From 9f6b90d5963fe69a7e8c0b4a34a2ea9b0739bb10 Mon Sep 17 00:00:00 2001 From: Maix0 Date: Mon, 24 Jun 2024 00:20:08 +0200 Subject: [PATCH] WIP restart of lib --- parser/Parser.mk | 4 +- parser/build.sh | 9 + parser/gen/funcs.h | 364 +++ parser/gen/types.h | 935 +++++++ parser/nsrc/alloc.c | 48 + parser/nsrc/alloc.h | 41 + parser/nsrc/api.h | 1207 +++++++++ parser/nsrc/array.h | 293 +++ parser/nsrc/atomic.h | 35 + parser/nsrc/clock.h | 41 + parser/nsrc/error_costs.h | 11 + parser/nsrc/get_changed_ranges.c | 547 ++++ parser/nsrc/get_changed_ranges.h | 24 + parser/nsrc/host.h | 20 + parser/nsrc/language.c | 215 ++ parser/nsrc/language.h | 299 +++ parser/nsrc/length.h | 62 + parser/nsrc/lexer.c | 419 +++ parser/nsrc/lexer.h | 51 + parser/nsrc/lib.c | 13 + parser/nsrc/node.c | 882 +++++++ parser/nsrc/parser.c | 2101 +++++++++++++++ parser/nsrc/parser.h | 285 ++ parser/nsrc/point.h | 72 + parser/nsrc/query.c | 4146 ++++++++++++++++++++++++++++++ parser/nsrc/reduce_action.h | 37 + parser/nsrc/reusable_node.h | 111 + parser/nsrc/stack.c | 992 +++++++ parser/nsrc/stack.h | 136 + parser/nsrc/subtree.c | 1108 ++++++++ parser/nsrc/subtree.h | 456 ++++ parser/nsrc/tree.c | 165 ++ parser/nsrc/tree.h | 34 + parser/nsrc/tree_cursor.c | 714 +++++ parser/nsrc/tree_cursor.h | 44 + parser/nsrc/unicode.h | 32 + 36 files changed, 15951 insertions(+), 2 deletions(-) create mode 100755 parser/build.sh create mode 100644 parser/gen/funcs.h create mode 100644 parser/gen/types.h create mode 100644 parser/nsrc/alloc.c create mode 100644 parser/nsrc/alloc.h create mode 100644 parser/nsrc/api.h create mode 100644 parser/nsrc/array.h create mode 100644 parser/nsrc/atomic.h create mode 100644 parser/nsrc/clock.h create mode 100644 parser/nsrc/error_costs.h create mode 100644 parser/nsrc/get_changed_ranges.c create mode 100644 parser/nsrc/get_changed_ranges.h create mode 100644 parser/nsrc/host.h create mode 100644 parser/nsrc/language.c create mode 100644 parser/nsrc/language.h create mode 100644 parser/nsrc/length.h create mode 100644 parser/nsrc/lexer.c create mode 100644 parser/nsrc/lexer.h create mode 100644 parser/nsrc/lib.c create mode 100644 parser/nsrc/node.c create mode 100644 parser/nsrc/parser.c create mode 100644 parser/nsrc/parser.h create mode 100644 parser/nsrc/point.h create mode 100644 parser/nsrc/query.c create mode 100644 parser/nsrc/reduce_action.h create mode 100644 parser/nsrc/reusable_node.h create mode 100644 parser/nsrc/stack.c create mode 100644 parser/nsrc/stack.h create mode 100644 parser/nsrc/subtree.c create mode 100644 parser/nsrc/subtree.h create mode 100644 parser/nsrc/tree.c create mode 100644 parser/nsrc/tree.h create mode 100644 parser/nsrc/tree_cursor.c create mode 100644 parser/nsrc/tree_cursor.h create mode 100644 parser/nsrc/unicode.h diff --git a/parser/Parser.mk b/parser/Parser.mk index 8840df49..91e7d67e 100644 --- a/parser/Parser.mk +++ b/parser/Parser.mk @@ -6,14 +6,14 @@ # By: maiboyer +#+ +:+ +#+ # # +#+#+#+#+#+ +#+ # # Created: 2023/11/03 13:20:01 by maiboyer #+# #+# # -# Updated: 2024/06/11 15:46:54 by maiboyer ### ########.fr # +# Updated: 2024/06/23 22:03:59 by maiboyer ### ########.fr # # # # **************************************************************************** # ANAME = parser BUILD_DIR = ../build -SRC_DIR = ./src +SRC_DIR = ./nsrc GEN_DIR = ./generic BONUS_FLAGS = diff --git a/parser/build.sh b/parser/build.sh new file mode 100755 index 00000000..233f61db --- /dev/null +++ b/parser/build.sh @@ -0,0 +1,9 @@ +#!/bin/sh + +clang -Wno-unused-command-line-argument -Xclang -ast-dump=json ./lib.c -fsyntax-only -ferror-limit=99999 | + jq '.inner[] | select(.name) | select((.name | startswith("_"))| not)' | + jq 'select((.kind == "VarDecl" or .kind == "FunctionDecl") | not)' | + jq 'walk(if type == "object" then del(.loc, .id, .range, .typeAliasDeclId, .isReferenced) else . end)' | + jq 'select(.type?.qualType // .name // "" | startswith("_") | not) | select(.name // "" | endswith("_t") | not )' | + jq -n '[inputs]' + diff --git a/parser/gen/funcs.h b/parser/gen/funcs.h new file mode 100644 index 00000000..42193cf5 --- /dev/null +++ b/parser/gen/funcs.h @@ -0,0 +1,364 @@ +CaptureListPool capture_list_pool_new(void); +CaptureList *capture_list_pool_get_mut(CaptureListPool *self, uint16_t id); +CaptureQuantifiers capture_quantifiers_new(void); +Iterator iterator_new(TreeCursor *cursor, const Subtree *tree, const TSLanguage *language); +IteratorComparison iterator_compare(const Iterator *old_iter, const Iterator *new_iter); +Length iterator_end_position(Iterator *self); +Length iterator_start_position(Iterator *self); +QueryStep query_step__new(TSSymbol symbol, uint16_t depth, bool is_immediate); +StackNode *stack_node_new(StackNode *previous_node, Subtree subtree, bool is_pending, TSStateId state, StackNodeArray *pool); +StackSliceArray stack__iter(Stack *self, StackVersion version, StackCallback callback, void *payload, int goal_subtree_count); +Stream stream_new(const char *string, uint32_t length); +SymbolTable symbol_table_new(void); +TSQuantifier capture_quantifier_for_id(const CaptureQuantifiers *self, uint16_t id); +TSQuantifier quantifier_add(TSQuantifier left, TSQuantifier right); +TSQuantifier quantifier_join(TSQuantifier left, TSQuantifier right); +TSQuantifier quantifier_mul(TSQuantifier left, TSQuantifier right); +bool capture_list_pool_is_empty(const CaptureListPool *self); +bool iterator_descend(Iterator *self, uint32_t goal_position); +bool iterator_done(Iterator *self); +bool iterator_tree_is_visible(const Iterator *self); +bool stack__subtree_is_equivalent(Subtree left, Subtree right); +bool stream_advance(Stream *self); +bool stream_is_ident_start(Stream *self); +const CaptureList *capture_list_pool_get(const CaptureListPool *self, uint16_t id); +const Length LENGTH_MAX; +const Length LENGTH_UNDEFINED; +const TSQueryError PARENT_DONE; +const TSRange DEFAULT_RANGE; +const TSSymbol WILDCARD_SYMBOL; +const char *symbol_table_name_for_id(const SymbolTable *self, uint16_t id, uint32_t *length); +const char *const ROOT_FIELD; +const int32_t BYTE_ORDER_MARK; +const int32_t TS_DECODE_ERROR; +const uint16_t NONE; +const uint16_t PATTERN_DONE_MARKER; +const unsigned MAX_COST_DIFFERENCE; +const unsigned MAX_SUMMARY_DEPTH; +const unsigned MAX_VERSION_COUNT; +const unsigned MAX_VERSION_COUNT_OVERFLOW; +const unsigned OP_COUNT_PER_TIMEOUT_CHECK; +int symbol_table_id_for_name(const SymbolTable *self, const char *name, uint32_t length); +uint16_t capture_list_pool_acquire(CaptureListPool *self); +uint16_t symbol_table_insert_name(SymbolTable *self, const char *name, uint32_t length); +uint32_t stack__subtree_node_count(Subtree subtree); +uint32_t stream_offset(Stream *self); +unsigned analysis_state__recursion_depth(const AnalysisState *self); +void capture_list_pool_delete(CaptureListPool *self); +void capture_list_pool_release(CaptureListPool *self, uint16_t id); +void capture_list_pool_reset(CaptureListPool *self); +void capture_quantifiers_add_all(CaptureQuantifiers *self, CaptureQuantifiers *quantifiers); +void capture_quantifiers_add_for_id(CaptureQuantifiers *self, uint16_t id, TSQuantifier quantifier); +void capture_quantifiers_clear(CaptureQuantifiers *self); +void capture_quantifiers_delete(CaptureQuantifiers *self); +void capture_quantifiers_join_all(CaptureQuantifiers *self, CaptureQuantifiers *quantifiers); +void capture_quantifiers_mul(CaptureQuantifiers *self, TSQuantifier quantifier); +void capture_quantifiers_replace(CaptureQuantifiers *self, CaptureQuantifiers *quantifiers); +void iterator_advance(Iterator *self); +void iterator_ascend(Iterator *self); +void iterator_get_visible_state(const Iterator *self, Subtree *tree, TSSymbol *alias_symbol, uint32_t *start_byte); +void query_step__add_capture(QueryStep *self, uint16_t capture_id); +void query_step__remove_capture(QueryStep *self, uint16_t capture_id); +void stack_head_delete(StackHead *self, StackNodeArray *pool, SubtreePool *subtree_pool); +void stack_node_add_link(StackNode *self, StackLink link, SubtreePool *subtree_pool); +void stack_node_release(StackNode *self, StackNodeArray *pool, SubtreePool *subtree_pool); +void stack_node_retain(StackNode *self); +void stream_reset(Stream *self, const char *input); +void stream_scan_identifier(Stream *stream); +void stream_skip_whitespace(Stream *self); +void symbol_table_delete(SymbolTable *self); +void *ts_calloc_default(size_t count, size_t size); +uint32_t ts_decode_ascii(const uint8_t *string, uint32_t length, int32_t *code_point); +int _ts_dup(int file_descriptor); +ExternalScannerState ts_external_scanner_state_copy(const ExternalScannerState *self); +const char *ts_external_scanner_state_data(const ExternalScannerState *self); +void ts_external_scanner_state_delete(ExternalScannerState *self); +bool ts_external_scanner_state_eq(const ExternalScannerState *self, const char *buffer, unsigned length); +void ts_external_scanner_state_init(ExternalScannerState *self, const char *data, unsigned length); +const TSLanguage *ts_language_copy(const TSLanguage *self); +void ts_language_delete(const TSLanguage *self); +uint32_t ts_language_field_count(const TSLanguage *self); +TSFieldId ts_language_field_id_for_name(const TSLanguage *self, const char *name, uint32_t name_length); +const char *ts_language_field_name_for_id(const TSLanguage *self, TSFieldId id); +TSStateId ts_language_next_state(const TSLanguage *self, TSStateId state, TSSymbol symbol); +TSSymbol ts_language_public_symbol(const TSLanguage *self, TSSymbol symbol); +uint32_t ts_language_state_count(const TSLanguage *self); +uint32_t ts_language_symbol_count(const TSLanguage *self); +TSSymbol ts_language_symbol_for_name(const TSLanguage *self, const char *string, uint32_t length, bool is_named); +TSSymbolMetadata ts_language_symbol_metadata(const TSLanguage *self, TSSymbol symbol); +const char *ts_language_symbol_name(const TSLanguage *self, TSSymbol symbol); +TSSymbolType ts_language_symbol_type(const TSLanguage *self, TSSymbol symbol); +void ts_language_table_entry(const TSLanguage *self, TSStateId state, TSSymbol symbol, TableEntry *result); +uint32_t ts_language_version(const TSLanguage *self); +void ts_lexer__advance(TSLexer *_self, bool skip); +void ts_lexer__clear_chunk(Lexer *self); +void ts_lexer__do_advance(Lexer *self, bool skip); +bool ts_lexer__eof(const TSLexer *_self); +void ts_lexer__get_chunk(Lexer *self); +uint32_t ts_lexer__get_column(TSLexer *_self); +void ts_lexer__get_lookahead(Lexer *self); +bool ts_lexer__is_at_included_range_start(const TSLexer *_self); +void ts_lexer__mark_end(TSLexer *_self); +void ts_lexer_advance_to_end(Lexer *self); +void ts_lexer_delete(Lexer *self); +void ts_lexer_finish(Lexer *self, uint32_t *lookahead_end_byte); +void ts_lexer_goto(Lexer *self, Length position); +TSRange *ts_lexer_included_ranges(const Lexer *self, uint32_t *count); +void ts_lexer_init(Lexer *self); +void ts_lexer_mark_end(Lexer *self); +void ts_lexer_reset(Lexer *self, Length position); +bool ts_lexer_set_included_ranges(Lexer *self, const TSRange *ranges, uint32_t count); +void ts_lexer_set_input(Lexer *self, TSInput input); +void ts_lexer_start(Lexer *self); +TSSymbol ts_lookahead_iterator_current_symbol(const TSLookaheadIterator *self); +const char *ts_lookahead_iterator_current_symbol_name(const TSLookaheadIterator *self); +void ts_lookahead_iterator_delete(TSLookaheadIterator *self); +const TSLanguage *ts_lookahead_iterator_language(const TSLookaheadIterator *self); +TSLookaheadIterator *ts_lookahead_iterator_new(const TSLanguage *self, TSStateId state); +bool ts_lookahead_iterator_next(TSLookaheadIterator *self); +bool ts_lookahead_iterator_reset(TSLookaheadIterator *self, const TSLanguage *language, TSStateId state); +bool ts_lookahead_iterator_reset_state(TSLookaheadIterator *self, TSStateId state); +void *ts_malloc_default(size_t size); +TSNode ts_node_child(TSNode self, uint32_t child_index); +TSNode ts_node_child_by_field_id(TSNode self, TSFieldId field_id); +TSNode ts_node_child_by_field_name(TSNode self, const char *name, uint32_t name_length); +TSNode ts_node_child_containing_descendant(TSNode self, TSNode subnode); +uint32_t ts_node_child_count(TSNode self); +uint32_t ts_node_descendant_count(TSNode self); +TSNode ts_node_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end); +TSNode ts_node_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end); +void ts_node_edit(TSNode *self, const TSInputEdit *edit); +uint32_t ts_node_end_byte(TSNode self); +TSPoint ts_node_end_point(TSNode self); +bool ts_node_eq(TSNode self, TSNode other); +const char *ts_node_field_name_for_child(TSNode self, uint32_t child_index); +TSNode ts_node_first_child_for_byte(TSNode self, uint32_t byte); +TSNode ts_node_first_named_child_for_byte(TSNode self, uint32_t byte); +TSSymbol ts_node_grammar_symbol(TSNode self); +const char *ts_node_grammar_type(TSNode self); +bool ts_node_has_changes(TSNode self); +bool ts_node_has_error(TSNode self); +bool ts_node_is_error(TSNode self); +bool ts_node_is_extra(TSNode self); +bool ts_node_is_missing(TSNode self); +bool ts_node_is_named(TSNode self); +bool ts_node_is_null(TSNode self); +const TSLanguage *ts_node_language(TSNode self); +TSNode ts_node_named_child(TSNode self, uint32_t child_index); +uint32_t ts_node_named_child_count(TSNode self); +TSNode ts_node_named_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end); +TSNode ts_node_named_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end); +TSNode ts_node_new(const TSTree *tree, const Subtree *subtree, Length position, TSSymbol alias); +TSNode ts_node_next_named_sibling(TSNode self); +TSStateId ts_node_next_parse_state(TSNode self); +TSNode ts_node_next_sibling(TSNode self); +TSNode ts_node_parent(TSNode self); +TSStateId ts_node_parse_state(TSNode self); +TSNode ts_node_prev_named_sibling(TSNode self); +TSNode ts_node_prev_sibling(TSNode self); +uint32_t ts_node_start_byte(TSNode self); +TSPoint ts_node_start_point(TSNode self); +char *ts_node_string(TSNode self); +TSSymbol ts_node_symbol(TSNode self); +const char *ts_node_type(TSNode self); +void ts_parser__accept(TSParser *self, StackVersion version, Subtree lookahead); +bool ts_parser__advance(TSParser *self, StackVersion version, bool allow_node_reuse); +bool ts_parser__better_version_exists(TSParser *self, StackVersion version, bool is_in_error, unsigned cost); +void ts_parser__breakdown_lookahead(TSParser *self, Subtree *lookahead, TSStateId state, ReusableNode *reusable_node); +bool ts_parser__breakdown_top_of_stack(TSParser *self, StackVersion version); +bool ts_parser__call_keyword_lex_fn(TSParser *self, TSLexMode lex_mode); +bool ts_parser__call_main_lex_fn(TSParser *self, TSLexMode lex_mode); +bool ts_parser__can_reuse_first_leaf(TSParser *self, TSStateId state, Subtree tree, TableEntry *table_entry); +ErrorComparison ts_parser__compare_versions(TSParser *self, ErrorStatus a, ErrorStatus b); +unsigned ts_parser__condense_stack(TSParser *self); +bool ts_parser__do_all_potential_reductions(TSParser *self, StackVersion starting_version, TSSymbol lookahead_symbol); +void ts_parser__external_scanner_create(TSParser *self); +void ts_parser__external_scanner_deserialize(TSParser *self, Subtree external_token); +void ts_parser__external_scanner_destroy(TSParser *self); +bool ts_parser__external_scanner_scan(TSParser *self, TSStateId external_lex_state); +unsigned ts_parser__external_scanner_serialize(TSParser *self); +Subtree ts_parser__get_cached_token(TSParser *self, TSStateId state, size_t position, Subtree last_external_token, TableEntry *table_entry); +void ts_parser__handle_error(TSParser *self, StackVersion version, Subtree lookahead); +bool ts_parser__has_included_range_difference(const TSParser *self, uint32_t start_position, uint32_t end_position); +Subtree ts_parser__lex(TSParser *self, StackVersion version, TSStateId parse_state); +void ts_parser__log(TSParser *self); +void ts_parser__recover(TSParser *self, StackVersion version, Subtree lookahead); +bool ts_parser__recover_to_state(TSParser *self, StackVersion version, unsigned depth, TSStateId goal_state); +StackVersion ts_parser__reduce(TSParser *self, StackVersion version, TSSymbol symbol, uint32_t count, int dynamic_precedence, uint16_t production_id, bool is_fragile, bool end_of_non_terminal_extra); +Subtree ts_parser__reuse_node(TSParser *self, StackVersion version, TSStateId *state, uint32_t position, Subtree last_external_token, TableEntry *table_entry); +bool ts_parser__select_children(TSParser *self, Subtree left, const SubtreeArray *children); +bool ts_parser__select_tree(TSParser *self, Subtree left, Subtree right); +void ts_parser__set_cached_token(TSParser *self, uint32_t byte_index, Subtree last_external_token, Subtree token); +void ts_parser__shift(TSParser *self, StackVersion version, TSStateId state, Subtree lookahead, bool extra); +ErrorStatus ts_parser__version_status(TSParser *self, StackVersion version); +const size_t *ts_parser_cancellation_flag(const TSParser *self); +void ts_parser_delete(TSParser *self); +bool ts_parser_has_outstanding_parse(TSParser *self); +const TSRange *ts_parser_included_ranges(const TSParser *self, uint32_t *count); +const TSLanguage *ts_parser_language(const TSParser *self); +TSLogger ts_parser_logger(const TSParser *self); +TSParser *ts_parser_new(void); +TSTree *ts_parser_parse(TSParser *self, const TSTree *old_tree, TSInput input); +TSTree *ts_parser_parse_string(TSParser *self, const TSTree *old_tree, const char *string, uint32_t length); +TSTree *ts_parser_parse_string_encoding(TSParser *self, const TSTree *old_tree, const char *string, uint32_t length, TSInputEncoding encoding); +void ts_parser_print_dot_graphs(TSParser *self, int fd); +void ts_parser_reset(TSParser *self); +void ts_parser_set_cancellation_flag(TSParser *self, const size_t *flag); +bool ts_parser_set_included_ranges(TSParser *self, const TSRange *ranges, uint32_t count); +bool ts_parser_set_language(TSParser *self, const TSLanguage *language); +void ts_parser_set_logger(TSParser *self, TSLogger logger); +void ts_parser_set_timeout_micros(TSParser *self, uint64_t timeout_micros); +void ts_parser_set_wasm_store(TSParser *self, TSWasmStore *store); +TSWasmStore *ts_parser_take_wasm_store(TSParser *self); +uint64_t ts_parser_timeout_micros(const TSParser *self); +void ts_query__add_negated_fields(TSQuery *self, uint16_t step_index, TSFieldId *field_ids, uint16_t field_count); +bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset); +TSQueryError ts_query__parse_pattern(TSQuery *self, Stream *stream, uint32_t depth, bool is_immediate, CaptureQuantifiers *capture_quantifiers); +TSQueryError ts_query__parse_predicate(TSQuery *self, Stream *stream); +TSQueryError ts_query__parse_string_literal(TSQuery *self, Stream *stream); +void ts_query__perform_analysis(TSQuery *self, const AnalysisSubgraphArray *subgraphs, QueryAnalysis *analysis); +bool ts_query__step_is_fallible(const TSQuery *self, uint16_t step_index); +uint32_t ts_query_capture_count(const TSQuery *self); +const char *ts_query_capture_name_for_id(const TSQuery *self, uint32_t index, uint32_t *length); +TSQuantifier ts_query_capture_quantifier_for_id(const TSQuery *self, uint32_t pattern_index, uint32_t capture_index); +void ts_query_cursor__add_state(TSQueryCursor *self, const PatternEntry *pattern); +void ts_query_cursor__capture(TSQueryCursor *self, QueryState *state, QueryStep *step, TSNode node); +void ts_query_cursor__compare_captures(TSQueryCursor *self, QueryState *left_state, QueryState *right_state, bool *left_contains_right, bool *right_contains_left); +int ts_query_cursor__compare_nodes(TSNode left, TSNode right); +QueryState *ts_query_cursor__copy_state(TSQueryCursor *self, QueryState **state_ref); +bool ts_query_cursor__first_in_progress_capture(TSQueryCursor *self, uint32_t *state_index, uint32_t *byte_offset, uint32_t *pattern_index, bool *root_pattern_guaranteed); +CaptureList *ts_query_cursor__prepare_to_capture(TSQueryCursor *self, QueryState *state, unsigned state_index_to_preserve); +void ts_query_cursor_delete(TSQueryCursor *self); +bool ts_query_cursor_did_exceed_match_limit(const TSQueryCursor *self); +void ts_query_cursor_exec(TSQueryCursor *self, const TSQuery *query, TSNode node); +uint32_t ts_query_cursor_match_limit(const TSQueryCursor *self); +TSQueryCursor *ts_query_cursor_new(void); +bool ts_query_cursor_next_capture(TSQueryCursor *self, TSQueryMatch *match, uint32_t *capture_index); +bool ts_query_cursor_next_match(TSQueryCursor *self, TSQueryMatch *match); +void ts_query_cursor_remove_match(TSQueryCursor *self, uint32_t match_id); +void ts_query_cursor_set_byte_range(TSQueryCursor *self, uint32_t start_byte, uint32_t end_byte); +void ts_query_cursor_set_match_limit(TSQueryCursor *self, uint32_t limit); +void ts_query_cursor_set_max_start_depth(TSQueryCursor *self, uint32_t max_start_depth); +void ts_query_cursor_set_point_range(TSQueryCursor *self, TSPoint start_point, TSPoint end_point); +void ts_query_delete(TSQuery *self); +void ts_query_disable_capture(TSQuery *self, const char *name, uint32_t length); +void ts_query_disable_pattern(TSQuery *self, uint32_t pattern_index); +bool ts_query_is_pattern_guaranteed_at_step(const TSQuery *self, uint32_t byte_offset); +bool ts_query_is_pattern_non_local(const TSQuery *self, uint32_t pattern_index); +bool ts_query_is_pattern_rooted(const TSQuery *self, uint32_t pattern_index); +TSQuery *ts_query_new(const TSLanguage *language, const char *source, uint32_t source_len, uint32_t *error_offset, TSQueryError *error_type); +uint32_t ts_query_pattern_count(const TSQuery *self); +const TSQueryPredicateStep *ts_query_predicates_for_pattern(const TSQuery *self, uint32_t pattern_index, uint32_t *step_count); +uint32_t ts_query_start_byte_for_pattern(const TSQuery *self, uint32_t pattern_index); +uint32_t ts_query_string_count(const TSQuery *self); +const char *ts_query_string_value_for_id(const TSQuery *self, uint32_t index, uint32_t *length); +void ts_range_array_add(TSRangeArray *self, Length start, Length end); +void ts_range_array_get_changed_ranges(const TSRange *old_ranges, unsigned old_range_count, const TSRange *new_ranges, unsigned new_range_count, TSRangeArray *differences); +bool ts_range_array_intersects(const TSRangeArray *self, unsigned start_index, uint32_t start_byte, uint32_t end_byte); +void *ts_realloc_default(void *buffer, size_t size); +void ts_set_allocator(void *(*new_malloc)(void), void *(*new_calloc)(void), void *(*new_realloc)(void), void (*new_free)(void)); +void ts_stack__add_slice(Stack *self, StackVersion original_version, StackNode *node, SubtreeArray *subtrees); +StackVersion ts_stack__add_version(Stack *self, StackVersion original_version, StackNode *node); +bool ts_stack_can_merge(Stack *self, StackVersion version1, StackVersion version2); +void ts_stack_clear(Stack *self); +StackVersion ts_stack_copy_version(Stack *self, StackVersion version); +void ts_stack_delete(Stack *self); +int ts_stack_dynamic_precedence(Stack *self, StackVersion version); +unsigned ts_stack_error_cost(const Stack *self, StackVersion version); +StackSummary *ts_stack_get_summary(Stack *self, StackVersion version); +void ts_stack_halt(Stack *self, StackVersion version); +bool ts_stack_has_advanced_since_error(const Stack *self, StackVersion version); +bool ts_stack_is_active(const Stack *self, StackVersion version); +bool ts_stack_is_halted(const Stack *self, StackVersion version); +bool ts_stack_is_paused(const Stack *self, StackVersion version); +Subtree ts_stack_last_external_token(const Stack *self, StackVersion version); +bool ts_stack_merge(Stack *self, StackVersion version1, StackVersion version2); +Stack *ts_stack_new(SubtreePool *subtree_pool); +unsigned ts_stack_node_count_since_error(const Stack *self, StackVersion version); +void ts_stack_pause(Stack *self, StackVersion version, Subtree lookahead); +StackSliceArray ts_stack_pop_all(Stack *self, StackVersion version); +StackSliceArray ts_stack_pop_count(Stack *self, StackVersion version, uint32_t count); +SubtreeArray ts_stack_pop_error(Stack *self, StackVersion version); +StackSliceArray ts_stack_pop_pending(Stack *self, StackVersion version); +Length ts_stack_position(const Stack *self, StackVersion version); +bool ts_stack_print_dot_graph(Stack *self, const TSLanguage *language, FILE *f); +void ts_stack_push(Stack *self, StackVersion version, Subtree subtree, bool pending, TSStateId state); +void ts_stack_record_summary(Stack *self, StackVersion version, unsigned max_depth); +void ts_stack_remove_version(Stack *self, StackVersion version); +void ts_stack_renumber_version(Stack *self, StackVersion v1, StackVersion v2); +Subtree ts_stack_resume(Stack *self, StackVersion version); +void ts_stack_set_last_external_token(Stack *self, StackVersion version, Subtree token); +TSStateId ts_stack_state(const Stack *self, StackVersion version); +void ts_stack_swap_versions(Stack *self, StackVersion v1, StackVersion v2); +uint32_t ts_stack_version_count(const Stack *self); +const char *ts_string_input_read(void *_self, uint32_t byte, TSPoint point, uint32_t *length); +void ts_subtree__compress(MutableSubtree self, unsigned count, const TSLanguage *language, MutableSubtreeArray *stack); +void ts_subtree__print_dot_graph(const Subtree *self, uint32_t start_offset, const TSLanguage *language, TSSymbol alias_symbol, FILE *f); +size_t ts_subtree__write_char_to_string(char *str, size_t n, int32_t chr); +size_t ts_subtree__write_to_string(Subtree self, char *string, size_t limit, const TSLanguage *language, bool include_all, TSSymbol alias_symbol, bool alias_is_named, const char *field_name); +void ts_subtree_array_clear(SubtreePool *pool, SubtreeArray *self); +void ts_subtree_array_copy(SubtreeArray self, SubtreeArray *dest); +void ts_subtree_array_delete(SubtreePool *pool, SubtreeArray *self); +void ts_subtree_array_remove_trailing_extras(SubtreeArray *self, SubtreeArray *destination); +void ts_subtree_array_reverse(SubtreeArray *self); +void ts_subtree_balance(Subtree self, SubtreePool *pool, const TSLanguage *language); +MutableSubtree ts_subtree_clone(Subtree self); +int ts_subtree_compare(Subtree left, Subtree right, SubtreePool *pool); +Subtree ts_subtree_edit(Subtree self, const TSInputEdit *input_edit, SubtreePool *pool); +const ExternalScannerState *ts_subtree_external_scanner_state(Subtree self); +bool ts_subtree_external_scanner_state_eq(Subtree self, Subtree other); +unsigned ts_subtree_get_changed_ranges(const Subtree *old_tree, const Subtree *new_tree, TreeCursor *cursor1, TreeCursor *cursor2, const TSLanguage *language, const TSRangeArray *included_range_differences, TSRange **ranges); +bool ts_subtree_has_trailing_empty_descendant(Subtree self, Subtree other); +Subtree ts_subtree_last_external_token(Subtree tree); +MutableSubtree ts_subtree_make_mut(SubtreePool *pool, Subtree self); +Subtree ts_subtree_new_error(SubtreePool *pool, int32_t lookahead_char, Length padding, Length size, uint32_t bytes_scanned, TSStateId parse_state, const TSLanguage *language); +Subtree ts_subtree_new_error_node(SubtreeArray *children, bool extra, const TSLanguage *language); +Subtree ts_subtree_new_leaf(SubtreePool *pool, TSSymbol symbol, Length padding, Length size, uint32_t lookahead_bytes, TSStateId parse_state, bool has_external_tokens, bool depends_on_column, bool is_keyword, const TSLanguage *language); +Subtree ts_subtree_new_missing_leaf(SubtreePool *pool, TSSymbol symbol, Length padding, uint32_t lookahead_bytes, const TSLanguage *language); +MutableSubtree ts_subtree_new_node(TSSymbol symbol, SubtreeArray *children, unsigned production_id, const TSLanguage *language); +SubtreeHeapData *ts_subtree_pool_allocate(SubtreePool *self); +void ts_subtree_pool_delete(SubtreePool *self); +void ts_subtree_pool_free(SubtreePool *self, SubtreeHeapData *tree); +SubtreePool ts_subtree_pool_new(uint32_t capacity); +void ts_subtree_print_dot_graph(Subtree self, const TSLanguage *language, FILE *f); +void ts_subtree_release(SubtreePool *pool, Subtree self); +void ts_subtree_retain(Subtree self); +void ts_subtree_set_symbol(MutableSubtree *self, TSSymbol symbol, const TSLanguage *language); +char *ts_subtree_string(Subtree self, TSSymbol alias_symbol, bool alias_is_named, const TSLanguage *language, bool include_all); +void ts_subtree_summarize_children(MutableSubtree self, const TSLanguage *language); +TSTree *ts_tree_copy(const TSTree *self); +TSTreeCursor ts_tree_cursor_copy(const TSTreeCursor *_cursor); +uint32_t ts_tree_cursor_current_depth(const TSTreeCursor *_self); +uint32_t ts_tree_cursor_current_descendant_index(const TSTreeCursor *_self); +TSFieldId ts_tree_cursor_current_field_id(const TSTreeCursor *_self); +const char *ts_tree_cursor_current_field_name(const TSTreeCursor *_self); +TSNode ts_tree_cursor_current_node(const TSTreeCursor *_self); +void ts_tree_cursor_current_status(const TSTreeCursor *_self, TSFieldId *field_id, bool *has_later_siblings, bool *has_later_named_siblings, bool *can_have_later_siblings_with_this_field, TSSymbol *supertypes, unsigned *supertype_count); +void ts_tree_cursor_delete(TSTreeCursor *_self); +void ts_tree_cursor_goto_descendant(TSTreeCursor *_self, uint32_t goal_descendant_index); +bool ts_tree_cursor_goto_first_child(TSTreeCursor *self); +int64_t ts_tree_cursor_goto_first_child_for_byte(TSTreeCursor *self, uint32_t goal_byte); +int64_t ts_tree_cursor_goto_first_child_for_point(TSTreeCursor *self, TSPoint goal_point); +TreeCursorStep ts_tree_cursor_goto_first_child_internal(TSTreeCursor *_self); +bool ts_tree_cursor_goto_last_child(TSTreeCursor *self); +TreeCursorStep ts_tree_cursor_goto_last_child_internal(TSTreeCursor *_self); +bool ts_tree_cursor_goto_next_sibling(TSTreeCursor *self); +TreeCursorStep ts_tree_cursor_goto_next_sibling_internal(TSTreeCursor *_self); +bool ts_tree_cursor_goto_parent(TSTreeCursor *_self); +bool ts_tree_cursor_goto_previous_sibling(TSTreeCursor *self); +TreeCursorStep ts_tree_cursor_goto_previous_sibling_internal(TSTreeCursor *_self); +TreeCursorStep ts_tree_cursor_goto_sibling_internal(TSTreeCursor *_self, bool (*advance)(CursorChildIterator *, TreeCursorEntry *, bool *)); +void ts_tree_cursor_init(TreeCursor *self, TSNode node); +TSTreeCursor ts_tree_cursor_new(TSNode node); +TSNode ts_tree_cursor_parent_node(const TSTreeCursor *_self); +void ts_tree_cursor_reset(TSTreeCursor *_self, TSNode node); +void ts_tree_cursor_reset_to(TSTreeCursor *_dst, const TSTreeCursor *_src); +void ts_tree_delete(TSTree *self); +void ts_tree_edit(TSTree *self, const TSInputEdit *edit); +TSRange *ts_tree_get_changed_ranges(const TSTree *old_tree, const TSTree *new_tree, uint32_t *length); +TSRange *ts_tree_included_ranges(const TSTree *self, uint32_t *length); +const TSLanguage *ts_tree_language(const TSTree *self); +TSTree *ts_tree_new(Subtree root, const TSLanguage *language, const TSRange *included_ranges, unsigned included_range_count); +void ts_tree_print_dot_graph(const TSTree *self, int file_descriptor); +TSNode ts_tree_root_node(const TSTree *self); +TSNode ts_tree_root_node_with_offset(const TSTree *self, uint32_t offset_bytes, TSPoint offset_extent); diff --git a/parser/gen/types.h b/parser/gen/types.h new file mode 100644 index 00000000..b04cc505 --- /dev/null +++ b/parser/gen/types.h @@ -0,0 +1,935 @@ +#include +#include + +typedef uint16_t TSStateId; +typedef uint16_t TSSymbol; +typedef uint16_t TSFieldId; +typedef struct TSLanguage TSLanguage; +typedef struct TSParser TSParser; +typedef struct TSTree TSTree; +typedef struct TSQuery TSQuery; +typedef struct TSQueryCursor TSQueryCursor; +typedef struct TSLookaheadIterator TSLookaheadIterator; +typedef enum TSInputEncoding +{ + TSInputEncodingUTF8, + TSInputEncodingUTF16, +} TSInputEncoding; +typedef enum TSSymbolType +{ + TSSymbolTypeRegular, + TSSymbolTypeAnonymous, + TSSymbolTypeAuxiliary, +} TSSymbolType; +typedef struct TSPoint +{ + uint32_t row; + uint32_t column; +} TSPoint; +typedef struct TSRange +{ + TSPoint start_point; + TSPoint end_point; + uint32_t start_byte; + uint32_t end_byte; +} TSRange; +typedef struct TSInput +{ + void *payload; + const char *(*read)(void *payload, uint32_t byte_index, TSPoint position, uint32_t *bytes_read); + TSInputEncoding encoding; +} TSInput; +typedef enum TSLogType +{ + TSLogTypeParse, + TSLogTypeLex, +} TSLogType; +typedef struct TSLogger +{ + void *payload; + void (*log)(void *payload, TSLogType log_type, const char *buffer); +} TSLogger; +typedef struct TSInputEdit +{ + uint32_t start_byte; + uint32_t old_end_byte; + uint32_t new_end_byte; + TSPoint start_point; + TSPoint old_end_point; + TSPoint new_end_point; +} TSInputEdit; +typedef struct TSNode +{ + uint32_t context[4]; + const void *id; + const TSTree *tree; +} TSNode; +typedef struct TSTreeCursor +{ + const void *tree; + const void *id; + uint32_t context[3]; +} TSTreeCursor; +typedef struct TSQueryCapture +{ + TSNode node; + uint32_t index; +} TSQueryCapture; +typedef enum TSQuantifier +{ + TSQuantifierZero = 0, + TSQuantifierZeroOrOne, + TSQuantifierZeroOrMore, + TSQuantifierOne, + TSQuantifierOneOrMore, +} TSQuantifier; +typedef struct TSQueryMatch +{ + uint32_t id; + uint16_t pattern_index; + uint16_t capture_count; + const TSQueryCapture *captures; +} TSQueryMatch; +typedef enum TSQueryPredicateStepType +{ + TSQueryPredicateStepTypeDone, + TSQueryPredicateStepTypeCapture, + TSQueryPredicateStepTypeString, +} TSQueryPredicateStepType; +typedef struct TSQueryPredicateStep +{ + TSQueryPredicateStepType type; + uint32_t value_id; +} TSQueryPredicateStep; +typedef enum TSQueryError +{ + TSQueryErrorNone = 0, + TSQueryErrorSyntax, + TSQueryErrorNodeType, + TSQueryErrorField, + TSQueryErrorCapture, + TSQueryErrorStructure, + TSQueryErrorLanguage, +} TSQueryError; +typedef struct wasm_engine_t TSWasmEngine; +typedef struct TSWasmStore TSWasmStore; +typedef enum +{ + TSWasmErrorKindNone = 0, + TSWasmErrorKindParse, + TSWasmErrorKindCompile, + TSWasmErrorKindInstantiate, + TSWasmErrorKindAllocate, +} TSWasmErrorKind; +typedef struct +{ + TSWasmErrorKind kind; + char *message; +} TSWasmError; +typedef struct +{ + void *contents; + uint32_t size; + uint32_t capacity; +} Array; +typedef struct +{ + uint32_t bytes; + TSPoint extent; +} Length; +typedef struct +{ + TSFieldId field_id; + uint8_t child_index; + _Bool inherited; +} TSFieldMapEntry; +typedef struct +{ + uint16_t index; + uint16_t length; +} TSFieldMapSlice; +typedef struct +{ + _Bool visible; + _Bool named; + _Bool supertype; +} TSSymbolMetadata; +typedef struct TSLexer TSLexer; +struct TSLexer +{ + int32_t lookahead; + TSSymbol result_symbol; + void (*advance)(TSLexer *, _Bool); + void (*mark_end)(TSLexer *); + uint32_t (*get_column)(TSLexer *); + _Bool (*is_at_included_range_start)(const TSLexer *); + _Bool (*eof)(const TSLexer *); +}; +typedef enum +{ + TSParseActionTypeShift, + TSParseActionTypeReduce, + TSParseActionTypeAccept, + TSParseActionTypeRecover, +} TSParseActionType; +typedef union { + struct + { + uint8_t type; + TSStateId state; + _Bool extra; + _Bool repetition; + } shift; + struct + { + uint8_t type; + uint8_t child_count; + TSSymbol symbol; + int16_t dynamic_precedence; + uint16_t production_id; + } reduce; + uint8_t type; +} TSParseAction; +typedef struct +{ + uint16_t lex_state; + uint16_t external_lex_state; +} TSLexMode; +typedef union { + TSParseAction action; + struct + { + uint8_t count; + _Bool reusable; + } entry; +} TSParseActionEntry; +typedef struct +{ + int32_t start; + int32_t end; +} TSCharacterRange; +struct TSLanguage +{ + uint32_t version; + uint32_t symbol_count; + uint32_t alias_count; + uint32_t token_count; + uint32_t external_token_count; + uint32_t state_count; + uint32_t large_state_count; + uint32_t production_id_count; + uint32_t field_count; + uint16_t max_alias_sequence_length; + const uint16_t *parse_table; + const uint16_t *small_parse_table; + const uint32_t *small_parse_table_map; + const TSParseActionEntry *parse_actions; + const char *const *symbol_names; + const char *const *field_names; + const TSFieldMapSlice *field_map_slices; + const TSFieldMapEntry *field_map_entries; + const TSSymbolMetadata *symbol_metadata; + const TSSymbol *public_symbol_map; + const uint16_t *alias_map; + const TSSymbol *alias_sequences; + const TSLexMode *lex_modes; + _Bool (*lex_fn)(TSLexer *, TSStateId); + _Bool (*keyword_lex_fn)(TSLexer *, TSStateId); + TSSymbol keyword_capture_token; + struct + { + const _Bool *states; + const TSSymbol *symbol_map; + void *(*create)(void); + void (*destroy)(void *); + _Bool (*scan)(void *, TSLexer *, const _Bool *symbol_whitelist); + unsigned (*serialize)(void *, char *); + void (*deserialize)(void *, const char *, unsigned); + } external_scanner; + const TSStateId *primary_state_ids; +}; +typedef struct +{ + union { + char *long_data; + char short_data[24]; + }; + uint32_t length; +} ExternalScannerState; +typedef struct SubtreeInlineData SubtreeInlineData; +struct SubtreeInlineData +{ + _Bool is_inline : 1; + _Bool visible : 1; + _Bool named : 1; + _Bool extra : 1; + _Bool has_changes : 1; + _Bool is_missing : 1; + _Bool is_keyword : 1; + uint8_t symbol; + uint16_t parse_state; + uint8_t padding_columns; + uint8_t padding_rows : 4; + uint8_t lookahead_bytes : 4; + uint8_t padding_bytes; + uint8_t size_bytes; +}; +typedef struct +{ + volatile uint32_t ref_count; + Length padding; + Length size; + uint32_t lookahead_bytes; + uint32_t error_cost; + uint32_t child_count; + TSSymbol symbol; + TSStateId parse_state; + _Bool visible : 1; + _Bool named : 1; + _Bool extra : 1; + _Bool fragile_left : 1; + _Bool fragile_right : 1; + _Bool has_changes : 1; + _Bool has_external_tokens : 1; + _Bool has_external_scanner_state_change : 1; + _Bool depends_on_column : 1; + _Bool is_missing : 1; + _Bool is_keyword : 1; + union { + struct + { + uint32_t visible_child_count; + uint32_t named_child_count; + uint32_t visible_descendant_count; + int32_t dynamic_precedence; + uint16_t repeat_depth; + uint16_t production_id; + struct + { + TSSymbol symbol; + TSStateId parse_state; + } first_leaf; + }; + ExternalScannerState external_scanner_state; + int32_t lookahead_char; + }; +} SubtreeHeapData; +typedef union { + SubtreeInlineData data; + const SubtreeHeapData *ptr; +} Subtree; +typedef union { + SubtreeInlineData data; + SubtreeHeapData *ptr; +} MutableSubtree; +typedef struct +{ + Subtree *contents; + uint32_t size; + uint32_t capacity; +} SubtreeArray; +typedef struct +{ + MutableSubtree *contents; + uint32_t size; + uint32_t capacity; +} MutableSubtreeArray; +typedef struct +{ + MutableSubtreeArray free_trees; + MutableSubtreeArray tree_stack; +} SubtreePool; +typedef struct +{ + const Subtree *subtree; + Length position; + uint32_t child_index; + uint32_t structural_child_index; + uint32_t descendant_index; +} TreeCursorEntry; +typedef struct +{ + const TSTree *tree; + struct + { + TreeCursorEntry *contents; + uint32_t size; + uint32_t capacity; + } stack; + TSSymbol root_alias_symbol; +} TreeCursor; +typedef enum +{ + TreeCursorStepNone, + TreeCursorStepHidden, + TreeCursorStepVisible, +} TreeCursorStep; +typedef struct +{ + TSRange *contents; + uint32_t size; + uint32_t capacity; +} TSRangeArray; +typedef struct +{ + const TSParseAction *actions; + uint32_t action_count; + _Bool is_reusable; +} TableEntry; +typedef struct +{ + const TSLanguage *language; + const uint16_t *data; + const uint16_t *group_end; + TSStateId state; + uint16_t table_value; + uint16_t section_index; + uint16_t group_count; + _Bool is_small_state; + const TSParseAction *actions; + TSSymbol symbol; + TSStateId next_state; + uint16_t action_count; +} LookaheadIterator; +typedef struct +{ + TreeCursor cursor; + const TSLanguage *language; + unsigned visible_depth; + _Bool in_padding; +} Iterator; +typedef enum +{ + IteratorDiffers, + IteratorMayDiffer, + IteratorMatches, +} IteratorComparison; +typedef struct +{ + TSLexer data; + Length current_position; + Length token_start_position; + Length token_end_position; + TSRange *included_ranges; + const char *chunk; + TSInput input; + TSLogger logger; + uint32_t included_range_count; + uint32_t current_included_range_index; + uint32_t chunk_start; + uint32_t chunk_size; + uint32_t lookahead_size; + _Bool did_get_column; + char debug_buffer[1024]; +} Lexer; +typedef struct +{ + const Subtree *child; + const Subtree *parent; + Length position; + TSSymbol alias_symbol; +} ParentCacheEntry; +struct TSTree +{ + Subtree root; + const TSLanguage *language; + TSRange *included_ranges; + unsigned included_range_count; +}; +typedef struct +{ + Subtree parent; + const TSTree *tree; + Length position; + uint32_t child_index; + uint32_t structural_child_index; + const TSSymbol *alias_sequence; +} NodeChildIterator; +typedef uint64_t TSDuration; +typedef uint64_t TSClock; +typedef struct +{ + uint32_t count; + TSSymbol symbol; + int dynamic_precedence; + unsigned short production_id; +} ReduceAction; +typedef struct +{ + ReduceAction *contents; + uint32_t size; + uint32_t capacity; +} ReduceActionSet; +typedef struct +{ + Subtree tree; + uint32_t child_index; + uint32_t byte_offset; +} StackEntry; +typedef struct +{ + struct + { + StackEntry *contents; + uint32_t size; + uint32_t capacity; + } stack; + Subtree last_external_token; +} ReusableNode; +typedef struct Stack Stack; +typedef unsigned StackVersion; +typedef struct +{ + SubtreeArray subtrees; + StackVersion version; +} StackSlice; +typedef struct +{ + StackSlice *contents; + uint32_t size; + uint32_t capacity; +} StackSliceArray; +typedef struct +{ + Length position; + unsigned depth; + TSStateId state; +} StackSummaryEntry; +typedef struct +{ + StackSummaryEntry *contents; + uint32_t size; + uint32_t capacity; +} StackSummary; +typedef void (*StackIterateCallback)(void *, TSStateId, uint32_t); +typedef int __gwchar_t; +typedef struct +{ + long int quot; + long int rem; +} imaxdiv_t; +struct tm +{ + int tm_sec; + int tm_min; + int tm_hour; + int tm_mday; + int tm_mon; + int tm_year; + int tm_wday; + int tm_yday; + int tm_isdst; + long int tm_gmtoff; + const char *tm_zone; +}; +typedef struct +{ + Subtree token; + Subtree last_external_token; + uint32_t byte_index; +} TokenCache; +struct TSParser +{ + Lexer lexer; + Stack *stack; + SubtreePool tree_pool; + const TSLanguage *language; + ReduceActionSet reduce_actions; + Subtree finished_tree; + SubtreeArray trailing_extras; + SubtreeArray trailing_extras2; + SubtreeArray scratch_trees; + TokenCache token_cache; + ReusableNode reusable_node; + void *external_scanner_payload; + FILE *dot_graph_file; + TSClock end_clock; + TSDuration timeout_duration; + unsigned accept_count; + unsigned operation_count; + const volatile size_t *cancellation_flag; + Subtree old_tree; + TSRangeArray included_range_differences; + unsigned included_range_difference_index; + _Bool has_scanner_error; +}; +typedef struct +{ + unsigned cost; + unsigned node_count; + int dynamic_precedence; + _Bool is_in_error; +} ErrorStatus; +typedef enum +{ + ErrorComparisonTakeLeft, + ErrorComparisonPreferLeft, + ErrorComparisonNone, + ErrorComparisonPreferRight, + ErrorComparisonTakeRight, +} ErrorComparison; +typedef struct +{ + const char *string; + uint32_t length; +} TSStringInput; +typedef struct +{ + const char *input; + const char *start; + const char *end; + int32_t next; + uint8_t next_size; +} Stream; +typedef struct +{ + TSSymbol symbol; + TSSymbol supertype_symbol; + TSFieldId field; + uint16_t capture_ids[3]; + uint16_t depth; + uint16_t alternative_index; + uint16_t negated_field_list_id; + _Bool is_named : 1; + _Bool is_immediate : 1; + _Bool is_last_child : 1; + _Bool is_pass_through : 1; + _Bool is_dead_end : 1; + _Bool alternative_is_immediate : 1; + _Bool contains_captures : 1; + _Bool root_pattern_guaranteed : 1; + _Bool parent_pattern_guaranteed : 1; +} QueryStep; +typedef struct +{ + uint32_t offset; + uint32_t length; +} Slice; +typedef struct +{ + struct + { + char *contents; + uint32_t size; + uint32_t capacity; + } characters; + struct + { + Slice *contents; + uint32_t size; + uint32_t capacity; + } slices; +} SymbolTable; +typedef struct +{ + uint8_t *contents; + uint32_t size; + uint32_t capacity; +} CaptureQuantifiers; +typedef struct +{ + uint16_t step_index; + uint16_t pattern_index; + _Bool is_rooted; +} PatternEntry; +typedef