delete(t_tree *self) { if (!self) return; SubtreePool pool = ts_subtree_pool_new(0); @@ -37,26 +37,26 @@ void ts_tree_delete(TSTree *self) { ts_free(self); } -TSNode ts_tree_root_node(const TSTree *self) { +t_parse_node ts_tree_root_node(const t_tree *self) { return ts_node_new(self, &self->root, ts_subtree_padding(self->root), 0); } -TSNode ts_tree_root_node_with_offset( - const TSTree *self, +t_parse_node ts_tree_root_node_with_offset( + const t_tree *self, uint32_t offset_bytes, - TSPoint offset_extent + t_point offset_extent ) { Length offset = {offset_bytes, offset_extent}; return ts_node_new(self, &self->root, length_add(offset, ts_subtree_padding(self->root)), 0); } -const TSLanguage *ts_tree_language(const TSTree *self) { +const t_language *ts_tree_language(const t_tree *self) { return self->language; } -void ts_tree_edit(TSTree *self, const TSInputEdit *edit) { +void ts_tree_edit(t_tree *self, const t_input_edit *edit) { for (unsigned i = 0; i < self->included_range_count; i++) { - TSRange *range = &self->included_ranges[i]; + t_range *range = &self->included_ranges[i]; if (range->end_byte >= edit->old_end_byte) { if (range->end_byte != UINT32_MAX) { range->end_byte = edit->new_end_byte + (range->end_byte - edit->old_end_byte); @@ -94,14 +94,14 @@ void ts_tree_edit(TSTree *self, const TSInputEdit *edit) { ts_subtree_pool_delete(&pool); } -TSRange *ts_tree_included_ranges(const TSTree *self, uint32_t *length) { +t_range *ts_tree_included_ranges(const t_tree *self, uint32_t *length) { *length = self->included_range_count; - TSRange *ranges = ts_calloc(self->included_range_count, sizeof(TSRange)); - memcpy(ranges, self->included_ranges, self->included_range_count * sizeof(TSRange)); + t_range *ranges = ts_calloc(self->included_range_count, sizeof(t_range)); + memcpy(ranges, self->included_ranges, self->included_range_count * sizeof(t_range)); return ranges; } -TSRange *ts_tree_get_changed_ranges(const TSTree *old_tree, const TSTree *new_tree, uint32_t *length) { +t_range *ts_tree_get_changed_ranges(const t_tree *old_tree, const t_tree *new_tree, uint32_t *length) { TreeCursor cursor1 = {NULL, array_new(), 0}; TreeCursor cursor2 = {NULL, array_new(), 0}; ts_tree_cursor_init(&cursor1, ts_tree_root_node(old_tree)); @@ -114,7 +114,7 @@ TSRange *ts_tree_get_changed_ranges(const TSTree *old_tree, const TSTree *new_tr &included_range_differences ); - TSRange *result; + t_range *result; *length = ts_subtree_get_changed_ranges( &old_tree->root, &new_tree->root, &cursor1, &cursor2, old_tree->language, &included_range_differences, &result @@ -156,7 +156,7 @@ int _ts_dup(int file_descriptor) { return dup(file_descriptor); } -void ts_tree_print_dot_graph(const TSTree *self, int file_descriptor) { +void ts_tree_print_dot_graph(const t_tree *self, int file_descriptor) { FILE *file = fdopen(_ts_dup(file_descriptor), "a"); ts_subtree_print_dot_graph(self->root, self->language, file); fclose(file); diff --git a/parser/src/tree.h b/parser/src/tree.h index f012f888..9488a40b 100644 --- a/parser/src/tree.h +++ b/parser/src/tree.h @@ -11,18 +11,18 @@ typedef struct { const Subtree *child; const Subtree *parent; Length position; - TSSymbol alias_symbol; + t_symbol alias_symbol; } ParentCacheEntry; -struct TSTree { +struct t_tree { Subtree root; - const TSLanguage *language; - TSRange *included_ranges; + const t_language *language; + t_range *included_ranges; unsigned included_range_count; }; -TSTree *ts_tree_new(Subtree root, const TSLanguage *language, const TSRange *, unsigned); -TSNode ts_node_new(const TSTree *, const Subtree *, Length, TSSymbol); +t_tree *ts_tree_new(Subtree root, const t_language *language, const t_range *, unsigned); +t_parse_node ts_node_new(const t_tree *, const Subtree *, Length, t_symbol); #ifdef __cplusplus } diff --git a/parser/src/tree_cursor.c b/parser/src/tree_cursor.c index 0a351606..7c36317b 100644 --- a/parser/src/tree_cursor.c +++ b/parser/src/tree_cursor.c @@ -6,12 +6,12 @@ typedef struct { Subtree parent; - const TSTree *tree; + const t_tree *tree; Length position; uint32_t child_index; uint32_t structural_child_index; uint32_t descendant_index; - const TSSymbol *alias_sequence; + const t_symbol *alias_sequence; } CursorChildIterator; // CursorChildIterator @@ -37,7 +37,7 @@ static inline CursorChildIterator ts_tree_cursor_iterate_children(const TreeCurs if (ts_subtree_child_count(*last_entry->subtree) == 0) { return (CursorChildIterator) {NULL_SUBTREE, self->tree, length_zero(), 0, 0, 0, NULL}; } - const TSSymbol *alias_sequence = ts_language_alias_sequence( + const t_symbol *alias_sequence = ts_language_alias_sequence( self->tree->language, last_entry->subtree->ptr->production_id ); @@ -150,17 +150,17 @@ static inline bool ts_tree_cursor_child_iterator_previous( // TSTreeCursor - lifecycle -TSTreeCursor ts_tree_cursor_new(TSNode node) { - TSTreeCursor self = {NULL, NULL, {0, 0, 0}}; +t_tree_cursor ts_tree_cursor_new(t_parse_node node) { + t_tree_cursor self = {NULL, NULL, {0, 0, 0}}; ts_tree_cursor_init((TreeCursor *)&self, node); return self; } -void ts_tree_cursor_reset(TSTreeCursor *_self, TSNode node) { +void ts_tree_cursor_reset(t_tree_cursor *_self, t_parse_node node) { ts_tree_cursor_init((TreeCursor *)_self, node); } -void ts_tree_cursor_init(TreeCursor *self, TSNode node) { +void ts_tree_cursor_init(TreeCursor *self, t_parse_node node) { self->tree = node.tree; self->root_alias_symbol = node.context[3]; array_clear(&self->stack); @@ -176,14 +176,14 @@ void ts_tree_cursor_init(TreeCursor *self, TSNode node) { })); } -void ts_tree_cursor_delete(TSTreeCursor *_self) { +void ts_tree_cursor_delete(t_tree_cursor *_self) { TreeCursor *self = (TreeCursor *)_self; array_delete(&self->stack); } // TSTreeCursor - walking the tree -TreeCursorStep ts_tree_cursor_goto_first_child_internal(TSTreeCursor *_self) { +TreeCursorStep ts_tree_cursor_goto_first_child_internal(t_tree_cursor *_self) { TreeCursor *self = (TreeCursor *)_self; bool visible; TreeCursorEntry entry; @@ -201,7 +201,7 @@ TreeCursorStep ts_tree_cursor_goto_first_child_internal(TSTreeCursor *_self) { return TreeCursorStepNone; } -bool ts_tree_cursor_goto_first_child(TSTreeCursor *self) { +bool ts_tree_cursor_goto_first_child(t_tree_cursor *self) { for (;;) { switch (ts_tree_cursor_goto_first_child_internal(self)) { case TreeCursorStepHidden: @@ -215,7 +215,7 @@ bool ts_tree_cursor_goto_first_child(TSTreeCursor *self) { return false; } -TreeCursorStep ts_tree_cursor_goto_last_child_internal(TSTreeCursor *_self) { +TreeCursorStep ts_tree_cursor_goto_last_child_internal(t_tree_cursor *_self) { TreeCursor *self = (TreeCursor *)_self; bool visible; TreeCursorEntry entry; @@ -242,7 +242,7 @@ TreeCursorStep ts_tree_cursor_goto_last_child_internal(TSTreeCursor *_self) { return TreeCursorStepNone; } -bool ts_tree_cursor_goto_last_child(TSTreeCursor *self) { +bool ts_tree_cursor_goto_last_child(t_tree_cursor *self) { for (;;) { switch (ts_tree_cursor_goto_last_child_internal(self)) { case TreeCursorStepHidden: @@ -257,9 +257,9 @@ bool ts_tree_cursor_goto_last_child(TSTreeCursor *self) { } static inline int64_t ts_tree_cursor_goto_first_child_for_byte_and_point( - TSTreeCursor *_self, + t_tree_cursor *_self, uint32_t goal_byte, - TSPoint goal_point + t_point goal_point ) { TreeCursor *self = (TreeCursor *)_self; uint32_t initial_size = self->stack.size; @@ -298,16 +298,16 @@ static inline int64_t ts_tree_cursor_goto_first_child_for_byte_and_point( return -1; } -int64_t ts_tree_cursor_goto_first_child_for_byte(TSTreeCursor *self, uint32_t goal_byte) { +int64_t ts_tree_cursor_goto_first_child_for_byte(t_tree_cursor *self, uint32_t goal_byte) { return ts_tree_cursor_goto_first_child_for_byte_and_point(self, goal_byte, POINT_ZERO); } -int64_t ts_tree_cursor_goto_first_child_for_point(TSTreeCursor *self, TSPoint goal_point) { +int64_t ts_tree_cursor_goto_first_child_for_point(t_tree_cursor *self, t_point goal_point) { return ts_tree_cursor_goto_first_child_for_byte_and_point(self, 0, goal_point); } TreeCursorStep ts_tree_cursor_goto_sibling_internal( - TSTreeCursor *_self, + t_tree_cursor *_self, bool (*advance)(CursorChildIterator *, TreeCursorEntry *, bool *)) { TreeCursor *self = (TreeCursor *)_self; uint32_t initial_size = self->stack.size; @@ -341,11 +341,11 @@ TreeCursorStep ts_tree_cursor_goto_sibling_internal( return TreeCursorStepNone; } -TreeCursorStep ts_tree_cursor_goto_next_sibling_internal(TSTreeCursor *_self) { +TreeCursorStep ts_tree_cursor_goto_next_sibling_internal(t_tree_cursor *_self) { return ts_tree_cursor_goto_sibling_internal(_self, ts_tree_cursor_child_iterator_next); } -bool ts_tree_cursor_goto_next_sibling(TSTreeCursor *self) { +bool ts_tree_cursor_goto_next_sibling(t_tree_cursor *self) { switch (ts_tree_cursor_goto_next_sibling_internal(self)) { case TreeCursorStepHidden: ts_tree_cursor_goto_first_child(self); @@ -357,7 +357,7 @@ bool ts_tree_cursor_goto_next_sibling(TSTreeCursor *self) { } } -TreeCursorStep ts_tree_cursor_goto_previous_sibling_internal(TSTreeCursor *_self) { +TreeCursorStep ts_tree_cursor_goto_previous_sibling_internal(t_tree_cursor *_self) { // since subtracting across row loses column information, we may have to // restore it TreeCursor *self = (TreeCursor *)_self; @@ -392,7 +392,7 @@ TreeCursorStep ts_tree_cursor_goto_previous_sibling_internal(TSTreeCursor *_self return step; } -bool ts_tree_cursor_goto_previous_sibling(TSTreeCursor *self) { +bool ts_tree_cursor_goto_previous_sibling(t_tree_cursor *self) { switch (ts_tree_cursor_goto_previous_sibling_internal(self)) { case TreeCursorStepHidden: ts_tree_cursor_goto_last_child(self); @@ -404,7 +404,7 @@ bool ts_tree_cursor_goto_previous_sibling(TSTreeCursor *self) { } } -bool ts_tree_cursor_goto_parent(TSTreeCursor *_self) { +bool ts_tree_cursor_goto_parent(t_tree_cursor *_self) { TreeCursor *self = (TreeCursor *)_self; for (unsigned i = self->stack.size - 2; i + 1 > 0; i--) { if (ts_tree_cursor_is_entry_visible(self, i)) { @@ -416,7 +416,7 @@ bool ts_tree_cursor_goto_parent(TSTreeCursor *_self) { } void ts_tree_cursor_goto_descendant( - TSTreeCursor *_self, + t_tree_cursor *_self, uint32_t goal_descendant_index ) { TreeCursor *self = (TreeCursor *)_self; @@ -466,16 +466,16 @@ void ts_tree_cursor_goto_descendant( } while (did_descend); } -uint32_t ts_tree_cursor_current_descendant_index(const TSTreeCursor *_self) { +uint32_t ts_tree_cursor_current_descendant_index(const t_tree_cursor *_self) { const TreeCursor *self = (const TreeCursor *)_self; TreeCursorEntry *last_entry = array_back(&self->stack); return last_entry->descendant_index; } -TSNode ts_tree_cursor_current_node(const TSTreeCursor *_self) { +t_parse_node ts_tree_cursor_current_node(const t_tree_cursor *_self) { const TreeCursor *self = (const TreeCursor *)_self; TreeCursorEntry *last_entry = array_back(&self->stack); - TSSymbol alias_symbol = self->root_alias_symbol; + t_symbol alias_symbol = self->root_alias_symbol; if (self->stack.size > 1 && !ts_subtree_extra(*last_entry->subtree)) { TreeCursorEntry *parent_entry = &self->stack.contents[self->stack.size - 2]; alias_symbol = ts_language_alias_at( @@ -495,12 +495,12 @@ TSNode ts_tree_cursor_current_node(const TSTreeCursor *_self) { // Private - Get various facts about the current node that are needed // when executing tree queries. void ts_tree_cursor_current_status( - const TSTreeCursor *_self, - TSFieldId *field_id, + const t_tree_cursor *_self, + t_field_id *field_id, bool *has_later_siblings, bool *has_later_named_siblings, bool *can_have_later_siblings_with_this_field, - TSSymbol *supertypes, + t_symbol *supertypes, unsigned *supertype_count ) { const TreeCursor *self = (const TreeCursor *)_self; @@ -517,7 +517,7 @@ void ts_tree_cursor_current_status( TreeCursorEntry *entry = &self->stack.contents[i]; TreeCursorEntry *parent_entry = &self->stack.contents[i - 1]; - const TSSymbol *alias_sequence = ts_language_alias_sequence( + const t_symbol *alias_sequence = ts_language_alias_sequence( self->tree->language, parent_entry->subtree->ptr->production_id ); @@ -532,7 +532,7 @@ void ts_tree_cursor_current_status( ts_subtree_symbol(subtree)) // Stop walking up when a visible ancestor is found. - TSSymbol entry_symbol = subtree_symbol( + t_symbol entry_symbol = subtree_symbol( *entry->subtree, entry->structural_child_index ); @@ -614,7 +614,7 @@ void ts_tree_cursor_current_status( } } -uint32_t ts_tree_cursor_current_depth(const TSTreeCursor *_self) { +uint32_t ts_tree_cursor_current_depth(const t_tree_cursor *_self) { const TreeCursor *self = (const TreeCursor *)_self; uint32_t depth = 0; for (unsigned i = 1; i < self->stack.size; i++) { @@ -625,12 +625,12 @@ uint32_t ts_tree_cursor_current_depth(const TSTreeCursor *_self) { return depth; } -TSNode ts_tree_cursor_parent_node(const TSTreeCursor *_self) { +t_parse_node ts_tree_cursor_parent_node(const t_tree_cursor *_self) { const TreeCursor *self = (const TreeCursor *)_self; for (int i = (int)self->stack.size - 2; i >= 0; i--) { TreeCursorEntry *entry = &self->stack.contents[i]; bool is_visible = true; - TSSymbol alias_symbol = 0; + t_symbol alias_symbol = 0; if (i > 0) { TreeCursorEntry *parent_entry = &self->stack.contents[i - 1]; alias_symbol = ts_language_alias_at( @@ -652,7 +652,7 @@ TSNode ts_tree_cursor_parent_node(const TSTreeCursor *_self) { return ts_node_new(NULL, NULL, length_zero(), 0); } -TSFieldId ts_tree_cursor_current_field_id(const TSTreeCursor *_self) { +t_field_id ts_tree_cursor_current_field_id(const t_tree_cursor *_self) { const TreeCursor *self = (const TreeCursor *)_self; // Walk up the tree, visiting the current node and its invisible ancestors. @@ -683,8 +683,8 @@ TSFieldId ts_tree_cursor_current_field_id(const TSTreeCursor *_self) { return 0; } -const char *ts_tree_cursor_current_field_name(const TSTreeCursor *_self) { - TSFieldId id = ts_tree_cursor_current_field_id(_self); +const char *ts_tree_cursor_current_field_name(const t_tree_cursor *_self) { + t_field_id id = ts_tree_cursor_current_field_id(_self); if (id) { const TreeCursor *self = (const TreeCursor *)_self; return self->tree->language->field_names[id]; @@ -693,9 +693,9 @@ const char *ts_tree_cursor_current_field_name(const TSTreeCursor *_self) { } } -TSTreeCursor ts_tree_cursor_copy(const TSTreeCursor *_cursor) { +t_tree_cursor ts_tree_cursor_copy(const t_tree_cursor *_cursor) { const TreeCursor *cursor = (const TreeCursor *)_cursor; - TSTreeCursor res = {NULL, NULL, {0, 0}}; + t_tree_cursor res = {NULL, NULL, {0, 0}}; TreeCursor *copy = (TreeCursor *)&res; copy->tree = cursor->tree; copy->root_alias_symbol = cursor->root_alias_symbol; @@ -704,7 +704,7 @@ TSTreeCursor ts_tree_cursor_copy(const TSTreeCursor *_cursor) { return res; } -void ts_tree_cursor_reset_to(TSTreeCursor *_dst, const TSTreeCursor *_src) { +void ts_tree_cursor_reset_to(t_tree_cursor *_dst, const t_tree_cursor *_src) { const TreeCursor *cursor = (const TreeCursor *)_src; TreeCursor *copy = (TreeCursor *)_dst; copy->tree = cursor->tree; diff --git a/parser/src/tree_cursor.h b/parser/src/tree_cursor.h index 96a386df..39edd0e0 100644 --- a/parser/src/tree_cursor.h +++ b/parser/src/tree_cursor.h @@ -12,9 +12,9 @@ typedef struct { } TreeCursorEntry; typedef struct { - const TSTree *tree; + const t_tree *tree; Array(TreeCursorEntry) stack; - TSSymbol root_alias_symbol; + t_symbol root_alias_symbol; } TreeCursor; typedef enum { @@ -23,26 +23,26 @@ typedef enum { TreeCursorStepVisible, } TreeCursorStep; -void ts_tree_cursor_init(TreeCursor *, TSNode); +void ts_tree_cursor_init(TreeCursor *, t_parse_node); void ts_tree_cursor_current_status( - const TSTreeCursor *, - TSFieldId *, + const t_tree_cursor *, + t_field_id *, bool *, bool *, bool *, - TSSymbol *, + t_symbol *, unsigned * ); -TreeCursorStep ts_tree_cursor_goto_first_child_internal(TSTreeCursor *); -TreeCursorStep ts_tree_cursor_goto_next_sibling_internal(TSTreeCursor *); +TreeCursorStep ts_tree_cursor_goto_first_child_internal(t_tree_cursor *); +TreeCursorStep ts_tree_cursor_goto_next_sibling_internal(t_tree_cursor *); -static inline Subtree ts_tree_cursor_current_subtree(const TSTreeCursor *_self) { +static inline Subtree ts_tree_cursor_current_subtree(const t_tree_cursor *_self) { const TreeCursor *self = (const TreeCursor *)_self; TreeCursorEntry *last_entry = array_back(&self->stack); return *last_entry->subtree; } -TSNode ts_tree_cursor_parent_node(const TSTreeCursor *); +t_parse_node ts_tree_cursor_parent_node(const t_tree_cursor *); #endif // TREE_SITTER_TREE_CURSOR_H_