struct +{ + Slice steps; + Slice predicate_steps; + uint32_t start_byte; + _Bool is_non_local; +} QueryPattern; +typedef struct +{ + uint32_t byte_offset; + uint16_t step_index; +} StepOffset; +typedef struct +{ + uint32_t id; + uint32_t capture_list_id; + uint16_t start_depth; + uint16_t step_index; + uint16_t pattern_index; + uint16_t consumed_capture_count : 12; + _Bool seeking_immediate_match : 1; + _Bool has_in_progress_alternatives : 1; + _Bool dead : 1; + _Bool needs_parent : 1; +} QueryState; +typedef struct +{ + TSQueryCapture *contents; + uint32_t size; + uint32_t capacity; +} CaptureList; +typedef struct +{ + struct + { + CaptureList *contents; + uint32_t size; + uint32_t capacity; + } list; + CaptureList empty_list; + uint32_t max_capture_list_count; + uint32_t free_capture_list_count; +} CaptureListPool; +typedef struct +{ + TSStateId parse_state; + TSSymbol parent_symbol; + uint16_t child_index; + TSFieldId field_id : 15; + _Bool done : 1; +} AnalysisStateEntry; +typedef struct +{ + AnalysisStateEntry stack[8]; + uint16_t depth; + uint16_t step_index; + TSSymbol root_symbol; +} AnalysisState; +typedef struct +{ + AnalysisState **contents; + uint32_t size; + uint32_t capacity; +} AnalysisStateSet; +typedef struct +{ + AnalysisStateSet states; + AnalysisStateSet next_states; + AnalysisStateSet deeper_states; + AnalysisStateSet state_pool; + struct + { + uint16_t *contents; + uint32_t size; + uint32_t capacity; + } final_step_indices; + struct + { + TSSymbol *contents; + uint32_t size; + uint32_t capacity; + } finished_parent_symbols; + _Bool did_abort; +} QueryAnalysis; +typedef struct +{ + TSStateId state; + uint16_t production_id; + uint8_t child_index : 7; + _Bool done : 1; +} AnalysisSubgraphNode; +typedef struct +{ + TSSymbol symbol; + struct + { + TSStateId *contents; + uint32_t size; + uint32_t capacity; + } start_states; + struct + { + AnalysisSubgraphNode *contents; + uint32_t size; + uint32_t capacity; + } nodes; +} AnalysisSubgraph; +typedef struct +{ + AnalysisSubgraph *contents; + uint32_t size; + uint32_t capacity; +} AnalysisSubgraphArray; +typedef struct +{ + TSStateId *contents; +} StatePredecessorMap; +struct TSQuery +{ + SymbolTable captures; + SymbolTable predicate_values; + struct + { + CaptureQuantifiers *contents; + uint32_t size; + uint32_t capacity; + } capture_quantifiers; + struct + { + QueryStep *contents; + uint32_t size; + uint32_t capacity; + } steps; + struct + { + PatternEntry *contents; + uint32_t size; + uint32_t capacity; + } pattern_map; + struct + { + TSQueryPredicateStep *contents; + uint32_t size; + uint32_t capacity; + } predicate_steps; + struct + { + QueryPattern *contents; + uint32_t size; + uint32_t capacity; + } patterns; + struct + { + StepOffset *contents; + uint32_t size; + uint32_t capacity; + } step_offsets; + struct + { + TSFieldId *contents; + uint32_t size; + uint32_t capacity; + } negated_fields; + struct + { + char *contents; + uint32_t size; + uint32_t capacity; + } string_buffer; + struct + { + TSSymbol *contents; + uint32_t size; + uint32_t capacity; + } repeat_symbols_with_rootless_patterns; + const TSLanguage *language; + uint16_t wildcard_root_pattern_count; +}; +struct TSQueryCursor +{ + const TSQuery *query; + TSTreeCursor cursor; + struct + { + QueryState *contents; + uint32_t size; + uint32_t capacity; + } states; + struct + { + QueryState *contents; + uint32_t size; + uint32_t capacity; + } finished_states; + CaptureListPool capture_list_pool; + uint32_t depth; + uint32_t max_start_depth; + uint32_t start_byte; + uint32_t end_byte; + TSPoint start_point; + TSPoint end_point; + uint32_t next_state_id; + _Bool on_visible_node; + _Bool ascending; + _Bool halted; + _Bool did_exceed_match_limit; +}; +typedef struct StackNode StackNode; +typedef struct +{ + StackNode *node; + Subtree subtree; + _Bool is_pending; +} StackLink; +struct StackNode +{ + TSStateId state; + Length position; + StackLink links[8]; + short unsigned int link_count; + uint32_t ref_count; + unsigned error_cost; + unsigned node_count; + int dynamic_precedence; +}; +typedef struct +{ + StackNode *node; + SubtreeArray subtrees; + uint32_t subtree_count; + _Bool is_pending; +} StackIterator; +typedef struct +{ + StackNode **contents; + uint32_t size; + uint32_t capacity; +} StackNodeArray; +typedef enum +{ + StackStatusActive, + StackStatusPaused, + StackStatusHalted, +} StackStatus; +typedef struct +{ + StackNode *node; + StackSummary *summary; + unsigned node_count_at_last_error; + Subtree last_external_token; + Subtree lookahead_when_paused; + StackStatus status; +} StackHead; +struct Stack +{ + struct + { + StackHead *contents; + uint32_t size; + uint32_t capacity; + } heads; + StackSliceArray slices; + struct + { + StackIterator *contents; + uint32_t size; + uint32_t capacity; + } iterators; + StackNodeArray node_pool; + StackNode *base_node; + SubtreePool *subtree_pool; +}; +typedef unsigned StackAction; +enum +{ + StackActionNone, + StackActionStop = 1, + StackActionPop = 2, +}; +typedef StackAction (*StackCallback)(void *, const StackIterator *); +typedef struct +{ + StackSummary *summary; + unsigned max_depth; +} SummarizeStackSession; +typedef struct +{ + Length start; + Length old_end; + Length new_end; +} Edit; +typedef struct +{ + Subtree parent; + const TSTree *tree; + Length position; + uint32_t child_index; + uint32_t structural_child_index; + uint32_t descendant_index; + const TSSymbol *alias_sequence; +} CursorChildIterator; diff --git a/parser/nsrc/alloc.c b/parser/nsrc/alloc.c new file mode 100644 index 00000000..79844287 --- /dev/null +++ b/parser/nsrc/alloc.c @@ -0,0 +1,48 @@ +#include "alloc.h" +#include "./api.h" +#include + +static void *ts_malloc_default(size_t size) { + void *result = malloc(size); + if (size > 0 && !result) { + fprintf(stderr, "tree-sitter failed to allocate %zu bytes", size); + abort(); + } + return result; +} + +static void *ts_calloc_default(size_t count, size_t size) { + void *result = calloc(count, size); + if (count > 0 && !result) { + fprintf(stderr, "tree-sitter failed to allocate %zu bytes", count * size); + abort(); + } + return result; +} + +static void *ts_realloc_default(void *buffer, size_t size) { + void *result = realloc(buffer, size); + if (size > 0 && !result) { + fprintf(stderr, "tree-sitter failed to reallocate %zu bytes", size); + abort(); + } + return result; +} + +// Allow clients to override allocation functions dynamically +TS_PUBLIC void *(*ts_current_malloc)(size_t) = ts_malloc_default; +TS_PUBLIC void *(*ts_current_calloc)(size_t, size_t) = ts_calloc_default; +TS_PUBLIC void *(*ts_current_realloc)(void *, size_t) = ts_realloc_default; +TS_PUBLIC void (*ts_current_free)(void *) = free; + +void ts_set_allocator( + void *(*new_malloc)(size_t size), + void *(*new_calloc)(size_t count, size_t size), + void *(*new_realloc)(void *ptr, size_t size), + void (*new_free)(void *ptr) +) { + ts_current_malloc = new_malloc ? new_malloc : ts_malloc_default; + ts_current_calloc = new_calloc ? new_calloc : ts_calloc_default; + ts_current_realloc = new_realloc ? new_realloc : ts_realloc_default; + ts_current_free = new_free ? new_free : free; +} diff --git a/parser/nsrc/alloc.h b/parser/nsrc/alloc.h new file mode 100644 index 00000000..a0eadb7a --- /dev/null +++ b/parser/nsrc/alloc.h @@ -0,0 +1,41 @@ +#ifndef TREE_SITTER_ALLOC_H_ +#define TREE_SITTER_ALLOC_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include +#include +#include + +#if defined(TREE_SITTER_HIDDEN_SYMBOLS) || defined(_WIN32) +#define TS_PUBLIC +#else +#define TS_PUBLIC __attribute__((visibility("default"))) +#endif + +TS_PUBLIC extern void *(*ts_current_malloc)(size_t); +TS_PUBLIC extern void *(*ts_current_calloc)(size_t, size_t); +TS_PUBLIC extern void *(*ts_current_realloc)(void *, size_t); +TS_PUBLIC extern void (*ts_current_free)(void *); + +// Allow clients to override allocation functions +#ifndef ts_malloc +#define ts_malloc ts_current_malloc +#endif +#ifndef ts_calloc +#define ts_calloc ts_current_calloc +#endif +#ifndef ts_realloc +#define ts_realloc ts_current_realloc +#endif +#ifndef ts_free +#define ts_free ts_current_free +#endif + +#ifdef __cplusplus +} +#endif + +#endif // TREE_SITTER_ALLOC_H_ diff --git a/parser/nsrc/api.h b/parser/nsrc/api.h new file mode 100644 index 00000000..d750e680 --- /dev/null +++ b/parser/nsrc/api.h @@ -0,0 +1,1207 @@ +#ifndef TREE_SITTER_API_H_ +#define TREE_SITTER_API_H_ + +#ifndef TREE_SITTER_HIDE_SYMBOLS +# if defined(__GNUC__) || defined(__clang__) +# pragma GCC visibility push(default) +# endif +#endif + +#ifdef __cplusplus +extern "C" +{ +#endif + +#include +#include +#include + +/****************************/ +/* Section - ABI Versioning */ +/****************************/ + +/** + * The latest ABI version that is supported by the current version of the + * library. When Languages are generated by the Tree-sitter CLI, they are + * assigned an ABI version number that corresponds to the current CLI version. + * The Tree-sitter library is generally backwards-compatible with languages + * generated using older CLI versions, but is not forwards-compatible. + */ +#define TREE_SITTER_LANGUAGE_VERSION 14 + +/** + * The earliest ABI version that is supported by the current version of the + * library. + */ +#define TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION 13 + + /*******************/ + /* Section - Types */ + /*******************/ + + typedef uint16_t TSStateId; + typedef uint16_t TSSymbol; + typedef uint16_t TSFieldId; + typedef struct TSLanguage TSLanguage; + typedef struct TSParser TSParser; + typedef struct TSTree TSTree; + typedef struct TSQuery TSQuery; + typedef struct TSQueryCursor TSQueryCursor; + typedef struct TSLookaheadIterator TSLookaheadIterator; + + typedef enum TSInputEncoding + { + TSInputEncodingUTF8, + TSInputEncodingUTF16, + } TSInputEncoding; + + typedef enum TSSymbolType + { + TSSymbolTypeRegular, + TSSymbolTypeAnonymous, + TSSymbolTypeAuxiliary, + } TSSymbolType; + + typedef struct TSPoint + { + uint32_t row; + uint32_t column; + } TSPoint; + + typedef struct TSRange + { + TSPoint start_point; + TSPoint end_point; + uint32_t start_byte; + uint32_t end_byte; + } TSRange; + + typedef struct TSInput + { + void *payload; + const char *(*read)(void *payload, uint32_t byte_index, TSPoint position, uint32_t *bytes_read); + TSInputEncoding encoding; + } TSInput; + + typedef enum TSLogType + { + TSLogTypeParse, + TSLogTypeLex, + } TSLogType; + + typedef struct TSLogger + { + void *payload; + void (*log)(void *payload, TSLogType log_type, const char *buffer); + } TSLogger; + + typedef struct TSInputEdit + { + uint32_t start_byte; + uint32_t old_end_byte; + uint32_t new_end_byte; + TSPoint start_point; + TSPoint old_end_point; + TSPoint new_end_point; + } TSInputEdit; + + typedef struct TSNode + { + uint32_t context[4]; + const void *id; + const TSTree *tree; + } TSNode; + + typedef struct TSTreeCursor + { + const void *tree; + const void *id; + uint32_t context[3]; + } TSTreeCursor; + + typedef struct TSQueryCapture + { + TSNode node; + uint32_t index; + } TSQueryCapture; + + typedef enum TSQuantifier + { + TSQuantifierZero = 0, // must match the array initialization value + TSQuantifierZeroOrOne, + TSQuantifierZeroOrMore, + TSQuantifierOne, + TSQuantifierOneOrMore, + } TSQuantifier; + + typedef struct TSQueryMatch + { + uint32_t id; + uint16_t pattern_index; + uint16_t capture_count; + const TSQueryCapture *captures; + } TSQueryMatch; + + typedef enum TSQueryPredicateStepType + { + TSQueryPredicateStepTypeDone, + TSQueryPredicateStepTypeCapture, + TSQueryPredicateStepTypeString, + } TSQueryPredicateStepType; + + typedef struct TSQueryPredicateStep + { + TSQueryPredicateStepType type; + uint32_t value_id; + } TSQueryPredicateStep; + + typedef enum TSQueryError + { + TSQueryErrorNone = 0, + TSQueryErrorSyntax, + TSQueryErrorNodeType, + TSQueryErrorField, + TSQueryErrorCapture, + TSQueryErrorStructure, + TSQueryErrorLanguage, + } TSQueryError; + + /********************/ + /* Section - Parser */ + /********************/ + + /** + * Create a new parser. + */ + TSParser *ts_parser_new(void); + + /** + * Delete the parser, freeing all of the memory that it used. + */ + void ts_parser_delete(TSParser *self); + + /** + * Get the parser's current language. + */ + const TSLanguage *ts_parser_language(const TSParser *self); + + /** + * Set the language that the parser should use for parsing. + * + * Returns a boolean indicating whether or not the language was successfully + * assigned. True means assignment succeeded. False means there was a version + * mismatch: the language was generated with an incompatible version of the + * Tree-sitter CLI. Check the language's version using [`ts_language_version`] + * and compare it to this library's [`TREE_SITTER_LANGUAGE_VERSION`] and + * [`TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION`] constants. + */ + bool ts_parser_set_language(TSParser *self, const TSLanguage *language); + + /** + * Set the ranges of text that the parser should include when parsing. + * + * By default, the parser will always include entire documents. This function + * allows you to parse only a *portion* of a document but still return a syntax + * tree whose ranges match up with the document as a whole. You can also pass + * multiple disjoint ranges. + * + * The second and third parameters specify the location and length of an array + * of ranges. The parser does *not* take ownership of these ranges; it copies + * the data, so it doesn't matter how these ranges are allocated. + * + * If `count` is zero, then the entire document will be parsed. Otherwise, + * the given ranges must be ordered from earliest to latest in the document, + * and they must not overlap. That is, the following must hold for all: + * + * `i < count - 1`: `ranges[i].end_byte <= ranges[i + 1].start_byte` + * + * If this requirement is not satisfied, the operation will fail, the ranges + * will not be assigned, and this function will return `false`. On success, + * this function returns `true` + */ + bool ts_parser_set_included_ranges(TSParser *self, const TSRange *ranges, uint32_t count); + + /** + * Get the ranges of text that the parser will include when parsing. + * + * The returned pointer is owned by the parser. The caller should not free it + * or write to it. The length of the array will be written to the given + * `count` pointer. + */ + const TSRange *ts_parser_included_ranges(const TSParser *self, uint32_t *count); + + /** + * Use the parser to parse some source code and create a syntax tree. + * + * If you are parsing this document for the first time, pass `NULL` for the + * `old_tree` parameter. Otherwise, if you have already parsed an earlier + * version of this document and the document has since been edited, pass the + * previous syntax tree so that the unchanged parts of it can be reused. + * This will save time and memory. For this to work correctly, you must have + * already edited the old syntax tree using the [`ts_tree_edit`] function in a + * way that exactly matches the source code changes. + * + * The [`TSInput`] parameter lets you specify how to read the text. It has the + * following three fields: + * 1. [`read`]: A function to retrieve a chunk of text at a given byte offset + * and (row, column) position. The function should return a pointer to the + * text and write its length to the [`bytes_read`] pointer. The parser does + * not take ownership of this buffer; it just borrows it until it has + * finished reading it. The function should write a zero value to the + * [`bytes_read`] pointer to indicate the end of the document. + * 2. [`payload`]: An arbitrary pointer that will be passed to each invocation + * of the [`read`] function. + * 3. [`encoding`]: An indication of how the text is encoded. Either + * `TSInputEncodingUTF8` or `TSInputEncodingUTF16`. + * + * This function returns a syntax tree on success, and `NULL` on failure. There + * are three possible reasons for failure: + * 1. The parser does not have a language assigned. Check for this using the + [`ts_parser_language`] function. + * 2. Parsing was cancelled due to a timeout that was set by an earlier call to + * the [`ts_parser_set_timeout_micros`] function. You can resume parsing from + * where the parser left out by calling [`ts_parser_parse`] again with the + * same arguments. Or you can start parsing from scratch by first calling + * [`ts_parser_reset`]. + * 3. Parsing was cancelled using a cancellation flag that was set by an + * earlier call to [`ts_parser_set_cancellation_flag`]. You can resume parsing + * from where the parser left out by calling [`ts_parser_parse`] again with + * the same arguments. + * + * [`read`]: TSInput::read + * [`payload`]: TSInput::payload + * [`encoding`]: TSInput::encoding + * [`bytes_read`]: TSInput::read + */ + TSTree *ts_parser_parse(TSParser *self, const TSTree *old_tree, TSInput input); + + /** + * Use the parser to parse some source code stored in one contiguous buffer. + * The first two parameters are the same as in the [`ts_parser_parse`] function + * above. The second two parameters indicate the location of the buffer and its + * length in bytes. + */ + TSTree *ts_parser_parse_string(TSParser *self, const TSTree *old_tree, const char *string, uint32_t length); + + /** + * Use the parser to parse some source code stored in one contiguous buffer with + * a given encoding. The first four parameters work the same as in the + * [`ts_parser_parse_string`] method above. The final parameter indicates whether + * the text is encoded as UTF8 or UTF16. + */ + TSTree *ts_parser_parse_string_encoding(TSParser *self, const TSTree *old_tree, const char *string, uint32_t length, TSInputEncoding encoding); + + /** + * Instruct the parser to start the next parse from the beginning. + * + * If the parser previously failed because of a timeout or a cancellation, then + * by default, it will resume where it left off on the next call to + * [`ts_parser_parse`] or other parsing functions. If you don't want to resume, + * and instead intend to use this parser to parse some other document, you must + * call [`ts_parser_reset`] first. + */ + void ts_parser_reset(TSParser *self); + + /** + * Set the maximum duration in microseconds that parsing should be allowed to + * take before halting. + * + * If parsing takes longer than this, it will halt early, returning NULL. + * See [`ts_parser_parse`] for more information. + */ + void ts_parser_set_timeout_micros(TSParser *self, uint64_t timeout_micros); + + /** + * Get the duration in microseconds that parsing is allowed to take. + */ + uint64_t ts_parser_timeout_micros(const TSParser *self); + + /** + * Set the parser's current cancellation flag pointer. + * + * If a non-null pointer is assigned, then the parser will periodically read + * from this pointer during parsing. If it reads a non-zero value, it will + * halt early, returning NULL. See [`ts_parser_parse`] for more information. + */ + void ts_parser_set_cancellation_flag(TSParser *self, const size_t *flag); + + /** + * Get the parser's current cancellation flag pointer. + */ + const size_t *ts_parser_cancellation_flag(const TSParser *self); + + /** + * Set the logger that a parser should use during parsing. + * + * The parser does not take ownership over the logger payload. If a logger was + * previously assigned, the caller is responsible for releasing any memory + * owned by the previous logger. + */ + void ts_parser_set_logger(TSParser *self, TSLogger logger); + + /** + * Get the parser's current logger. + */ + TSLogger ts_parser_logger(const TSParser *self); + + /** + * Set the file descriptor to which the parser should write debugging graphs + * during parsing. The graphs are formatted in the DOT language. You may want + * to pipe these graphs directly to a `dot(1)` process in order to generate + * SVG output. You can turn off this logging by passing a negative number. + */ + void ts_parser_print_dot_graphs(TSParser *self, int fd); + + /******************/ + /* Section - Tree */ + /******************/ + + /** + * Create a shallow copy of the syntax tree. This is very fast. + * + * You need to copy a syntax tree in order to use it on more than one thread at + * a time, as syntax trees are not thread safe. + */ + TSTree *ts_tree_copy(const TSTree *self); + + /** + * Delete the syntax tree, freeing all of the memory that it used. + */ + void ts_tree_delete(TSTree *self); + + /** + * Get the root node of the syntax tree. + */ + TSNode ts_tree_root_node(const TSTree *self); + + /** + * Get the root node of the syntax tree, but with its position + * shifted forward by the given offset. + */ + TSNode ts_tree_root_node_with_offset(const TSTree *self, uint32_t offset_bytes, TSPoint offset_extent); + + /** + * Get the language that was used to parse the syntax tree. + */ + const TSLanguage *ts_tree_language(const TSTree *self); + + /** + * Get the array of included ranges that was used to parse the syntax tree. + * + * The returned pointer must be freed by the caller. + */ + TSRange *ts_tree_included_ranges(const TSTree *self, uint32_t *length); + + /** + * Edit the syntax tree to keep it in sync with source code that has been + * edited. + * + * You must describe the edit both in terms of byte offsets and in terms of + * (row, column) coordinates. + */ + void ts_tree_edit(TSTree *self, const TSInputEdit *edit); + + /** + * Compare an old edited syntax tree to a new syntax tree representing the same + * document, returning an array of ranges whose syntactic structure has changed. + * + * For this to work correctly, the old syntax tree must have been edited such + * that its ranges match up to the new tree. Generally, you'll want to call + * this function right after calling one of the [`ts_parser_parse`] functions. + * You need to pass the old tree that was passed to parse, as well as the new + * tree that was returned from that function. + * + * The returned array is allocated using `malloc` and the caller is responsible + * for freeing it using `free`. The length of the array will be written to the + * given `length` pointer. + */ + TSRange *ts_tree_get_changed_ranges(const TSTree *old_tree, const TSTree *new_tree, uint32_t *length); + + /** + * Write a DOT graph describing the syntax tree to the given file. + */ + void ts_tree_print_dot_graph(const TSTree *self, int file_descriptor); + + /******************/ + /* Section - Node */ + /******************/ + + /** + * Get the node's type as a null-terminated string. + */ + const char *ts_node_type(TSNode self); + + /** + * Get the node's type as a numerical id. + */ + TSSymbol ts_node_symbol(TSNode self); + + /** + * Get the node's language. + */ + const TSLanguage *ts_node_language(TSNode self); + + /** + * Get the node's type as it appears in the grammar ignoring aliases as a + * null-terminated string. + */ + const char *ts_node_grammar_type(TSNode self); + + /** + * Get the node's type as a numerical id as it appears in the grammar ignoring + * aliases. This should be used in [`ts_language_next_state`] instead of + * [`ts_node_symbol`]. + */ + TSSymbol ts_node_grammar_symbol(TSNode self); + + /** + * Get the node's start byte. + */ + uint32_t ts_node_start_byte(TSNode self); + + /** + * Get the node's start position in terms of rows and columns. + */ + TSPoint ts_node_start_point(TSNode self); + + /** + * Get the node's end byte. + */ + uint32_t ts_node_end_byte(TSNode self); + + /** + * Get the node's end position in terms of rows and columns. + */ + TSPoint ts_node_end_point(TSNode self); + + /** + * Get an S-expression representing the node as a string. + * + * This string is allocated with `malloc` and the caller is responsible for + * freeing it using `free`. + */ + char *ts_node_string(TSNode self); + + /** + * Check if the node is null. Functions like [`ts_node_child`] and + * [`ts_node_next_sibling`] will return a null node to indicate that no such node + * was found. + */ + bool ts_node_is_null(TSNode self); + + /** + * Check if the node is *named*. Named nodes correspond to named rules in the + * grammar, whereas *anonymous* nodes correspond to string literals in the + * grammar. + */ + bool ts_node_is_named(TSNode self); + + /** + * Check if the node is *missing*. Missing nodes are inserted by the parser in + * order to recover from certain kinds of syntax errors. + */ + bool ts_node_is_missing(TSNode self); + + /** + * Check if the node is *extra*. Extra nodes represent things like comments, + * which are not required the grammar, but can appear anywhere. + */ + bool ts_node_is_extra(TSNode self); + + /** + * Check if a syntax node has been edited. + */ + bool ts_node_has_changes(TSNode self); + + /** + * Check if the node is a syntax error or contains any syntax errors. + */ + bool ts_node_has_error(TSNode self); + + /** + * Check if the node is a syntax error. + */ + bool ts_node_is_error(TSNode self); + + /** + * Get this node's parse state. + */ + TSStateId ts_node_parse_state(TSNode self); + + /** + * Get the parse state after this node. + */ + TSStateId ts_node_next_parse_state(TSNode self); + + /** + * Get the node's immediate parent. + * Prefer [`ts_node_child_containing_descendant`] for + * iterating over the node's ancestors. + */ + TSNode ts_node_parent(TSNode self); + + /** + * Get the node's child that contains `descendant`. + */ + TSNode ts_node_child_containing_descendant(TSNode self, TSNode descendant); + + /** + * Get the node's child at the given index, where zero represents the first + * child. + */ + TSNode ts_node_child(TSNode self, uint32_t child_index); + + /** + * Get the field name for node's child at the given index, where zero represents + * the first child. Returns NULL, if no field is found. + */ + const char *ts_node_field_name_for_child(TSNode self, uint32_t child_index); + + /** + * Get the node's number of children. + */ + uint32_t ts_node_child_count(TSNode self); + + /** + * Get the node's *named* child at the given index. + * + * See also [`ts_node_is_named`]. + */ + TSNode ts_node_named_child(TSNode self, uint32_t child_index); + + /** + * Get the node's number of *named* children. + * + * See also [`ts_node_is_named`]. + */ + uint32_t ts_node_named_child_count(TSNode self); + + /** + * Get the node's child with the given field name. + */ + TSNode ts_node_child_by_field_name(TSNode self, const char *name, uint32_t name_length); + + /** + * Get the node's child with the given numerical field id. + * + * You can convert a field name to an id using the + * [`ts_language_field_id_for_name`] function. + */ + TSNode ts_node_child_by_field_id(TSNode self, TSFieldId field_id); + + /** + * Get the node's next / previous sibling. + */ + TSNode ts_node_next_sibling(TSNode self); + TSNode ts_node_prev_sibling(TSNode self); + + /** + * Get the node's next / previous *named* sibling. + */ + TSNode ts_node_next_named_sibling(TSNode self); + TSNode ts_node_prev_named_sibling(TSNode self); + + /** + * Get the node's first child that extends beyond the given byte offset. + */ + TSNode ts_node_first_child_for_byte(TSNode self, uint32_t byte); + + /** + * Get the node's first named child that extends beyond the given byte offset. + */ + TSNode ts_node_first_named_child_for_byte(TSNode self, uint32_t byte); + + /** + * Get the node's number of descendants, including one for the node itself. + */ + uint32_t ts_node_descendant_count(TSNode self); + + /** + * Get the smallest node within this node that spans the given range of bytes + * or (row, column) positions. + */ + TSNode ts_node_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end); + TSNode ts_node_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end); + + /** + * Get the smallest named node within this node that spans the given range of + * bytes or (row, column) positions. + */ + TSNode ts_node_named_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end); + TSNode ts_node_named_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end); + + /** + * Edit the node to keep it in-sync with source code that has been edited. + * + * This function is only rarely needed. When you edit a syntax tree with the + * [`ts_tree_edit`] function, all of the nodes that you retrieve from the tree + * afterward will already reflect the edit. You only need to use [`ts_node_edit`] + * when you have a [`TSNode`] instance that you want to keep and continue to use + * after an edit. + */ + void ts_node_edit(TSNode *self, const TSInputEdit *edit); + + /** + * Check if two nodes are identical. + */ + bool ts_node_eq(TSNode self, TSNode other); + + /************************/ + /* Section - TreeCursor */ + /************************/ + + /** + * Create a new tree cursor starting from the given node. + * + * A tree cursor allows you to walk a syntax tree more efficiently than is + * possible using the [`TSNode`] functions. It is a mutable object that is always + * on a certain syntax node, and can be moved imperatively to different nodes. + */ + TSTreeCursor ts_tree_cursor_new(TSNode node); + + /** + * Delete a tree cursor, freeing all of the memory that it used. + */ + void ts_tree_cursor_delete(TSTreeCursor *self); + + /** + * Re-initialize a tree cursor to start at a different node. + */ + void ts_tree_cursor_reset(TSTreeCursor *self, TSNode node); + + /** + * Re-initialize a tree cursor to the same position as another cursor. + * + * Unlike [`ts_tree_cursor_reset`], this will not lose parent information and + * allows reusing already created cursors. + */ + void ts_tree_cursor_reset_to(TSTreeCursor *dst, const TSTreeCursor *src); + + /** + * Get the tree cursor's current node. + */ + TSNode ts_tree_cursor_current_node(const TSTreeCursor *self); + + /** + * Get the field name of the tree cursor's current node. + * + * This returns `NULL` if the current node doesn't have a field. + * See also [`ts_node_child_by_field_name`]. + */ + const char *ts_tree_cursor_current_field_name(const TSTreeCursor *self); + + /** + * Get the field id of the tree cursor's current node. + * + * This returns zero if the current node doesn't have a field. + * See also [`ts_node_child_by_field_id`], [`ts_language_field_id_for_name`]. + */ + TSFieldId ts_tree_cursor_current_field_id(const TSTreeCursor *self); + + /** + * Move the cursor to the parent of its current node. + * + * This returns `true` if the cursor successfully moved, and returns `false` + * if there was no parent node (the cursor was already on the root node). + */ + bool ts_tree_cursor_goto_parent(TSTreeCursor *self); + + /** + * Move the cursor to the next sibling of its current node. + * + * This returns `true` if the cursor successfully moved, and returns `false` + * if there was no next sibling node. + */ + bool ts_tree_cursor_goto_next_sibling(TSTreeCursor *self); + + /** + * Move the cursor to the previous sibling of its current node. + * + * This returns `true` if the cursor successfully moved, and returns `false` if + * there was no previous sibling node. + * + * Note, that this function may be slower than + * [`ts_tree_cursor_goto_next_sibling`] due to how node positions are stored. In + * the worst case, this will need to iterate through all the children upto the + * previous sibling node to recalculate its position. + */ + bool ts_tree_cursor_goto_previous_sibling(TSTreeCursor *self); + + /** + * Move the cursor to the first child of its current node. + * + * This returns `true` if the cursor successfully moved, and returns `false` + * if there were no children. + */ + bool ts_tree_cursor_goto_first_child(TSTreeCursor *self); + + /** + * Move the cursor to the last child of its current node. + * + * This returns `true` if the cursor successfully moved, and returns `false` if + * there were no children. + * + * Note that this function may be slower than [`ts_tree_cursor_goto_first_child`] + * because it needs to iterate through all the children to compute the child's + * position. + */ + bool ts_tree_cursor_goto_last_child(TSTreeCursor *self); + + /** + * Move the cursor to the node that is the nth descendant of + * the original node that the cursor was constructed with, where + * zero represents the original node itself. + */ + void ts_tree_cursor_goto_descendant(TSTreeCursor *self, uint32_t goal_descendant_index); + + /** + * Get the index of the cursor's current node out of all of the + * descendants of the original node that the cursor was constructed with. + */ + uint32_t ts_tree_cursor_current_descendant_index(const TSTreeCursor *self); + + /** + * Get the depth of the cursor's current node relative to the original + * node that the cursor was constructed with. + */ + uint32_t ts_tree_cursor_current_depth(const TSTreeCursor *self); + + /** + * Move the cursor to the first child of its current node that extends beyond + * the given byte offset or point. + * + * This returns the index of the child node if one was found, and returns -1 + * if no such child was found. + */ + int64_t ts_tree_cursor_goto_first_child_for_byte(TSTreeCursor *self, uint32_t goal_byte); + int64_t ts_tree_cursor_goto_first_child_for_point(TSTreeCursor *self, TSPoint goal_point); + + TSTreeCursor ts_tree_cursor_copy(const TSTreeCursor *cursor); + + /*******************/ + /* Section - Query */ + /*******************/ + + /** + * Create a new query from a string containing one or more S-expression + * patterns. The query is associated with a particular language, and can + * only be run on syntax nodes parsed with that language. + * + * If all of the given patterns are valid, this returns a [`TSQuery`]. + * If a pattern is invalid, this returns `NULL`, and provides two pieces + * of information about the problem: + * 1. The byte offset of the error is written to the `error_offset` parameter. + * 2. The type of error is written to the `error_type` parameter. + */ + TSQuery *ts_query_new(const TSLanguage *language, const char *source, uint32_t source_len, uint32_t *error_offset, TSQueryError *error_type); + + /** + * Delete a query, freeing all of the memory that it used. + */ + void ts_query_delete(TSQuery *self); + + /** + * Get the number of patterns, captures, or string literals in the query. + */ + uint32_t ts_query_pattern_count(const TSQuery *self); + uint32_t ts_query_capture_count(const TSQuery *self); + uint32_t ts_query_string_count(const TSQuery *self); + + /** + * Get the byte offset where the given pattern starts in the query's source. + * + * This can be useful when combining queries by concatenating their source + * code strings. + */ + uint32_t ts_query_start_byte_for_pattern(const TSQuery *self, uint32_t pattern_index); + + /** + * Get all of the predicates for the given pattern in the query. + * + * The predicates are represented as a single array of steps. There are three + * types of steps in this array, which correspond to the three legal values for + * the `type` field: + * - `TSQueryPredicateStepTypeCapture` - Steps with this type represent names + * of captures. Their `value_id` can be used with the + * [`ts_query_capture_name_for_id`] function to obtain the name of the capture. + * - `TSQueryPredicateStepTypeString` - Steps with this type represent literal + * strings. Their `value_id` can be used with the + * [`ts_query_string_value_for_id`] function to obtain their string value. + * - `TSQueryPredicateStepTypeDone` - Steps with this type are *sentinels* + * that represent the end of an individual predicate. If a pattern has two + * predicates, then there will be two steps with this `type` in the array. + */ + const TSQueryPredicateStep *ts_query_predicates_for_pattern(const TSQuery *self, uint32_t pattern_index, uint32_t *step_count); + + /* + * Check if the given pattern in the query has a single root node. + */ + bool ts_query_is_pattern_rooted(const TSQuery *self, uint32_t pattern_index); + + /* + * Check if the given pattern in the query is 'non local'. + * + * A non-local pattern has multiple root nodes and can match within a + * repeating sequence of nodes, as specified by the grammar. Non-local + * patterns disable certain optimizations that would otherwise be possible + * when executing a query on a specific range of a syntax tree. + */ + bool ts_query_is_pattern_non_local(const TSQuery *self, uint32_t pattern_index); + + /* + * Check if a given pattern is guaranteed to match once a given step is reached. + * The step is specified by its byte offset in the query's source code. + */ + bool ts_query_is_pattern_guaranteed_at_step(const TSQuery *self, uint32_t byte_offset); + + /** + * Get the name and length of one of the query's captures, or one of the + * query's string literals. Each capture and string is associated with a + * numeric id based on the order that it appeared in the query's source. + */ + const char *ts_query_capture_name_for_id(const TSQuery *self, uint32_t index, uint32_t *length); + + /** + * Get the quantifier of the query's captures. Each capture is * associated + * with a numeric id based on the order that it appeared in the query's source. + */ + TSQuantifier ts_query_capture_quantifier_for_id(const TSQuery *self, uint32_t pattern_index, uint32_t capture_index); + + const char *ts_query_string_value_for_id(const TSQuery *self, uint32_t index, uint32_t *length); + + /** + * Disable a certain capture within a query. + * + * This prevents the capture from being returned in matches, and also avoids + * any resource usage associated with recording the capture. Currently, there + * is no way to undo this. + */ + void ts_query_disable_capture(TSQuery *self, const char *name, uint32_t length); + + /** + * Disable a certain pattern within a query. + * + * This prevents the pattern from matching and removes most of the overhead + * associated with the pattern. Currently, there is no way to undo this. + */ + void ts_query_disable_pattern(TSQuery *self, uint32_t pattern_index); + + /** + * Create a new cursor for executing a given query. + * + * The cursor stores the state that is needed to iteratively search + * for matches. To use the query cursor, first call [`ts_query_cursor_exec`] + * to start running a given query on a given syntax node. Then, there are + * two options for consuming the results of the query: + * 1. Repeatedly call [`ts_query_cursor_next_match`] to iterate over all of the + * *matches* in the order that they were found. Each match contains the + * index of the pattern that matched, and an array of captures. Because + * multiple patterns can match the same set of nodes, one match may contain + * captures that appear *before* some of the captures from a previous match. + * 2. Repeatedly call [`ts_query_cursor_next_capture`] to iterate over all of the + * individual *captures* in the order that they appear. This is useful if + * don't care about which pattern matched, and just want a single ordered + * sequence of captures. + * + * If you don't care about consuming all of the results, you can stop calling + * [`ts_query_cursor_next_match`] or [`ts_query_cursor_next_capture`] at any point. + * You can then start executing another query on another node by calling + * [`ts_query_cursor_exec`] again. + */ + TSQueryCursor *ts_query_cursor_new(void); + + /** + * Delete a query cursor, freeing all of the memory that it used. + */ + void ts_query_cursor_delete(TSQueryCursor *self); + + /** + * Start running a given query on a given node. + */ + void ts_query_cursor_exec(TSQueryCursor *self, const TSQuery *query, TSNode node); + + /** + * Manage the maximum number of in-progress matches allowed by this query + * cursor. + * + * Query cursors have an optional maximum capacity for storing lists of + * in-progress captures. If this capacity is exceeded, then the + * earliest-starting match will silently be dropped to make room for further + * matches. This maximum capacity is optional — by default, query cursors allow + * any number of pending matches, dynamically allocating new space for them as + * needed as the query is executed. + */ + bool ts_query_cursor_did_exceed_match_limit(const TSQueryCursor *self); + uint32_t ts_query_cursor_match_limit(const TSQueryCursor *self); + void ts_query_cursor_set_match_limit(TSQueryCursor *self, uint32_t limit); + + /** + * Set the range of bytes or (row, column) positions in which the query + * will be executed. + */ + void ts_query_cursor_set_byte_range(TSQueryCursor *self, uint32_t start_byte, uint32_t end_byte); + void ts_query_cursor_set_point_range(TSQueryCursor *self, TSPoint start_point, TSPoint end_point); + + /** + * Advance to the next match of the currently running query. + * + * If there is a match, write it to `*match` and return `true`. + * Otherwise, return `false`. + */ + bool ts_query_cursor_next_match(TSQueryCursor *self, TSQueryMatch *match); + void ts_query_cursor_remove_match(TSQueryCursor *self, uint32_t match_id); + + /** + * Advance to the next capture of the currently running query. + * + * If there is a capture, write its match to `*match` and its index within + * the matche's capture list to `*capture_index`. Otherwise, return `false`. + */ + bool ts_query_cursor_next_capture(TSQueryCursor *self, TSQueryMatch *match, uint32_t *capture_index); + + /** + * Set the maximum start depth for a query cursor. + * + * This prevents cursors from exploring children nodes at a certain depth. + * Note if a pattern includes many children, then they will still be checked. + * + * The zero max start depth value can be used as a special behavior and + * it helps to destructure a subtree by staying on a node and using captures + * for interested parts. Note that the zero max start depth only limit a search + * depth for a pattern's root node but other nodes that are parts of the pattern + * may be searched at any depth what defined by the pattern structure. + * + * Set to `UINT32_MAX` to remove the maximum start depth. + */ + void ts_query_cursor_set_max_start_depth(TSQueryCursor *self, uint32_t max_start_depth); + + /**********************/ + /* Section - Language */ + /**********************/ + + /** + * Get another reference to the given language. + */ + const TSLanguage *ts_language_copy(const TSLanguage *self); + + /** + * Free any dynamically-allocated resources for this language, if + * this is the last reference. + */ + void ts_language_delete(const TSLanguage *self); + + /** + * Get the number of distinct node types in the language. + */ + uint32_t ts_language_symbol_count(const TSLanguage *self); + + /** + * Get the number of valid states in this language. + */ + uint32_t ts_language_state_count(const TSLanguage *self); + + /** + * Get a node type string for the given numerical id. + */ + const char *ts_language_symbol_name(const TSLanguage *self, TSSymbol symbol); + + /** + * Get the numerical id for the given node type string. + */ + TSSymbol ts_language_symbol_for_name(const TSLanguage *self, const char *string, uint32_t length, bool is_named); + + /** + * Get the number of distinct field names in the language. + */ + uint32_t ts_language_field_count(const TSLanguage *self); + + /** + * Get the field name string for the given numerical id. + */ + const char *ts_language_field_name_for_id(const TSLanguage *self, TSFieldId id); + + /** + * Get the numerical id for the given field name string. + */ + TSFieldId ts_language_field_id_for_name(const TSLanguage *self, const char *name, uint32_t name_length); + + /** + * Check whether the given node type id belongs to named nodes, anonymous nodes, + * or a hidden nodes. + * + * See also [`ts_node_is_named`]. Hidden nodes are never returned from the API. + */ + TSSymbolType ts_language_symbol_type(const TSLanguage *self, TSSymbol symbol); + + /** + * Get the ABI version number for this language. This version number is used + * to ensure that languages were generated by a compatible version of + * Tree-sitter. + * + * See also [`ts_parser_set_language`]. + */ + uint32_t ts_language_version(const TSLanguage *self); + + /** + * Get the next parse state. Combine this with lookahead iterators to generate + * completion suggestions or valid symbols in error nodes. Use + * [`ts_node_grammar_symbol`] for valid symbols. + */ + TSStateId ts_language_next_state(const TSLanguage *self, TSStateId state, TSSymbol symbol); + + /********************************/ + /* Section - Lookahead Iterator */ + /********************************/ + + /** + * Create a new lookahead iterator for the given language and parse state. + * + * This returns `NULL` if state is invalid for the language. + * + * Repeatedly using [`ts_lookahead_iterator_next`] and + * [`ts_lookahead_iterator_current_symbol`] will generate valid symbols in the + * given parse state. Newly created lookahead iterators will contain the `ERROR` + * symbol. + * + * Lookahead iterators can be useful to generate suggestions and improve syntax + * error diagnostics. To get symbols valid in an ERROR node, use the lookahead + * iterator on its first leaf node state. For `MISSING` nodes, a lookahead + * iterator created on the previous non-extra leaf node may be appropriate. + */ + TSLookaheadIterator *ts_lookahead_iterator_new(const TSLanguage *self, TSStateId state); + + /** + * Delete a lookahead iterator freeing all the memory used. + */ + void ts_lookahead_iterator_delete(TSLookaheadIterator *self); + + /** + * Reset the lookahead iterator to another state. + * + * This returns `true` if the iterator was reset to the given state and `false` + * otherwise. + */ + bool ts_lookahead_iterator_reset_state(TSLookaheadIterator *self, TSStateId state); + + /** + * Reset the lookahead iterator. + * + * This returns `true` if the language was set successfully and `false` + * otherwise. + */ + bool ts_lookahead_iterator_reset(TSLookaheadIterator *self, const TSLanguage *language, TSStateId state); + + /** + * Get the current language of the lookahead iterator. + */ + const TSLanguage *ts_lookahead_iterator_language(const TSLookaheadIterator *self); + + /** + * Advance the lookahead iterator to the next symbol. + * + * This returns `true` if there is a new symbol and `false` otherwise. + */ + bool ts_lookahead_iterator_next(TSLookaheadIterator *self); + + /** + * Get the current symbol of the lookahead iterator; + */ + TSSymbol ts_lookahead_iterator_current_symbol(const TSLookaheadIterator *self); + + /** + * Get the current symbol type of the lookahead iterator as a null terminated + * string. + */ + const char *ts_lookahead_iterator_current_symbol_name(const TSLookaheadIterator *self); + + /*************************************/ + /* Section - WebAssembly Integration */ + /************************************/ + + typedef struct wasm_engine_t TSWasmEngine; + typedef struct TSWasmStore TSWasmStore; + + typedef enum TSWasmErrorKind + { + TSWasmErrorKindNone = 0, + TSWasmErrorKindParse, + TSWasmErrorKindCompile, + TSWasmErrorKindInstantiate, + TSWasmErrorKindAllocate, + } TSWasmErrorKind; + + typedef struct TSWasmError + { + TSWasmErrorKind kind; + char *message; + } TSWasmError; + + /** + * Create a Wasm store. + */ + TSWasmStore *ts_wasm_store_new(TSWasmEngine *engine, TSWasmError *error); + + /** + * Free the memory associated with the given Wasm store. + */ + void ts_wasm_store_delete(TSWasmStore *); + + /** + * Create a language from a buffer of Wasm. The resulting language behaves + * like any other Tree-sitter language, except that in order to use it with + * a parser, that parser must have a Wasm store. Note that the language + * can be used with any Wasm store, it doesn't need to be the same store that + * was used to originally load it. + */ + const TSLanguage *ts_wasm_store_load_language(TSWasmStore *, const char *name, const char *wasm, uint32_t wasm_len, TSWasmError *error); + + /** + * Get the number of languages instantiated in the given wasm store. + */ + size_t ts_wasm_store_language_count(const TSWasmStore *); + + /** + * Check if the language came from a Wasm module. If so, then in order to use + * this language with a Parser, that parser must have a Wasm store assigned. + */ + bool ts_language_is_wasm(const TSLanguage *); + + /** + * Assign the given Wasm store to the parser. A parser must have a Wasm store + * in order to use Wasm languages. + */ + void ts_parser_set_wasm_store(TSParser *, TSWasmStore *); + + /** + * Remove the parser's current Wasm store and return it. This returns NULL if + * the parser doesn't have a Wasm store. + */ + TSWasmStore *ts_parser_take_wasm_store(TSParser *); + + /**********************************/ + /* Section - Global Configuration */ + /**********************************/ + + /** + * Set the allocation functions used by the library. + * + * By default, Tree-sitter uses the standard libc allocation functions, + * but aborts the process when an allocation fails. This function lets + * you supply alternative allocation functions at runtime. + * + * If you pass `NULL` for any parameter, Tree-sitter will switch back to + * its default implementation of that function. + * + * If you call this function after the library has already been used, then + * you must ensure that either: + * 1. All the existing objects have been freed. + * 2. The new allocator shares its state with the old one, so it is capable + * of freeing memory that was allocated by the old allocator. + */ + void ts_set_allocator(void *(*new_malloc)(size_t), void *(*new_calloc)(size_t, size_t), void *(*new_realloc)(void *, size_t), void (*new_free)(void *)); + +#ifdef __cplusplus +} +#endif + +#endif // TREE_SITTER_API_H_ diff --git a/parser/nsrc/array.h b/parser/nsrc/array.h new file mode 100644 index 00000000..22ea315e --- /dev/null +++ b/parser/nsrc/array.h @@ -0,0 +1,293 @@ +#ifndef TREE_SITTER_ARRAY_H_ +#define TREE_SITTER_ARRAY_H_ + +#ifdef __cplusplus +extern "C" +{ +#endif + +#include "./alloc.h" + +#include +#include +#include +#include +#include + +#ifdef _MSC_VER +# pragma warning(disable : 4101) +#elif defined(__GNUC__) || defined(__clang__) +# pragma GCC diagnostic push +# pragma GCC diagnostic ignored "-Wunused-variable" +#endif + +#define Array(T) \ + struct \ + { \ + T *contents; \ + uint32_t size; \ + uint32_t capacity; \ + } + +/// Initialize an array. +#define array_init(self) ((self)->size = 0, (self)->capacity = 0, (self)->contents = NULL) + +/// Create an empty array. +#define array_new() \ + { \ + NULL, 0, 0 \ + } + +/// Get a pointer to the element at a given `index` in the array. +#define array_get(self, _index) (assert((uint32_t)(_index) < (self)->size), &(self)->contents[_index]) + +/// Get a pointer to the first element in the array. +#define array_front(self) array_get(self, 0) + +/// Get a pointer to the last element in the array. +#define array_back(self) array_get(self, (self)->size - 1) + +/// Clear the array, setting its size to zero. Note that this does not free any +/// memory allocated for the array's contents. +#define array_clear(self) ((self)->size = 0) + +/// Reserve `new_capacity` elements of space in the array. If `new_capacity` is +/// less than the array's current capacity, this function has no effect. +#define array_reserve(self, new_capacity) _array__reserve((Array *)(self), array_elem_size(self), new_capacity) + +/// Free any memory allocated for this array. Note that this does not free any +/// memory allocated for the array's contents. +#define array_delete(self) _array__delete((Array *)(self)) + +/// Push a new `element` onto the end of the array. +#define array_push(self, element) (_array__grow((Array *)(self), 1, array_elem_size(self)), (self)->contents[(self)->size++] = (element)) + +/// Increase the array's size by `count` elements. +/// New elements are zero-initialized. +#define array_grow_by(self, count) \ + do \ + { \ + if ((count) == 0) \ + break; \ + _array__grow((Array *)(self), count, array_elem_size(self)); \ + memset((self)->contents + (self)->size, 0, (count) * array_elem_size(self)); \ + (self)->size += (count); \ + } while (0) + +/// Append all elements from one array to the end of another. +#define array_push_all(self, other) array_extend((self), (other)->size, (other)->contents) + +/// Append `count` elements to the end of the array, reading their values from the +/// `contents` pointer. +#define array_extend(self, count, contents) _array__splice((Array *)(self), array_elem_size(self), (self)->size, 0, count, contents) + +/// Remove `old_count` elements from the array starting at the given `index`. At +/// the same index, insert `new_count` new elements, reading their values from the +/// `new_contents` pointer. +#define array_splice(self, _index, old_count, new_count, new_contents) \ + _array__splice((Array *)(self), array_elem_size(self), _index, old_count, new_count, new_contents) + +/// Insert one `element` into the array at the given `index`. +#define array_insert(self, _index, element) _array__splice((Array *)(self), array_elem_size(self), _index, 0, 1, &(element)) + +/// Remove one element from the array at the given `index`. +#define array_erase(self, _index) _array__erase((Array *)(self), array_elem_size(self), _index) + +/// Pop the last element off the array, returning the element by value. +#define array_pop(self) ((self)->contents[--(self)->size]) + +/// Assign the contents of one array to another, reallocating if necessary. +#define array_assign(self, other) _array__assign((Array *)(self), (const Array *)(other), array_elem_size(self)) + +/// Swap one array with another +#define array_swap(self, other) _array__swap((Array *)(self), (Array *)(other)) + +/// Get the size of the array contents +#define array_elem_size(self) (sizeof *(self)->contents) + +/// Search a sorted array for a given `needle` value, using the given `compare` +/// callback to determine the order. +/// +/// If an existing element is found to be equal to `needle`, then the `index` +/// out-parameter is set to the existing value's index, and the `exists` +/// out-parameter is set to true. Otherwise, `index` is set to an index where +/// `needle` should be inserted in order to preserve the sorting, and `exists` +/// is set to false. +#define array_search_sorted_with(self, compare, needle, _index, _exists) _array__search_sorted(self, 0, compare, , needle, _index, _exists) + +/// Search a sorted array for a given `needle` value, using integer comparisons +/// of a given struct field (specified with a leading dot) to determine the order. +/// +/// See also `array_search_sorted_with`. +#define array_search_sorted_by(self, field, needle, _index, _exists) \ + _array__search_sorted(self, 0, _compare_int, field, needle, _index, _exists) + +/// Insert a given `value` into a sorted array, using the given `compare` +/// callback to determine the order. +#define array_insert_sorted_with(self, compare, value) \ + do \ + { \ + unsigned _index, _exists; \ + array_search_sorted_with(self, compare, &(value), &_index, &_exists); \ + if (!_exists) \ + array_insert(self, _index, value); \ + } while (0) + +/// Insert a given `value` into a sorted array, using integer comparisons of +/// a given struct field (specified with a leading dot) to determine the order. +/// +/// See also `array_search_sorted_by`. +#define array_insert_sorted_by(self, field, value) \ + do \ + { \ + unsigned _index, _exists; \ + array_search_sorted_by(self, field, (value)field, &_index, &_exists); \ + if (!_exists) \ + array_insert(self, _index, value); \ + } while (0) + + // Private + + typedef Array(void) Array; + + /// This is not what you're looking for, see `array_delete`. + static inline void _array__delete(Array *self) + { + if (self->contents) + { + ts_free(self->contents); + self->contents = NULL; + self->size = 0; + self->capacity = 0; + } + } + + /// This is not what you're looking for, see `array_erase`. + static inline void _array__erase(Array *self, size_t element_size, uint32_t index) + { + assert(index < self->size); + char *contents = (char *)self->contents; + memmove(contents + index * element_size, contents + (index + 1) * element_size, (self->size - index - 1) * element_size); + self->size--; + } + + /// This is not what you're looking for, see `array_reserve`. + static inline void _array__reserve(Array *self, size_t element_size, uint32_t new_capacity) + { + if (new_capacity > self->capacity) + { + if (self->contents) + { + self->contents = ts_realloc(self->contents, new_capacity * element_size); + } + else + { + self->contents = ts_malloc(new_capacity * element_size); + } + self->capacity = new_capacity; + } + } + + /// This is not what you're looking for, see `array_assign`. + static inline void _array__assign(Array *self, const Array *other, size_t element_size) + { + _array__reserve(self, element_size, other->size); + self->size = other->size; + memcpy(self->contents, other->contents, self->size * element_size); + } + + /// This is not what you're looking for, see `array_swap`. + static inline void _array__swap(Array *self, Array *other) + { + Array swap = *other; + *other = *self; + *self = swap; + } + + /// This is not what you're looking for, see `array_push` or `array_grow_by`. + static inline void _array__grow(Array *self, uint32_t count, size_t element_size) + { + uint32_t new_size = self->size + count; + if (new_size > self->capacity) + { + uint32_t new_capacity = self->capacity * 2; + if (new_capacity < 8) + new_capacity = 8; + if (new_capacity < new_size) + new_capacity = new_size; + _array__reserve(self, element_size, new_capacity); + } + } + + /// This is not what you're looking for, see `array_splice`. + static inline void _array__splice(Array *self, size_t element_size, uint32_t index, uint32_t old_count, uint32_t new_count, + const void *elements) + { + uint32_t new_size = self->size + new_count - old_count; + uint32_t old_end = index + old_count; + uint32_t new_end = index + new_count; + assert(old_end <= self->size); + + _array__reserve(self, element_size, new_size); + + char *contents = (char *)self->contents; + if (self->size > old_end) + { + memmove(contents + new_end * element_size, contents + old_end * element_size, (self->size - old_end) * element_size); + } + if (new_count > 0) + { + if (elements) + { + memcpy((contents + index * element_size), elements, new_count * element_size); + } + else + { + memset((contents + index * element_size), 0, new_count * element_size); + } + } + self->size += new_count - old_count; + } + +/// A binary search routine, based on Rust's `std::slice::binary_search_by`. +/// This is not what you're looking for, see `array_search_sorted_with` or `array_search_sorted_by`. +#define _array__search_sorted(self, start, compare, suffix, needle, _index, _exists) \ + do \ + { \ + *(_index) = start; \ + *(_exists) = false; \ + uint32_t size = (self)->size - *(_index); \ + if (size == 0) \ + break; \ + int comparison; \ + while (size > 1) \ + { \ + uint32_t half_size = size / 2; \ + uint32_t mid_index = *(_index) + half_size; \ + comparison = compare(&((self)->contents[mid_index] suffix), (needle)); \ + if (comparison <= 0) \ + *(_index) = mid_index; \ + size -= half_size; \ + } \ + comparison = compare(&((self)->contents[*(_index)] suffix), (needle)); \ + if (comparison == 0) \ + *(_exists) = true; \ + else if (comparison < 0) \ + *(_index) += 1; \ + } while (0) + +/// Helper macro for the `_sorted_by` routines below. This takes the left (existing) +/// parameter by reference in order to work with the generic sorting function above. +#define _compare_int(a, b) ((int)*(a) - (int)(b)) + +#ifdef _MSC_VER +# pragma warning(default : 4101) +#elif defined(__GNUC__) || defined(__clang__) +# pragma GCC diagnostic pop +#endif + +#ifdef __cplusplus +} +#endif + +#endif // TREE_SITTER_ARRAY_H_ diff --git a/parser/nsrc/atomic.h b/parser/nsrc/atomic.h new file mode 100644 index 00000000..8ddcb502 --- /dev/null +++ b/parser/nsrc/atomic.h @@ -0,0 +1,35 @@ +#ifndef TREE_SITTER_ATOMIC_H_ +#define TREE_SITTER_ATOMIC_H_ + +#include +#include +#include + +static inline size_t atomic_load(const volatile size_t *p) +{ +#ifdef __ATOMIC_RELAXED + return __atomic_load_n(p, __ATOMIC_RELAXED); +#else + return __sync_fetch_and_add((volatile size_t *)p, 0); +#endif +} + +static inline uint32_t atomic_inc(volatile uint32_t *p) +{ +#ifdef __ATOMIC_RELAXED + return __atomic_add_fetch(p, 1U, __ATOMIC_SEQ_CST); +#else + return __sync_add_and_fetch(p, 1U); +#endif +} + +static inline uint32_t atomic_dec(volatile uint32_t *p) +{ +#ifdef __ATOMIC_RELAXED + return __atomic_sub_fetch(p, 1U, __ATOMIC_SEQ_CST); +#else + return __sync_sub_and_fetch(p, 1U); +#endif +} + +#endif // TREE_SITTER_ATOMIC_H_ diff --git a/parser/nsrc/clock.h b/parser/nsrc/clock.h new file mode 100644 index 00000000..0bdff6df --- /dev/null +++ b/parser/nsrc/clock.h @@ -0,0 +1,41 @@ +#ifndef TREE_SITTER_CLOCK_H_ +#define TREE_SITTER_CLOCK_H_ + +#include +#include + +typedef uint64_t TSDuration; + +#include +typedef uint64_t TSClock; + +static inline TSDuration duration_from_micros(uint64_t micros) { + return micros * (uint64_t)CLOCKS_PER_SEC / 1000000; +} + +static inline uint64_t duration_to_micros(TSDuration self) { + return self * 1000000 / (uint64_t)CLOCKS_PER_SEC; +} + +static inline TSClock clock_null(void) { + return 0; +} + +static inline TSClock clock_now(void) { + return (uint64_t)clock(); +} + +static inline TSClock clock_after(TSClock base, TSDuration duration) { + return base + duration; +} + +static inline bool clock_is_null(TSClock self) { + return !self; +} + +static inline bool clock_is_gt(TSClock self, TSClock other) { + return self > other; +} + + +#endif // TREE_SITTER_CLOCK_H_ diff --git a/parser/nsrc/error_costs.h b/parser/nsrc/error_costs.h new file mode 100644 index 00000000..32d3666a --- /dev/null +++ b/parser/nsrc/error_costs.h @@ -0,0 +1,11 @@ +#ifndef TREE_SITTER_ERROR_COSTS_H_ +#define TREE_SITTER_ERROR_COSTS_H_ + +#define ERROR_STATE 0 +#define ERROR_COST_PER_RECOVERY 500 +#define ERROR_COST_PER_MISSING_TREE 110 +#define ERROR_COST_PER_SKIPPED_TREE 100 +#define ERROR_COST_PER_SKIPPED_LINE 30 +#define ERROR_COST_PER_SKIPPED_CHAR 1 + +#endif diff --git a/parser/nsrc/get_changed_ranges.c b/parser/nsrc/get_changed_ranges.c new file mode 100644 index 00000000..77c37c46 --- /dev/null +++ b/parser/nsrc/get_changed_ranges.c @@ -0,0 +1,547 @@ +#include "./get_changed_ranges.h" +#include "./error_costs.h" +#include "./language.h" +#include "./subtree.h" +#include "./tree_cursor.h" +#include + +// #define DEBUG_GET_CHANGED_RANGES + +static void ts_range_array_add(TSRangeArray *self, Length start, Length end) +{ + if (self->size > 0) + { + TSRange *last_range = array_back(self); + if (start.bytes <= last_range->end_byte) + { + last_range->end_byte = end.bytes; + last_range->end_point = end.extent; + return; + } + } + + if (start.bytes < end.bytes) + { + TSRange range = {start.extent, end.extent, start.bytes, end.bytes}; + array_push(self, range); + } +} + +bool ts_range_array_intersects(const TSRangeArray *self, unsigned start_index, uint32_t start_byte, uint32_t end_byte) +{ + for (unsigned i = start_index; i < self->size; i++) + { + TSRange *range = &self->contents[i]; + if (range->end_byte > start_byte) + { + if (range->start_byte >= end_byte) + break; + return true; + } + } + return false; +} + +void ts_range_array_get_changed_ranges(const TSRange *old_ranges, unsigned old_range_count, const TSRange *new_ranges, + unsigned new_range_count, TSRangeArray *differences) +{ + unsigned new_index = 0; + unsigned old_index = 0; + Length current_position = length_zero(); + bool in_old_range = false; + bool in_new_range = false; + + while (old_index < old_range_count || new_index < new_range_count) + { + const TSRange *old_range = &old_ranges[old_index]; + const TSRange *new_range = &new_ranges[new_index]; + + Length next_old_position; + if (in_old_range) + { + next_old_position = (Length){old_range->end_byte, old_range->end_point}; + } + else if (old_index < old_range_count) + { + next_old_position = (Length){old_range->start_byte, old_range->start_point}; + } + else + { + next_old_position = LENGTH_MAX; + } + + Length next_new_position; + if (in_new_range) + { + next_new_position = (Length){new_range->end_byte, new_range->end_point}; + } + else if (new_index < new_range_count) + { + next_new_position = (Length){new_range->start_byte, new_range->start_point}; + } + else + { + next_new_position = LENGTH_MAX; + } + + if (next_old_position.bytes < next_new_position.bytes) + { + if (in_old_range != in_new_range) + { + ts_range_array_add(differences, current_position, next_old_position); + } + if (in_old_range) + old_index++; + current_position = next_old_position; + in_old_range = !in_old_range; + } + else if (next_new_position.bytes < next_old_position.bytes) + { + if (in_old_range != in_new_range) + { + ts_range_array_add(differences, current_position, next_new_position); + } + if (in_new_range) + new_index++; + current_position = next_new_position; + in_new_range = !in_new_range; + } + else + { + if (in_old_range != in_new_range) + { + ts_range_array_add(differences, current_position, next_new_position); + } + if (in_old_range) + old_index++; + if (in_new_range) + new_index++; + in_old_range = !in_old_range; + in_new_range = !in_new_range; + current_position = next_new_position; + } + } +} + +typedef struct Iterator +{ + TreeCursor cursor; + const TSLanguage *language; + unsigned visible_depth; + bool in_padding; +} Iterator; + +static Iterator iterator_new(TreeCursor *cursor, const Subtree *tree, const TSLanguage *language) +{ + array_clear(&cursor->stack); + array_push(&cursor->stack, ((TreeCursorEntry){ + .subtree = tree, + .position = length_zero(), + .child_index = 0, + .structural_child_index = 0, + })); + return (Iterator){ + .cursor = *cursor, + .language = language, + .visible_depth = 1, + .in_padding = false, + }; +} + +static bool iterator_done(Iterator *self) +{ + return self->cursor.stack.size == 0; +} + +static Length iterator_start_position(Iterator *self) +{ + TreeCursorEntry entry = *array_back(&self->cursor.stack); + if (self->in_padding) + { + return entry.position; + } + else + { + return length_add(entry.position, ts_subtree_padding(*entry.subtree)); + } +} + +static Length iterator_end_position(Iterator *self) +{ + TreeCursorEntry entry = *array_back(&self->cursor.stack); + Length result = length_add(entry.position, ts_subtree_padding(*entry.subtree)); + if (self->in_padding) + { + return result; + } + else + { + return length_add(result, ts_subtree_size(*entry.subtree)); + } +} + +static bool iterator_tree_is_visible(const Iterator *self) +{ + TreeCursorEntry entry = *array_back(&self->cursor.stack); + if (ts_subtree_visible(*entry.subtree)) + return true; + if (self->cursor.stack.size > 1) + { + Subtree parent = *self->cursor.stack.contents[self->cursor.stack.size - 2].subtree; + return ts_language_alias_at(self->language, parent.ptr->inner.non_terminal.production_id, entry.structural_child_index) != 0; + } + return false; +} + +static void iterator_get_visible_state(const Iterator *self, Subtree *tree, TSSymbol *alias_symbol, uint32_t *start_byte) +{ + uint32_t i = self->cursor.stack.size - 1; + + if (self->in_padding) + { + if (i == 0) + return; + i--; + } + + for (; i + 1 > 0; i--) + { + TreeCursorEntry entry = self->cursor.stack.contents[i]; + + if (i > 0) + { + const Subtree *parent = self->cursor.stack.contents[i - 1].subtree; + *alias_symbol = ts_language_alias_at(self->language, parent->ptr->inner.non_terminal.production_id, entry.structural_child_index); + } + + if (ts_subtree_visible(*entry.subtree) || *alias_symbol) + { + *tree = *entry.subtree; + *start_byte = entry.position.bytes; + break; + } + } +} + +static void iterator_ascend(Iterator *self) +{ + if (iterator_done(self)) + return; + if (iterator_tree_is_visible(self) && !self->in_padding) + self->visible_depth--; + if (array_back(&self->cursor.stack)->child_index > 0) + self->in_padding = false; + self->cursor.stack.size--; +} + +static bool iterator_descend(Iterator *self, uint32_t goal_position) +{ + if (self->in_padding) + return false; + + bool did_descend = false; + do + { + did_descend = false; + TreeCursorEntry entry = *array_back(&self->cursor.stack); + Length position = entry.position; + uint32_t structural_child_index = 0; + for (uint32_t i = 0, n = ts_subtree_child_count(*entry.subtree); i < n; i++) + { + const Subtree *child = &ts_subtree_children(*entry.subtree)[i]; + Length child_left = length_add(position, ts_subtree_padding(*child)); + Length child_right = length_add(child_left, ts_subtree_size(*child)); + + if (child_right.bytes > goal_position) + { + array_push(&self->cursor.stack, ((TreeCursorEntry){ + .subtree = child, + .position = position, + .child_index = i, + .structural_child_index = structural_child_index, + })); + + if (iterator_tree_is_visible(self)) + { + if (child_left.bytes > goal_position) + { + self->in_padding = true; + } + else + { + self->visible_depth++; + } + return true; + } + + did_descend = true; + break; + } + + position = child_right; + if (!ts_subtree_extra(*child)) + structural_child_index++; + } + } while (did_descend); + + return false; +} + +static void iterator_advance(Iterator *self) +{ + if (self->in_padding) + { + self->in_padding = false; + if (iterator_tree_is_visible(self)) + { + self->visible_depth++; + } + else + { + iterator_descend(self, 0); + } + return; + } + + for (;;) + { + if (iterator_tree_is_visible(self)) + self->visible_depth--; + TreeCursorEntry entry = array_pop(&self->cursor.stack); + if (iterator_done(self)) + return; + + const Subtree *parent = array_back(&self->cursor.stack)->subtree; + uint32_t child_index = entry.child_index + 1; + if (ts_subtree_child_count(*parent) > child_index) + { + Length position = length_add(entry.position, ts_subtree_total_size(*entry.subtree)); + uint32_t structural_child_index = entry.structural_child_index; + if (!ts_subtree_extra(*entry.subtree)) + structural_child_index++; + const Subtree *next_child = &ts_subtree_children(*parent)[child_index]; + + array_push(&self->cursor.stack, ((TreeCursorEntry){ + .subtree = next_child, + .position = position, + .child_index = child_index, + .structural_child_index = structural_child_index, + })); + + if (iterator_tree_is_visible(self)) + { + if (ts_subtree_padding(*next_child).bytes > 0) + { + self->in_padding = true; + } + else + { + self->visible_depth++; + } + } + else + { + iterator_descend(self, 0); + } + break; + } + } +} + +typedef enum IteratorComparison +{ + IteratorDiffers, + IteratorMayDiffer, + IteratorMatches, +} IteratorComparison; + +static IteratorComparison iterator_compare(const Iterator *old_iter, const Iterator *new_iter) +{ + Subtree old_tree = NULL_SUBTREE; + Subtree new_tree = NULL_SUBTREE; + uint32_t old_start = 0; + uint32_t new_start = 0; + TSSymbol old_alias_symbol = 0; + TSSymbol new_alias_symbol = 0; + iterator_get_visible_state(old_iter, &old_tree, &old_alias_symbol, &old_start); + iterator_get_visible_state(new_iter, &new_tree, &new_alias_symbol, &new_start); + + if (!old_tree.ptr && !new_tree.ptr) + return IteratorMatches; + if (!old_tree.ptr || !new_tree.ptr) + return IteratorDiffers; + + if (old_alias_symbol == new_alias_symbol && ts_subtree_symbol(old_tree) == ts_subtree_symbol(new_tree)) + { + if (old_start == new_start && !ts_subtree_has_changes(old_tree) && ts_subtree_symbol(old_tree) != ts_builtin_sym_error && + ts_subtree_size(old_tree).bytes == ts_subtree_size(new_tree).bytes && ts_subtree_parse_state(old_tree) != TS_TREE_STATE_NONE && + ts_subtree_parse_state(new_tree) != TS_TREE_STATE_NONE && + (ts_subtree_parse_state(old_tree) == ERROR_STATE) == (ts_subtree_parse_state(new_tree) == ERROR_STATE)) + { + return IteratorMatches; + } + else + { + return IteratorMayDiffer; + } + } + + return IteratorDiffers; +} + +#ifdef DEBUG_GET_CHANGED_RANGES +static inline void iterator_print_state(Iterator *self) +{ + TreeCursorEntry entry = *array_back(&self->cursor.stack); + TSPoint start = iterator_start_position(self).extent; + TSPoint end = iterator_end_position(self).extent; + const char *name = ts_language_symbol_name(self->language, ts_subtree_symbol(*entry.subtree)); + printf("(%-25s %s\t depth:%u [%u, %u] - [%u, %u])", name, self->in_padding ? "(p)" : " ", self->visible_depth, start.row + 1, + start.column, end.row + 1, end.column); +} +#endif + +unsigned ts_subtree_get_changed_ranges(const Subtree *old_tree, const Subtree *new_tree, TreeCursor *cursor1, TreeCursor *cursor2, + const TSLanguage *language, const TSRangeArray *included_range_differences, TSRange **ranges) +{ + TSRangeArray results = array_new(); + + Iterator old_iter = iterator_new(cursor1, old_tree, language); + Iterator new_iter = iterator_new(cursor2, new_tree, language); + + unsigned included_range_difference_index = 0; + + Length position = iterator_start_position(&old_iter); + Length next_position = iterator_start_position(&new_iter); + if (position.bytes < next_position.bytes) + { + ts_range_array_add(&results, position, next_position); + position = next_position; + } + else if (position.bytes > next_position.bytes) + { + ts_range_array_add(&results, next_position, position); + next_position = position; + } + + do + { +#ifdef DEBUG_GET_CHANGED_RANGES + printf("At [%-2u, %-2u] Compare ", position.extent.row + 1, position.extent.column); + iterator_print_state(&old_iter); + printf("\tvs\t"); + iterator_print_state(&new_iter); + puts(""); +#endif + + // Compare the old and new subtrees. + IteratorComparison comparison = iterator_compare(&old_iter, &new_iter); + + // Even if the two subtrees appear to be identical, they could differ + // internally if they contain a range of text that was previously + // excluded from the parse, and is now included, or vice-versa. + if (comparison == IteratorMatches && ts_range_array_intersects(included_range_differences, included_range_difference_index, + position.bytes, iterator_end_position(&old_iter).bytes)) + { + comparison = IteratorMayDiffer; + } + + bool is_changed = false; + switch (comparison) + { + // If the subtrees are definitely identical, move to the end + // of both subtrees. + case IteratorMatches: + next_position = iterator_end_position(&old_iter); + break; + + // If the subtrees might differ internally, descend into both + // subtrees, finding the first child that spans the current position. + case IteratorMayDiffer: + if (iterator_descend(&old_iter, position.bytes)) + { + if (!iterator_descend(&new_iter, position.bytes)) + { + is_changed = true; + next_position = iterator_end_position(&old_iter); + } + } + else if (iterator_descend(&new_iter, position.bytes)) + { + is_changed = true; + next_position = iterator_end_position(&new_iter); + } + else + { + next_position = length_min(iterator_end_position(&old_iter), iterator_end_position(&new_iter)); + } + break; + + // If the subtrees are different, record a change and then move + // to the end of both subtrees. + case IteratorDiffers: + is_changed = true; + next_position = length_min(iterator_end_position(&old_iter), iterator_end_position(&new_iter)); + break; + } + + // Ensure that both iterators are caught up to the current position. + while (!iterator_done(&old_iter) && iterator_end_position(&old_iter).bytes <= next_position.bytes) + iterator_advance(&old_iter); + while (!iterator_done(&new_iter) && iterator_end_position(&new_iter).bytes <= next_position.bytes) + iterator_advance(&new_iter); + + // Ensure that both iterators are at the same depth in the tree. + while (old_iter.visible_depth > new_iter.visible_depth) + { + iterator_ascend(&old_iter); + } + while (new_iter.visible_depth > old_iter.visible_depth) + { + iterator_ascend(&new_iter); + } + + if (is_changed) + { +#ifdef DEBUG_GET_CHANGED_RANGES + printf(" change: [[%u, %u] - [%u, %u]]\n", position.extent.row + 1, position.extent.column, next_position.extent.row + 1, + next_position.extent.column); +#endif + + ts_range_array_add(&results, position, next_position); + } + + position = next_position; + + // Keep track of the current position in the included range differences + // array in order to avoid scanning the entire array on each iteration. + while (included_range_difference_index < included_range_differences->size) + { + const TSRange *range = &included_range_differences->contents[included_range_difference_index]; + if (range->end_byte <= position.bytes) + { + included_range_difference_index++; + } + else + { + break; + } + } + } while (!iterator_done(&old_iter) && !iterator_done(&new_iter)); + + Length old_size = ts_subtree_total_size(*old_tree); + Length new_size = ts_subtree_total_size(*new_tree); + if (old_size.bytes < new_size.bytes) + { + ts_range_array_add(&results, old_size, new_size); + } + else if (new_size.bytes < old_size.bytes) + { + ts_range_array_add(&results, new_size, old_size); + } + + *cursor1 = old_iter.cursor; + *cursor2 = new_iter.cursor; + *ranges = results.contents; + return results.size; +} diff --git a/parser/nsrc/get_changed_ranges.h b/parser/nsrc/get_changed_ranges.h new file mode 100644 index 00000000..7657961b --- /dev/null +++ b/parser/nsrc/get_changed_ranges.h @@ -0,0 +1,24 @@ +#ifndef TREE_SITTER_GET_CHANGED_RANGES_H_ +#define TREE_SITTER_GET_CHANGED_RANGES_H_ + +#ifdef __cplusplus +extern "C" +{ +#endif + +#include "./subtree.h" +#include "./tree_cursor.h" + + typedef Array(TSRange) TSRangeArray; + + void ts_range_array_get_changed_ranges(const TSRange *old_ranges, unsigned old_range_count, const TSRange *new_ranges, unsigned new_range_count, TSRangeArray *differences); + + bool ts_range_array_intersects(const TSRangeArray *self, unsigned start_index, uint32_t start_byte, uint32_t end_byte); + + unsigned ts_subtree_get_changed_ranges(const Subtree *old_tree, const Subtree *new_tree, TreeCursor *cursor1, TreeCursor *cursor2, const TSLanguage *language, const TSRangeArray *included_range_differences, TSRange **ranges); + +#ifdef __cplusplus +} +#endif + +#endif // TREE_SITTER_GET_CHANGED_RANGES_H_ diff --git a/parser/nsrc/host.h b/parser/nsrc/host.h new file mode 100644 index 00000000..01aaac6f --- /dev/null +++ b/parser/nsrc/host.h @@ -0,0 +1,20 @@ + +// Determine endian and pointer size based on known defines. +// TS_BIG_ENDIAN and TS_PTR_SIZE can be set as -D compiler arguments +// to override this. + +#if !defined(TS_BIG_ENDIAN) +# if (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) || (defined(__APPLE_CC__) && (defined(__ppc__) || defined(__ppc64__))) +# define TS_BIG_ENDIAN 1 +# else +# define TS_BIG_ENDIAN 0 +# endif +#endif + +#if !defined(TS_PTR_SIZE) +# if UINTPTR_MAX == 0xFFFFFFFF +# define TS_PTR_SIZE 32 +# else +# define TS_PTR_SIZE 64 +# endif +#endif diff --git a/parser/nsrc/language.c b/parser/nsrc/language.c new file mode 100644 index 00000000..d127497c --- /dev/null +++ b/parser/nsrc/language.c @@ -0,0 +1,215 @@ +#include "./language.h" +#include "./api.h" +#include + +const TSLanguage *ts_language_copy(const TSLanguage *self) { + return self; +} + +void ts_language_delete(const TSLanguage *self) { + (void)(self); +} + +uint32_t ts_language_symbol_count(const TSLanguage *self) { + return self->symbol_count + self->alias_count; +} + +uint32_t ts_language_state_count(const TSLanguage *self) { + return self->state_count; +} + +uint32_t ts_language_version(const TSLanguage *self) { + return self->version; +} + +uint32_t ts_language_field_count(const TSLanguage *self) { + return self->field_count; +} + +void ts_language_table_entry( + const TSLanguage *self, + TSStateId state, + TSSymbol symbol, + TableEntry *result +) { + if (symbol == ts_builtin_sym_error || symbol == ts_builtin_sym_error_repeat) { + result->action_count = 0; + result->is_reusable = false; + result->actions = NULL; + } else { + assert(symbol < self->token_count); + uint32_t action_index = ts_language_lookup(self, state, symbol); + const TSParseActionEntry *entry = &self->parse_actions[action_index]; + result->action_count = entry->entry.count; + result->is_reusable = entry->entry.reusable; + result->actions = (const TSParseAction *)(entry + 1); + } +} + +TSSymbolMetadata ts_language_symbol_metadata( + const TSLanguage *self, + TSSymbol symbol +) { + if (symbol == ts_builtin_sym_error) { + return (TSSymbolMetadata) {.visible = true, .named = true}; + } else if (symbol == ts_builtin_sym_error_repeat) { + return (TSSymbolMetadata) {.visible = false, .named = false}; + } else { + return self->symbol_metadata[symbol]; + } +} + +TSSymbol ts_language_public_symbol( + const TSLanguage *self, + TSSymbol symbol +) { + if (symbol == ts_builtin_sym_error) return symbol; + return self->public_symbol_map[symbol]; +} + +TSStateId ts_language_next_state( + const TSLanguage *self, + TSStateId state, + TSSymbol symbol +) { + if (symbol == ts_builtin_sym_error || symbol == ts_builtin_sym_error_repeat) { + return 0; + } else if (symbol < self->token_count) { + uint32_t count; + const TSParseAction *actions = ts_language_actions(self, state, symbol, &count); + if (count > 0) { + TSParseAction action = actions[count - 1]; + if (action.type == TSParseActionTypeShift) { + return action.shift.extra ? state : action.shift.state; + } + } + return 0; + } else { + return ts_language_lookup(self, state, symbol); + } +} + +const char *ts_language_symbol_name( + const TSLanguage *self, + TSSymbol symbol +) { + if (symbol == ts_builtin_sym_error) { + return "ERROR"; + } else if (symbol == ts_builtin_sym_error_repeat) { + return "_ERROR"; + } else if (symbol < ts_language_symbol_count(self)) { + return self->symbol_names[symbol]; + } else { + return NULL; + } +} + +TSSymbol ts_language_symbol_for_name( + const TSLanguage *self, + const char *string, + uint32_t length, + bool is_named +) { + if (!strncmp(string, "ERROR", length)) return ts_builtin_sym_error; + uint16_t count = (uint16_t)ts_language_symbol_count(self); + for (TSSymbol i = 0; i < count; i++) { + TSSymbolMetadata metadata = ts_language_symbol_metadata(self, i); + if ((!metadata.visible && !metadata.supertype) || metadata.named != is_named) continue; + const char *symbol_name = self->symbol_names[i]; + if (!strncmp(symbol_name, string, length) && !symbol_name[length]) { + return self->public_symbol_map[i]; + } + } + return 0; +} + +TSSymbolType ts_language_symbol_type( + const TSLanguage *self, + TSSymbol symbol +) { + TSSymbolMetadata metadata = ts_language_symbol_metadata(self, symbol); + if (metadata.named && metadata.visible) { + return TSSymbolTypeRegular; + } else if (metadata.visible) { + return TSSymbolTypeAnonymous; + } else { + return TSSymbolTypeAuxiliary; + } +} + +const char *ts_language_field_name_for_id( + const TSLanguage *self, + TSFieldId id +) { + uint32_t count = ts_language_field_count(self); + if (count && id <= count) { + return self->field_names[id]; + } else { + return NULL; + } +} + +TSFieldId ts_language_field_id_for_name( + const TSLanguage *self, + const char *name, + uint32_t name_length +) { + uint16_t count = (uint16_t)ts_language_field_count(self); + for (TSSymbol i = 1; i < count + 1; i++) { + switch (strncmp(name, self->field_names[i], name_length)) { + case 0: + if (self->field_names[i][name_length] == 0) return i; + break; + case -1: + return 0; + default: + break; + } + } + return 0; +} + +TSLookaheadIterator *ts_lookahead_iterator_new(const TSLanguage *self, TSStateId state) { + if (state >= self->state_count) return NULL; + LookaheadIterator *iterator = ts_malloc(sizeof(LookaheadIterator)); + *iterator = ts_language_lookaheads(self, state); + return (TSLookaheadIterator *)iterator; +} + +void ts_lookahead_iterator_delete(TSLookaheadIterator *self) { + ts_free(self); +} + +bool ts_lookahead_iterator_reset_state(TSLookaheadIterator * self, TSStateId state) { + LookaheadIterator *iterator = (LookaheadIterator *)self; + if (state >= iterator->language->state_count) return false; + *iterator = ts_language_lookaheads(iterator->language, state); + return true; +} + +const TSLanguage *ts_lookahead_iterator_language(const TSLookaheadIterator *self) { + const LookaheadIterator *iterator = (const LookaheadIterator *)self; + return iterator->language; +} + +bool ts_lookahead_iterator_reset(TSLookaheadIterator *self, const TSLanguage *language, TSStateId state) { + if (state >= language->state_count) return false; + LookaheadIterator *iterator = (LookaheadIterator *)self; + *iterator = ts_language_lookaheads(language, state); + return true; +} + +bool ts_lookahead_iterator_next(TSLookaheadIterator *self) { + LookaheadIterator *iterator = (LookaheadIterator *)self; + return ts_lookahead_iterator__next(iterator); +} + +TSSymbol ts_lookahead_iterator_current_symbol(const TSLookaheadIterator *self) { + const LookaheadIterator *iterator = (const LookaheadIterator *)self; + return iterator->symbol; +} + +const char *ts_lookahead_iterator_current_symbol_name(const TSLookaheadIterator *self) { + const LookaheadIterator *iterator = (const LookaheadIterator *)self; + return ts_language_symbol_name(iterator->language, iterator->symbol); +} diff --git a/parser/nsrc/language.h b/parser/nsrc/language.h new file mode 100644 index 00000000..3e344337 --- /dev/null +++ b/parser/nsrc/language.h @@ -0,0 +1,299 @@ +#ifndef TREE_SITTER_LANGUAGE_H_ +#define TREE_SITTER_LANGUAGE_H_ + +#ifdef __cplusplus +extern "C" +{ +#endif + +#include "./parser.h" +#include "./subtree.h" + +#define ts_builtin_sym_error_repeat (ts_builtin_sym_error - 1) + +#define LANGUAGE_VERSION_WITH_PRIMARY_STATES 14 +#define LANGUAGE_VERSION_USABLE_VIA_WASM 13 + + typedef struct TableEntry + { + const TSParseAction *actions; + uint32_t action_count; + bool is_reusable; + } TableEntry; + + typedef struct LookaheadIterator + { + const TSLanguage *language; + const uint16_t *data; + const uint16_t *group_end; + TSStateId state; + uint16_t table_value; + uint16_t section_index; + uint16_t group_count; + bool is_small_state; + + const TSParseAction *actions; + TSSymbol symbol; + TSStateId next_state; + uint16_t action_count; + } LookaheadIterator; + + void ts_language_table_entry(const TSLanguage *, TSStateId, TSSymbol, TableEntry *); + + TSSymbolMetadata ts_language_symbol_metadata(const TSLanguage *, TSSymbol); + + TSSymbol ts_language_public_symbol(const TSLanguage *, TSSymbol); + + TSStateId ts_language_next_state(const TSLanguage *self, TSStateId state, TSSymbol symbol); + + static inline bool ts_language_is_symbol_external(const TSLanguage *self, TSSymbol symbol) + { + return 0 < symbol && symbol < self->external_token_count + 1; + } + + static inline const TSParseAction *ts_language_actions(const TSLanguage *self, TSStateId state, TSSymbol symbol, uint32_t *count) + { + TableEntry entry; + ts_language_table_entry(self, state, symbol, &entry); + *count = entry.action_count; + return entry.actions; + } + + static inline bool ts_language_has_reduce_action(const TSLanguage *self, TSStateId state, TSSymbol symbol) + { + TableEntry entry; + ts_language_table_entry(self, state, symbol, &entry); + return entry.action_count > 0 && entry.actions[0].type == TSParseActionTypeReduce; + } + + // Lookup the table value for a given symbol and state. + // + // For non-terminal symbols, the table value represents a successor state. + // For terminal symbols, it represents an index in the actions table. + // For 'large' parse states, this is a direct lookup. For 'small' parse + // states, this requires searching through the symbol groups to find + // the given symbol. + static inline uint16_t ts_language_lookup(const TSLanguage *self, TSStateId state, TSSymbol symbol) + { + if (state >= self->large_state_count) + { + uint32_t index = self->small_parse_table_map[state - self->large_state_count]; + const uint16_t *data = &self->small_parse_table[index]; + uint16_t group_count = *(data++); + for (unsigned i = 0; i < group_count; i++) + { + uint16_t section_value = *(data++); + uint16_t symbol_count = *(data++); + for (unsigned j = 0; j < symbol_count; j++) + { + if (*(data++) == symbol) + return section_value; + } + } + return 0; + } + else + { + return self->parse_table[state * self->symbol_count + symbol]; + } + } + + static inline bool ts_language_has_actions(const TSLanguage *self, TSStateId state, TSSymbol symbol) + { + return ts_language_lookup(self, state, symbol) != 0; + } + + // Iterate over all of the symbols that are valid in the given state. + // + // For 'large' parse states, this just requires iterating through + // all possible symbols and checking the parse table for each one. + // For 'small' parse states, this exploits the structure of the + // table to only visit the valid symbols. + static inline LookaheadIterator ts_language_lookaheads(const TSLanguage *self, TSStateId state) + { + bool is_small_state = state >= self->large_state_count; + const uint16_t *data; + const uint16_t *group_end = NULL; + uint16_t group_count = 0; + if (is_small_state) + { + uint32_t index = self->small_parse_table_map[state - self->large_state_count]; + data = &self->small_parse_table[index]; + group_end = data + 1; + group_count = *data; + } + else + { + data = &self->parse_table[state * self->symbol_count] - 1; + } + return (LookaheadIterator){ + .language = self, + .data = data, + .group_end = group_end, + .group_count = group_count, + .is_small_state = is_small_state, + .symbol = UINT16_MAX, + .next_state = 0, + }; + } + + static inline bool ts_lookahead_iterator__next(LookaheadIterator *self) + { + // For small parse states, valid symbols are listed explicitly, + // grouped by their value. There's no need to look up the actions + // again until moving to the next group. + if (self->is_small_state) + { + self->data++; + if (self->data == self->group_end) + { + if (self->group_count == 0) + return false; + self->group_count--; + self->table_value = *(self->data++); + unsigned symbol_count = *(self->data++); + self->group_end = self->data + symbol_count; + self->symbol = *self->data; + } + else + { + self->symbol = *self->data; + return true; + } + } + + // For large parse states, iterate through every symbol until one + // is found that has valid actions. + else + { + do + { + self->data++; + self->symbol++; + if (self->symbol >= self->language->symbol_count) + return false; + self->table_value = *self->data; + } while (!self->table_value); + } + + // Depending on if the symbols is terminal or non-terminal, the table value either + // represents a list of actions or a successor state. + if (self->symbol < self->language->token_count) + { + const TSParseActionEntry *entry = &self->language->parse_actions[self->table_value]; + self->action_count = entry->entry.count; + self->actions = (const TSParseAction *)(entry + 1); + self->next_state = 0; + } + else + { + self->action_count = 0; + self->next_state = self->table_value; + } + return true; + } + + // Whether the state is a "primary state". If this returns false, it indicates that there exists + // another state that behaves identically to this one with respect to query analysis. + static inline bool ts_language_state_is_primary(const TSLanguage *self, TSStateId state) + { + if (self->version >= LANGUAGE_VERSION_WITH_PRIMARY_STATES) + { + return state == self->primary_state_ids[state]; + } + else + { + return true; + } + } + + static inline const bool *ts_language_enabled_external_tokens(const TSLanguage *self, unsigned external_scanner_state) + { + if (external_scanner_state == 0) + { + return NULL; + } + else + { + return self->external_scanner.states + self->external_token_count * external_scanner_state; + } + } + + static inline const TSSymbol *ts_language_alias_sequence(const TSLanguage *self, uint32_t production_id) + { + return production_id ? &self->alias_sequences[production_id * self->max_alias_sequence_length] : NULL; + } + + static inline TSSymbol ts_language_alias_at(const TSLanguage *self, uint32_t production_id, uint32_t child_index) + { + return production_id ? self->alias_sequences[production_id * self->max_alias_sequence_length + child_index] : 0; + } + + static inline void ts_language_field_map(const TSLanguage *self, uint32_t production_id, const TSFieldMapEntry **start, + const TSFieldMapEntry **end) + { + if (self->field_count == 0) + { + *start = NULL; + *end = NULL; + return; + } + + TSFieldMapSlice slice = self->field_map_slices[production_id]; + *start = &self->field_map_entries[slice.index]; + *end = &self->field_map_entries[slice.index] + slice.length; + } + + static inline void ts_language_aliases_for_symbol(const TSLanguage *self, TSSymbol original_symbol, const TSSymbol **start, + const TSSymbol **end) + { + *start = &self->public_symbol_map[original_symbol]; + *end = *start + 1; + + unsigned idx = 0; + for (;;) + { + TSSymbol symbol = self->alias_map[idx++]; + if (symbol == 0 || symbol > original_symbol) + break; + uint16_t count = self->alias_map[idx++]; + if (symbol == original_symbol) + { + *start = &self->alias_map[idx]; + *end = &self->alias_map[idx + count]; + break; + } + idx += count; + } + } + + static inline void ts_language_write_symbol_as_dot_string(const TSLanguage *self, FILE *f, TSSymbol symbol) + { + const char *name = ts_language_symbol_name(self, symbol); + for (const char *chr = name; *chr; chr++) + { + switch (*chr) + { + case '"': + case '\\': + fputc('\\', f); + fputc(*chr, f); + break; + case '\n': + fputs("\\n", f); + break; + case '\t': + fputs("\\t", f); + break; + default: + fputc(*chr, f); + break; + } + } + } + +#ifdef __cplusplus +} +#endif + +#endif // TREE_SITTER_LANGUAGE_H_ diff --git a/parser/nsrc/length.h b/parser/nsrc/length.h new file mode 100644 index 00000000..4a84f5d7 --- /dev/null +++ b/parser/nsrc/length.h @@ -0,0 +1,62 @@ +#ifndef TREE_SITTER_LENGTH_H_ +#define TREE_SITTER_LENGTH_H_ + +#include "./api.h" +#include "./point.h" +#include +#include + +typedef struct Length +{ + uint32_t bytes; + TSPoint extent; +} Length; + +static const Length LENGTH_UNDEFINED = {0, {0, 1}}; +static const Length LENGTH_MAX = {UINT32_MAX, {UINT32_MAX, UINT32_MAX}}; + +static inline bool length_is_undefined(Length length) +{ + return length.bytes == 0 && length.extent.column != 0; +} + +static inline Length length_min(Length len1, Length len2) +{ + return (len1.bytes < len2.bytes) ? len1 : len2; +} + +static inline Length length_add(Length len1, Length len2) +{ + Length result; + result.bytes = len1.bytes + len2.bytes; + result.extent = point_add(len1.extent, len2.extent); + return result; +} + +static inline Length length_sub(Length len1, Length len2) +{ + Length result; + result.bytes = len1.bytes - len2.bytes; + result.extent = point_sub(len1.extent, len2.extent); + return result; +} + +static inline Length length_zero(void) +{ + Length result = {0, {0, 0}}; + return result; +} + +static inline Length length_saturating_sub(Length len1, Length len2) +{ + if (len1.bytes > len2.bytes) + { + return length_sub(len1, len2); + } + else + { + return length_zero(); + } +} + +#endif diff --git a/parser/nsrc/lexer.c b/parser/nsrc/lexer.c new file mode 100644 index 00000000..07ccf6eb --- /dev/null +++ b/parser/nsrc/lexer.c @@ -0,0 +1,419 @@ +#include +#include "./lexer.h" +#include "./subtree.h" +#include "./length.h" +#include "./unicode.h" + +#define LOG(message, character) \ + if (self->logger.log) { \ + snprintf( \ + self->debug_buffer, \ + TREE_SITTER_SERIALIZATION_BUFFER_SIZE, \ + 32 <= character && character < 127 ? \ + message " character:'%c'" : \ + message " character:%d", \ + character \ + ); \ + self->logger.log( \ + self->logger.payload, \ + TSLogTypeLex, \ + self->debug_buffer \ + ); \ + } + +static const int32_t BYTE_ORDER_MARK = 0xFEFF; + +static const TSRange DEFAULT_RANGE = { + .start_point = { + .row = 0, + .column = 0, + }, + .end_point = { + .row = UINT32_MAX, + .column = UINT32_MAX, + }, + .start_byte = 0, + .end_byte = UINT32_MAX +}; + +// Check if the lexer has reached EOF. This state is stored +// by setting the lexer's `current_included_range_index` such that +// it has consumed all of its available ranges. +static bool ts_lexer__eof(const TSLexer *_self) { + Lexer *self = (Lexer *)_self; + return self->current_included_range_index == self->included_range_count; +} + +// Clear the currently stored chunk of source code, because the lexer's +// position has changed. +static void ts_lexer__clear_chunk(Lexer *self) { + self->chunk = NULL; + self->chunk_size = 0; + self->chunk_start = 0; +} + +// Call the lexer's input callback to obtain a new chunk of source code +// for the current position. +static void ts_lexer__get_chunk(Lexer *self) { + self->chunk_start = self->current_position.bytes; + self->chunk = self->input.read( + self->input.payload, + self->current_position.bytes, + self->current_position.extent, + &self->chunk_size + ); + if (!self->chunk_size) { + self->current_included_range_index = self->included_range_count; + self->chunk = NULL; + } +} + +// Decode the next unicode character in the current chunk of source code. +// This assumes that the lexer has already retrieved a chunk of source +// code that spans the current position. +static void ts_lexer__get_lookahead(Lexer *self) { + uint32_t position_in_chunk = self->current_position.bytes - self->chunk_start; + uint32_t size = self->chunk_size - position_in_chunk; + + if (size == 0) { + self->lookahead_size = 1; + self->data.lookahead = '\0'; + return; + } + + const uint8_t *chunk = (const uint8_t *)self->chunk + position_in_chunk; + UnicodeDecodeFunction decode = self->input.encoding == TSInputEncodingUTF8 + ? ts_decode_ascii + : ts_decode_ascii; + + self->lookahead_size = decode(chunk, size, &self->data.lookahead); + + // If this chunk ended in the middle of a multi-byte character, + // try again with a fresh chunk. + if (self->data.lookahead == TS_DECODE_ERROR && size < 4) { + ts_lexer__get_chunk(self); + chunk = (const uint8_t *)self->chunk; + size = self->chunk_size; + self->lookahead_size = decode(chunk, size, &self->data.lookahead); + } + + if (self->data.lookahead == TS_DECODE_ERROR) { + self->lookahead_size = 1; + } +} + +static void ts_lexer_goto(Lexer *self, Length position) { + self->current_position = position; + + // Move to the first valid position at or after the given position. + bool found_included_range = false; + for (unsigned i = 0; i < self->included_range_count; i++) { + TSRange *included_range = &self->included_ranges[i]; + if ( + included_range->end_byte > self->current_position.bytes && + included_range->end_byte > included_range->start_byte + ) { + if (included_range->start_byte >= self->current_position.bytes) { + self->current_position = (Length) { + .bytes = included_range->start_byte, + .extent = included_range->start_point, + }; + } + + self->current_included_range_index = i; + found_included_range = true; + break; + } + } + + if (found_included_range) { + // If the current position is outside of the current chunk of text, + // then clear out the current chunk of text. + if (self->chunk && ( + self->current_position.bytes < self->chunk_start || + self->current_position.bytes >= self->chunk_start + self->chunk_size + )) { + ts_lexer__clear_chunk(self); + } + + self->lookahead_size = 0; + self->data.lookahead = '\0'; + } + + // If the given position is beyond any of included ranges, move to the EOF + // state - past the end of the included ranges. + else { + self->current_included_range_index = self->included_range_count; + TSRange *last_included_range = &self->included_ranges[self->included_range_count - 1]; + self->current_position = (Length) { + .bytes = last_included_range->end_byte, + .extent = last_included_range->end_point, + }; + ts_lexer__clear_chunk(self); + self->lookahead_size = 1; + self->data.lookahead = '\0'; + } +} + +// Intended to be called only from functions that control logging. +static void ts_lexer__do_advance(Lexer *self, bool skip) { + if (self->lookahead_size) { + self->current_position.bytes += self->lookahead_size; + if (self->data.lookahead == '\n') { + self->current_position.extent.row++; + self->current_position.extent.column = 0; + } else { + self->current_position.extent.column += self->lookahead_size; + } + } + + const TSRange *current_range = &self->included_ranges[self->current_included_range_index]; + while ( + self->current_position.bytes >= current_range->end_byte || + current_range->end_byte == current_range->start_byte + ) { + if (self->current_included_range_index < self->included_range_count) { + self->current_included_range_index++; + } + if (self->current_included_range_index < self->included_range_count) { + current_range++; + self->current_position = (Length) { + current_range->start_byte, + current_range->start_point, + }; + } else { + current_range = NULL; + break; + } + } + + if (skip) self->token_start_position = self->current_position; + + if (current_range) { + if ( + self->current_position.bytes < self->chunk_start || + self->current_position.bytes >= self->chunk_start + self->chunk_size + ) { + ts_lexer__get_chunk(self); + } + ts_lexer__get_lookahead(self); + } else { + ts_lexer__clear_chunk(self); + self->data.lookahead = '\0'; + self->lookahead_size = 1; + } +} + +// Advance to the next character in the source code, retrieving a new +// chunk of source code if needed. +static void ts_lexer__advance(TSLexer *_self, bool skip) { + Lexer *self = (Lexer *)_self; + if (!self->chunk) return; + + if (skip) { + LOG("skip", self->data.lookahead) + } else { + LOG("consume", self->data.lookahead) + } + + ts_lexer__do_advance(self, skip); +} + +// Mark that a token match has completed. This can be called multiple +// times if a longer match is found later. +static void ts_lexer__mark_end(TSLexer *_self) { + Lexer *self = (Lexer *)_self; + if (!ts_lexer__eof(&self->data)) { + // If the lexer is right at the beginning of included range, + // then the token should be considered to end at the *end* of the + // previous included range, rather than here. + TSRange *current_included_range = &self->included_ranges[ + self->current_included_range_index + ]; + if ( + self->current_included_range_index > 0 && + self->current_position.bytes == current_included_range->start_byte + ) { + TSRange *previous_included_range = current_included_range - 1; + self->token_end_position = (Length) { + previous_included_range->end_byte, + previous_included_range->end_point, + }; + return; + } + } + self->token_end_position = self->current_position; +} + +static uint32_t ts_lexer__get_column(TSLexer *_self) { + Lexer *self = (Lexer *)_self; + + uint32_t goal_byte = self->current_position.bytes; + + self->did_get_column = true; + self->current_position.bytes -= self->current_position.extent.column; + self->current_position.extent.column = 0; + + if (self->current_position.bytes < self->chunk_start) { + ts_lexer__get_chunk(self); + } + + uint32_t result = 0; + if (!ts_lexer__eof(_self)) { + ts_lexer__get_lookahead(self); + while (self->current_position.bytes < goal_byte && self->chunk) { + result++; + ts_lexer__do_advance(self, false); + if (ts_lexer__eof(_self)) break; + } + } + + return result; +} + +// Is the lexer at a boundary between two disjoint included ranges of +// source code? This is exposed as an API because some languages' external +// scanners need to perform custom actions at these boundaries. +static bool ts_lexer__is_at_included_range_start(const TSLexer *_self) { + const Lexer *self = (const Lexer *)_self; + if (self->current_included_range_index < self->included_range_count) { + TSRange *current_range = &self->included_ranges[self->current_included_range_index]; + return self->current_position.bytes == current_range->start_byte; + } else { + return false; + } +} + +void ts_lexer_init(Lexer *self) { + *self = (Lexer) { + .data = { + // The lexer's methods are stored as struct fields so that generated + // parsers can call them without needing to be linked against this + // library. + .advance = ts_lexer__advance, + .mark_end = ts_lexer__mark_end, + .get_column = ts_lexer__get_column, + .is_at_included_range_start = ts_lexer__is_at_included_range_start, + .eof = ts_lexer__eof, + .lookahead = 0, + .result_symbol = 0, + }, + .chunk = NULL, + .chunk_size = 0, + .chunk_start = 0, + .current_position = {0, {0, 0}}, + .logger = { + .payload = NULL, + .log = NULL + }, + .included_ranges = NULL, + .included_range_count = 0, + .current_included_range_index = 0, + }; + ts_lexer_set_included_ranges(self, NULL, 0); +} + +void ts_lexer_delete(Lexer *self) { + ts_free(self->included_ranges); +} + +void ts_lexer_set_input(Lexer *self, TSInput input) { + self->input = input; + ts_lexer__clear_chunk(self); + ts_lexer_goto(self, self->current_position); +} + +// Move the lexer to the given position. This doesn't do any work +// if the parser is already at the given position. +void ts_lexer_reset(Lexer *self, Length position) { + if (position.bytes != self->current_position.bytes) { + ts_lexer_goto(self, position); + } +} + +void ts_lexer_start(Lexer *self) { + self->token_start_position = self->current_position; + self->token_end_position = LENGTH_UNDEFINED; + self->data.result_symbol = 0; + self->did_get_column = false; + if (!ts_lexer__eof(&self->data)) { + if (!self->chunk_size) ts_lexer__get_chunk(self); + if (!self->lookahead_size) ts_lexer__get_lookahead(self); + if ( + self->current_position.bytes == 0 && + self->data.lookahead == BYTE_ORDER_MARK + ) ts_lexer__advance(&self->data, true); + } +} + +void ts_lexer_finish(Lexer *self, uint32_t *lookahead_end_byte) { + if (length_is_undefined(self->token_end_position)) { + ts_lexer__mark_end(&self->data); + } + + // If the token ended at an included range boundary, then its end position + // will have been reset to the end of the preceding range. Reset the start + // position to match. + if (self->token_end_position.bytes < self->token_start_position.bytes) { + self->token_start_position = self->token_end_position; + } + + uint32_t current_lookahead_end_byte = self->current_position.bytes + 1; + + // In order to determine that a byte sequence is invalid UTF8 or UTF16, + // the character decoding algorithm may have looked at the following byte. + // Therefore, the next byte *after* the current (invalid) character + // affects the interpretation of the current character. + if (self->data.lookahead == TS_DECODE_ERROR) { + current_lookahead_end_byte += 4; // the maximum number of bytes read to identify an invalid code point + } + + if (current_lookahead_end_byte > *lookahead_end_byte) { + *lookahead_end_byte = current_lookahead_end_byte; + } +} + +void ts_lexer_advance_to_end(Lexer *self) { + while (self->chunk) { + ts_lexer__advance(&self->data, false); + } +} + +void ts_lexer_mark_end(Lexer *self) { + ts_lexer__mark_end(&self->data); +} + +bool ts_lexer_set_included_ranges( + Lexer *self, + const TSRange *ranges, + uint32_t count +) { + if (count == 0 || !ranges) { + ranges = &DEFAULT_RANGE; + count = 1; + } else { + uint32_t previous_byte = 0; + for (unsigned i = 0; i < count; i++) { + const TSRange *range = &ranges[i]; + if ( + range->start_byte < previous_byte || + range->end_byte < range->start_byte + ) return false; + previous_byte = range->end_byte; + } + } + + size_t size = count * sizeof(TSRange); + self->included_ranges = ts_realloc(self->included_ranges, size); + memcpy(self->included_ranges, ranges, size); + self->included_range_count = count; + ts_lexer_goto(self, self->current_position); + return true; +} + +TSRange *ts_lexer_included_ranges(const Lexer *self, uint32_t *count) { + *count = self->included_range_count; + return self->included_ranges; +} + +#undef LOG diff --git a/parser/nsrc/lexer.h b/parser/nsrc/lexer.h new file mode 100644 index 00000000..75607003 --- /dev/null +++ b/parser/nsrc/lexer.h @@ -0,0 +1,51 @@ +#ifndef TREE_SITTER_LEXER_H_ +#define TREE_SITTER_LEXER_H_ + +#ifdef __cplusplus +extern "C" +{ +#endif + +#include "./api.h" +#include "./length.h" +#include "./parser.h" +#include "./subtree.h" + + typedef struct Lexer + { + TSLexer data; + Length current_position; + Length token_start_position; + Length token_end_position; + + TSRange *included_ranges; + const char *chunk; + TSInput input; + TSLogger logger; + + uint32_t included_range_count; + uint32_t current_included_range_index; + uint32_t chunk_start; + uint32_t chunk_size; + uint32_t lookahead_size; + bool did_get_column; + + char debug_buffer[TREE_SITTER_SERIALIZATION_BUFFER_SIZE]; + } Lexer; + + void ts_lexer_init(Lexer *); + void ts_lexer_delete(Lexer *); + void ts_lexer_set_input(Lexer *, TSInput); + void ts_lexer_reset(Lexer *, Length); + void ts_lexer_start(Lexer *); + void ts_lexer_finish(Lexer *, uint32_t *); + void ts_lexer_advance_to_end(Lexer *); + void ts_lexer_mark_end(Lexer *); + bool ts_lexer_set_included_ranges(Lexer *self, const TSRange *ranges, uint32_t count); + TSRange *ts_lexer_included_ranges(const Lexer *self, uint32_t *count); + +#ifdef __cplusplus +} +#endif + +#endif // TREE_SITTER_LEXER_H_ diff --git a/parser/nsrc/lib.c b/parser/nsrc/lib.c new file mode 100644 index 00000000..4054eb3c --- /dev/null +++ b/parser/nsrc/lib.c @@ -0,0 +1,13 @@ +#define _POSIX_C_SOURCE 200112L + +#include "./alloc.c" +#include "./get_changed_ranges.c" +#include "./language.c" +#include "./lexer.c" +#include "./node.c" +#include "./parser.c" +#include "./query.c" +#include "./stack.c" +#include "./subtree.c" +#include "./tree_cursor.c" +#include "./tree.c" diff --git a/parser/nsrc/node.c b/parser/nsrc/node.c new file mode 100644 index 00000000..9aa2001b --- /dev/null +++ b/parser/nsrc/node.c @@ -0,0 +1,882 @@ +#include "./language.h" +#include "./subtree.h" +#include "./tree.h" +#include + +typedef struct NodeChildIterator +{ + Subtree parent; + const TSTree *tree; + Length position; + uint32_t child_index; + uint32_t structural_child_index; + const TSSymbol *alias_sequence; +} NodeChildIterator; + +// TSNode - constructors + +TSNode ts_node_new(const TSTree *tree, const Subtree *subtree, Length position, TSSymbol alias) +{ + return (TSNode){ + {position.bytes, position.extent.row, position.extent.column, alias}, + subtree, + tree, + }; +} + +static inline TSNode ts_node__null(void) +{ + return ts_node_new(NULL, NULL, length_zero(), 0); +} + +// TSNode - accessors + +uint32_t ts_node_start_byte(TSNode self) +{ + return self.context[0]; +} + +TSPoint ts_node_start_point(TSNode self) +{ + return (TSPoint){self.context[1], self.context[2]}; +} + +static inline uint32_t ts_node__alias(const TSNode *self) +{ + return self->context[3]; +} + +static inline Subtree ts_node__subtree(TSNode self) +{ + return *(const Subtree *)self.id; +} + +// NodeChildIterator + +static inline NodeChildIterator ts_node_iterate_children(const TSNode *node) +{ + Subtree subtree = ts_node__subtree(*node); + if (ts_subtree_child_count(subtree) == 0) + { + return (NodeChildIterator){NULL_SUBTREE, node->tree, length_zero(), 0, 0, NULL}; + } + const TSSymbol *alias_sequence = ts_language_alias_sequence(node->tree->language, subtree.ptr->inner.non_terminal.production_id); + return (NodeChildIterator){ + .tree = node->tree, + .parent = subtree, + .position = {ts_node_start_byte(*node), ts_node_start_point(*node)}, + .child_index = 0, + .structural_child_index = 0, + .alias_sequence = alias_sequence, + }; +} + +static inline bool ts_node_child_iterator_done(NodeChildIterator *self) +{ + return self->child_index == self->parent.ptr->child_count; +} + +static inline bool ts_node_child_iterator_next(NodeChildIterator *self, TSNode *result) +{ + if (!self->parent.ptr || ts_node_child_iterator_done(self)) + return false; + const Subtree *child = &ts_subtree_children(self->parent)[self->child_index]; + TSSymbol alias_symbol = 0; + if (!ts_subtree_extra(*child)) + { + if (self->alias_sequence) + { + alias_symbol = self->alias_sequence[self->structural_child_index]; + } + self->structural_child_index++; + } + if (self->child_index > 0) + { + self->position = length_add(self->position, ts_subtree_padding(*child)); + } + *result = ts_node_new(self->tree, child, self->position, alias_symbol); + self->position = length_add(self->position, ts_subtree_size(*child)); + self->child_index++; + return true; +} + +// TSNode - private + +static inline bool ts_node__is_relevant(TSNode self, bool include_anonymous) +{ + Subtree tree = ts_node__subtree(self); + if (include_anonymous) + { + return ts_subtree_visible(tree) || ts_node__alias(&self); + } + else + { + TSSymbol alias = ts_node__alias(&self); + if (alias) + { + return ts_language_symbol_metadata(self.tree->language, alias).named; + } + else + { + return ts_subtree_visible(tree) && ts_subtree_named(tree); + } + } +} + +static inline uint32_t ts_node__relevant_child_count(TSNode self, bool include_anonymous) +{ + Subtree tree = ts_node__subtree(self); + if (ts_subtree_child_count(tree) > 0) + { + if (include_anonymous) + { + return tree.ptr->inner.non_terminal.visible_child_count; + } + else + { + return tree.ptr->inner.non_terminal.named_child_count; + } + } + else + { + return 0; + } +} + +static inline TSNode ts_node__child(TSNode self, uint32_t child_index, bool include_anonymous) +{ + TSNode result = self; + bool did_descend = true; + + while (did_descend) + { + did_descend = false; + + TSNode child; + uint32_t index = 0; + NodeChildIterator iterator = ts_node_iterate_children(&result); + while (ts_node_child_iterator_next(&iterator, &child)) + { + if (ts_node__is_relevant(child, include_anonymous)) + { + if (index == child_index) + { + return child; + } + index++; + } + else + { + uint32_t grandchild_index = child_index - index; + uint32_t grandchild_count = ts_node__relevant_child_count(child, include_anonymous); + if (grandchild_index < grandchild_count) + { + did_descend = true; + result = child; + child_index = grandchild_index; + break; + } + index += grandchild_count; + } + } + } + + return ts_node__null(); +} + +static bool ts_subtree_has_trailing_empty_descendant(Subtree self, Subtree other) +{ + for (unsigned i = ts_subtree_child_count(self) - 1; i + 1 > 0; i--) + { + Subtree child = ts_subtree_children(self)[i]; + if (ts_subtree_total_bytes(child) > 0) + break; + if (child.ptr == other.ptr || ts_subtree_has_trailing_empty_descendant(child, other)) + { + return true; + } + } + return false; +} + +static inline TSNode ts_node__prev_sibling(TSNode self, bool include_anonymous) +{ + Subtree self_subtree = ts_node__subtree(self); + bool self_is_empty = ts_subtree_total_bytes(self_subtree) == 0; + uint32_t target_end_byte = ts_node_end_byte(self); + + TSNode node = ts_node_parent(self); + TSNode earlier_node = ts_node__null(); + bool earlier_node_is_relevant = false; + + while (!ts_node_is_null(node)) + { + TSNode earlier_child = ts_node__null(); + bool earlier_child_is_relevant = false; + bool found_child_containing_target = false; + + TSNode child; + NodeChildIterator iterator = ts_node_iterate_children(&node); + while (ts_node_child_iterator_next(&iterator, &child)) + { + if (child.id == self.id) + break; + if (iterator.position.bytes > target_end_byte) + { + found_child_containing_target = true; + break; + } + + if (iterator.position.bytes == target_end_byte && + (!self_is_empty || ts_subtree_has_trailing_empty_descendant(ts_node__subtree(child), self_subtree))) + { + found_child_containing_target = true; + break; + } + + if (ts_node__is_relevant(child, include_anonymous)) + { + earlier_child = child; + earlier_child_is_relevant = true; + } + else if (ts_node__relevant_child_count(child, include_anonymous) > 0) + { + earlier_child = child; + earlier_child_is_relevant = false; + } + } + + if (found_child_containing_target) + { + if (!ts_node_is_null(earlier_child)) + { + earlier_node = earlier_child; + earlier_node_is_relevant = earlier_child_is_relevant; + } + node = child; + } + else if (earlier_child_is_relevant) + { + return earlier_child; + } + else if (!ts_node_is_null(earlier_child)) + { + node = earlier_child; + } + else if (earlier_node_is_relevant) + { + return earlier_node; + } + else + { + node = earlier_node; + earlier_node = ts_node__null(); + earlier_node_is_relevant = false; + } + } + + return ts_node__null(); +} + +static inline TSNode ts_node__next_sibling(TSNode self, bool include_anonymous) +{ + uint32_t target_end_byte = ts_node_end_byte(self); + + TSNode node = ts_node_parent(self); + TSNode later_node = ts_node__null(); + bool later_node_is_relevant = false; + + while (!ts_node_is_null(node)) + { + TSNode later_child = ts_node__null(); + bool later_child_is_relevant = false; + TSNode child_containing_target = ts_node__null(); + + TSNode child; + NodeChildIterator iterator = ts_node_iterate_children(&node); + while (ts_node_child_iterator_next(&iterator, &child)) + { + if (iterator.position.bytes < target_end_byte) + continue; + if (ts_node_start_byte(child) <= ts_node_start_byte(self)) + { + if (ts_node__subtree(child).ptr != ts_node__subtree(self).ptr) + { + child_containing_target = child; + } + } + else if (ts_node__is_relevant(child, include_anonymous)) + { + later_child = child; + later_child_is_relevant = true; + break; + } + else if (ts_node__relevant_child_count(child, include_anonymous) > 0) + { + later_child = child; + later_child_is_relevant = false; + break; + } + } + + if (!ts_node_is_null(child_containing_target)) + { + if (!ts_node_is_null(later_child)) + { + later_node = later_child; + later_node_is_relevant = later_child_is_relevant; + } + node = child_containing_target; + } + else if (later_child_is_relevant) + { + return later_child; + } + else if (!ts_node_is_null(later_child)) + { + node = later_child; + } + else if (later_node_is_relevant) + { + return later_node; + } + else + { + node = later_node; + } + } + + return ts_node__null(); +} + +static inline TSNode ts_node__first_child_for_byte(TSNode self, uint32_t goal, bool include_anonymous) +{ + TSNode node = self; + bool did_descend = true; + + while (did_descend) + { + did_descend = false; + + TSNode child; + NodeChildIterator iterator = ts_node_iterate_children(&node); + while (ts_node_child_iterator_next(&iterator, &child)) + { + if (ts_node_end_byte(child) > goal) + { + if (ts_node__is_relevant(child, include_anonymous)) + { + return child; + } + else if (ts_node_child_count(child) > 0) + { + did_descend = true; + node = child; + break; + } + } + } + } + + return ts_node__null(); +} + +static inline TSNode ts_node__descendant_for_byte_range(TSNode self, uint32_t range_start, uint32_t range_end, bool include_anonymous) +{ + TSNode node = self; + TSNode last_visible_node = self; + + bool did_descend = true; + while (did_descend) + { + did_descend = false; + + TSNode child; + NodeChildIterator iterator = ts_node_iterate_children(&node); + while (ts_node_child_iterator_next(&iterator, &child)) + { + uint32_t node_end = iterator.position.bytes; + + // The end of this node must extend far enough forward to touch + // the end of the range and exceed the start of the range. + if (node_end < range_end) + continue; + if (node_end <= range_start) + continue; + + // The start of this node must extend far enough backward to + // touch the start of the range. + if (range_start < ts_node_start_byte(child)) + break; + + node = child; + if (ts_node__is_relevant(node, include_anonymous)) + { + last_visible_node = node; + } + did_descend = true; + break; + } + } + + return last_visible_node; +} + +static inline TSNode ts_node__descendant_for_point_range(TSNode self, TSPoint range_start, TSPoint range_end, bool include_anonymous) +{ + TSNode node = self; + TSNode last_visible_node = self; + + bool did_descend = true; + while (did_descend) + { + did_descend = false; + + TSNode child; + NodeChildIterator iterator = ts_node_iterate_children(&node); + while (ts_node_child_iterator_next(&iterator, &child)) + { + TSPoint node_end = iterator.position.extent; + + // The end of this node must extend far enough forward to touch + // the end of the range and exceed the start of the range. + if (point_lt(node_end, range_end)) + continue; + if (point_lte(node_end, range_start)) + continue; + + // The start of this node must extend far enough backward to + // touch the start of the range. + if (point_lt(range_start, ts_node_start_point(child))) + break; + + node = child; + if (ts_node__is_relevant(node, include_anonymous)) + { + last_visible_node = node; + } + did_descend = true; + break; + } + } + + return last_visible_node; +} + +// TSNode - public + +uint32_t ts_node_end_byte(TSNode self) +{ + return ts_node_start_byte(self) + ts_subtree_size(ts_node__subtree(self)).bytes; +} + +TSPoint ts_node_end_point(TSNode self) +{ + return point_add(ts_node_start_point(self), ts_subtree_size(ts_node__subtree(self)).extent); +} + +TSSymbol ts_node_symbol(TSNode self) +{ + TSSymbol symbol = ts_node__alias(&self); + if (!symbol) + symbol = ts_subtree_symbol(ts_node__subtree(self)); + return ts_language_public_symbol(self.tree->language, symbol); +} + +const char *ts_node_type(TSNode self) +{ + TSSymbol symbol = ts_node__alias(&self); + if (!symbol) + symbol = ts_subtree_symbol(ts_node__subtree(self)); + return ts_language_symbol_name(self.tree->language, symbol); +} + +const TSLanguage *ts_node_language(TSNode self) +{ + return self.tree->language; +} + +TSSymbol ts_node_grammar_symbol(TSNode self) +{ + return ts_subtree_symbol(ts_node__subtree(self)); +} + +const char *ts_node_grammar_type(TSNode self) +{ + TSSymbol symbol = ts_subtree_symbol(ts_node__subtree(self)); + return ts_language_symbol_name(self.tree->language, symbol); +} + +char *ts_node_string(TSNode self) +{ + TSSymbol alias_symbol = ts_node__alias(&self); + return ts_subtree_string(ts_node__subtree(self), alias_symbol, ts_language_symbol_metadata(self.tree->language, alias_symbol).visible, + self.tree->language, false); +} + +bool ts_node_eq(TSNode self, TSNode other) +{ + return self.tree == other.tree && self.id == other.id; +} + +bool ts_node_is_null(TSNode self) +{ + return self.id == 0; +} + +bool ts_node_is_extra(TSNode self) +{ + return ts_subtree_extra(ts_node__subtree(self)); +} + +bool ts_node_is_named(TSNode self) +{ + TSSymbol alias = ts_node__alias(&self); + return alias ? ts_language_symbol_metadata(self.tree->language, alias).named : ts_subtree_named(ts_node__subtree(self)); +} + +bool ts_node_is_missing(TSNode self) +{ + return ts_subtree_missing(ts_node__subtree(self)); +} + +bool ts_node_has_changes(TSNode self) +{ + return ts_subtree_has_changes(ts_node__subtree(self)); +} + +bool ts_node_has_error(TSNode self) +{ + return ts_subtree_error_cost(ts_node__subtree(self)) > 0; +} + +bool ts_node_is_error(TSNode self) +{ + TSSymbol symbol = ts_node_symbol(self); + return symbol == ts_builtin_sym_error; +} + +uint32_t ts_node_descendant_count(TSNode self) +{ + return ts_subtree_visible_descendant_count(ts_node__subtree(self)) + 1; +} + +TSStateId ts_node_parse_state(TSNode self) +{ + return ts_subtree_parse_state(ts_node__subtree(self)); +} + +TSStateId ts_node_next_parse_state(TSNode self) +{ + const TSLanguage *language = self.tree->language; + uint16_t state = ts_node_parse_state(self); + if (state == TS_TREE_STATE_NONE) + { + return TS_TREE_STATE_NONE; + } + uint16_t symbol = ts_node_grammar_symbol(self); + return ts_language_next_state(language, state, symbol); +} + +TSNode ts_node_parent(TSNode self) +{ + TSNode node = ts_tree_root_node(self.tree); + if (node.id == self.id) + return ts_node__null(); + + while (true) + { + TSNode next_node = ts_node_child_containing_descendant(node, self); + if (ts_node_is_null(next_node)) + break; + node = next_node; + } + + return node; +} + +TSNode ts_node_child_containing_descendant(TSNode self, TSNode subnode) +{ + uint32_t start_byte = ts_node_start_byte(subnode); + uint32_t end_byte = ts_node_end_byte(subnode); + + do + { + NodeChildIterator iter = ts_node_iterate_children(&self); + do + { + if (!ts_node_child_iterator_next(&iter, &self) || ts_node_start_byte(self) > start_byte || self.id == subnode.id) + { + return ts_node__null(); + } + } while (iter.position.bytes < end_byte || ts_node_child_count(self) == 0); + } while (!ts_node__is_relevant(self, true)); + + return self; +} + +TSNode ts_node_child(TSNode self, uint32_t child_index) +{ + return ts_node__child(self, child_index, true); +} + +TSNode ts_node_named_child(TSNode self, uint32_t child_index) +{ + return ts_node__child(self, child_index, false); +} + +TSNode ts_node_child_by_field_id(TSNode self, TSFieldId field_id) +{ +recur: + if (!field_id || ts_node_child_count(self) == 0) + return ts_node__null(); + + const TSFieldMapEntry *field_map, *field_map_end; + ts_language_field_map(self.tree->language, ts_node__subtree(self).ptr->inner.non_terminal.production_id, &field_map, &field_map_end); + if (field_map == field_map_end) + return ts_node__null(); + + // The field mappings are sorted by their field id. Scan all + // the mappings to find the ones for the given field id. + while (field_map->field_id < field_id) + { + field_map++; + if (field_map == field_map_end) + return ts_node__null(); + } + while (field_map_end[-1].field_id > field_id) + { + field_map_end--; + if (field_map == field_map_end) + return ts_node__null(); + } + + TSNode child; + NodeChildIterator iterator = ts_node_iterate_children(&self); + while (ts_node_child_iterator_next(&iterator, &child)) + { + if (!ts_subtree_extra(ts_node__subtree(child))) + { + uint32_t index = iterator.structural_child_index - 1; + if (index < field_map->child_index) + continue; + + // Hidden nodes' fields are "inherited" by their visible parent. + if (field_map->inherited) + { + + // If this is the *last* possible child node for this field, + // then perform a tail call to avoid recursion. + if (field_map + 1 == field_map_end) + { + self = child; + goto recur; + } + + // Otherwise, descend into this child, but if it doesn't contain + // the field, continue searching subsequent children. + else + { + TSNode result = ts_node_child_by_field_id(child, field_id); + if (result.id) + return result; + field_map++; + if (field_map == field_map_end) + return ts_node__null(); + } + } + + else if (ts_node__is_relevant(child, true)) + { + return child; + } + + // If the field refers to a hidden node with visible children, + // return the first visible child. + else if (ts_node_child_count(child) > 0) + { + return ts_node_child(child, 0); + } + + // Otherwise, continue searching subsequent children. + else + { + field_map++; + if (field_map == field_map_end) + return ts_node__null(); + } + } + } + + return ts_node__null(); +} + +static inline const char *ts_node__field_name_from_language(TSNode self, uint32_t structural_child_index) +{ + const TSFieldMapEntry *field_map, *field_map_end; + ts_language_field_map(self.tree->language, ts_node__subtree(self).ptr->inner.non_terminal.production_id, &field_map, &field_map_end); + for (; field_map != field_map_end; field_map++) + { + if (!field_map->inherited && field_map->child_index == structural_child_index) + { + return self.tree->language->field_names[field_map->field_id]; + } + } + return NULL; +} + +const char *ts_node_field_name_for_child(TSNode self, uint32_t child_index) +{ + TSNode result = self; + bool did_descend = true; + const char *inherited_field_name = NULL; + + while (did_descend) + { + did_descend = false; + + TSNode child; + uint32_t index = 0; + NodeChildIterator iterator = ts_node_iterate_children(&result); + while (ts_node_child_iterator_next(&iterator, &child)) + { + if (ts_node__is_relevant(child, true)) + { + if (index == child_index) + { + if (ts_node_is_extra(child)) + { + return NULL; + } + const char *field_name = ts_node__field_name_from_language(result, iterator.structural_child_index - 1); + if (field_name) + return field_name; + return inherited_field_name; + } + index++; + } + else + { + uint32_t grandchild_index = child_index - index; + uint32_t grandchild_count = ts_node__relevant_child_count(child, true); + if (grandchild_index < grandchild_count) + { + const char *field_name = ts_node__field_name_from_language(result, iterator.structural_child_index - 1); + if (field_name) + inherited_field_name = field_name; + + did_descend = true; + result = child; + child_index = grandchild_index; + break; + } + index += grandchild_count; + } + } + } + + return NULL; +} + +TSNode ts_node_child_by_field_name(TSNode self, const char *name, uint32_t name_length) +{ + TSFieldId field_id = ts_language_field_id_for_name(self.tree->language, name, name_length); + return ts_node_child_by_field_id(self, field_id); +} + +uint32_t ts_node_child_count(TSNode self) +{ + Subtree tree = ts_node__subtree(self); + if (ts_subtree_child_count(tree) > 0) + { + return tree.ptr->inner.non_terminal.visible_child_count; + } + else + { + return 0; + } +} + +uint32_t ts_node_named_child_count(TSNode self) +{ + Subtree tree = ts_node__subtree(self); + if (ts_subtree_child_count(tree) > 0) + { + return tree.ptr->inner.non_terminal.named_child_count; + } + else + { + return 0; + } +} + +TSNode ts_node_next_sibling(TSNode self) +{ + return ts_node__next_sibling(self, true); +} + +TSNode ts_node_next_named_sibling(TSNode self) +{ + return ts_node__next_sibling(self, false); +} + +TSNode ts_node_prev_sibling(TSNode self) +{ + return ts_node__prev_sibling(self, true); +} + +TSNode ts_node_prev_named_sibling(TSNode self) +{ + return ts_node__prev_sibling(self, false); +} + +TSNode ts_node_first_child_for_byte(TSNode self, uint32_t byte) +{ + return ts_node__first_child_for_byte(self, byte, true); +} + +TSNode ts_node_first_named_child_for_byte(TSNode self, uint32_t byte) +{ + return ts_node__first_child_for_byte(self, byte, false); +} + +TSNode ts_node_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end) +{ + return ts_node__descendant_for_byte_range(self, start, end, true); +} + +TSNode ts_node_named_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end) +{ + return ts_node__descendant_for_byte_range(self, start, end, false); +} + +TSNode ts_node_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end) +{ + return ts_node__descendant_for_point_range(self, start, end, true); +} + +TSNode ts_node_named_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end) +{ + return ts_node__descendant_for_point_range(self, start, end, false); +} + +void ts_node_edit(TSNode *self, const TSInputEdit *edit) +{ + uint32_t start_byte = ts_node_start_byte(*self); + TSPoint start_point = ts_node_start_point(*self); + + if (start_byte >= edit->old_end_byte) + { + start_byte = edit->new_end_byte + (start_byte - edit->old_end_byte); + start_point = point_add(edit->new_end_point, point_sub(start_point, edit->old_end_point)); + } + else if (start_byte > edit->start_byte) + { + start_byte = edit->new_end_byte; + start_point = edit->new_end_point; + } + + self->context[0] = start_byte; + self->context[1] = start_point.row; + self->context[2] = start_point.column; +} diff --git a/parser/nsrc/parser.c b/parser/nsrc/parser.c new file mode 100644 index 00000000..4d1b203c --- /dev/null +++ b/parser/nsrc/parser.c @@ -0,0 +1,2101 @@ +#define _POSIX_C_SOURCE 200112L + +#include "./alloc.h" +#include "./api.h" +#include "./array.h" +#include "./atomic.h" +#include "./clock.h" +#include "./error_costs.h" +#include "./get_changed_ranges.h" +#include "./language.h" +#include "./length.h" +#include "./lexer.h" +#include "./reduce_action.h" +#include "./reusable_node.h" +#include "./stack.h" +#include "./subtree.h" +#include "./tree.h" +#include +#include +#include +#include +#include +#include + +#define LOG(...) \ + if (self->lexer.logger.log || self->dot_graph_file) \ + { \ + snprintf(self->lexer.debug_buffer, TREE_SITTER_SERIALIZATION_BUFFER_SIZE, __VA_ARGS__); \ + ts_parser__log(self); \ + } + +#define LOG_LOOKAHEAD(symbol_name, size) \ + if (self->lexer.logger.log || self->dot_graph_file) \ + { \ + char *buf = self->lexer.debug_buffer; \ + const char *symbol = symbol_name; \ + int off = sprintf(buf, "lexed_lookahead sym:"); \ + for (int i = 0; symbol[i] != '\0' && off < TREE_SITTER_SERIALIZATION_BUFFER_SIZE; i++) \ + { \ + switch (symbol[i]) \ + { \ + case '\t': \ + buf[off++] = '\\'; \ + buf[off++] = 't'; \ + break; \ + case '\n': \ + buf[off++] = '\\'; \ + buf[off++] = 'n'; \ + break; \ + case '\v': \ + buf[off++] = '\\'; \ + buf[off++] = 'v'; \ + break; \ + case '\f': \ + buf[off++] = '\\'; \ + buf[off++] = 'f'; \ + break; \ + case '\r': \ + buf[off++] = '\\'; \ + buf[off++] = 'r'; \ + break; \ + case '\\': \ + buf[off++] = '\\'; \ + buf[off++] = '\\'; \ + break; \ + default: \ + buf[off++] = symbol[i]; \ + break; \ + } \ + } \ + snprintf(buf + off, TREE_SITTER_SERIALIZATION_BUFFER_SIZE - off, ", size:%u", size); \ + ts_parser__log(self); \ + } + +#define LOG_STACK() \ + if (self->dot_graph_file) \ + { \ + ts_stack_print_dot_graph(self->stack, self->language, self->dot_graph_file); \ + fputs("\n\n", self->dot_graph_file); \ + } + +#define LOG_TREE(tree) \ + if (self->dot_graph_file) \ + { \ + ts_subtree_print_dot_graph(tree, self->language, self->dot_graph_file); \ + fputs("\n", self->dot_graph_file); \ + } + +#define SYM_NAME(symbol) ts_language_symbol_name(self->language, symbol) + +#define TREE_NAME(tree) SYM_NAME(ts_subtree_symbol(tree)) + +static const unsigned MAX_VERSION_COUNT = 6; +static const unsigned MAX_VERSION_COUNT_OVERFLOW = 4; +static const unsigned MAX_SUMMARY_DEPTH = 16; +static const unsigned MAX_COST_DIFFERENCE = 16 * ERROR_COST_PER_SKIPPED_TREE; +static const unsigned OP_COUNT_PER_TIMEOUT_CHECK = 100; + +typedef struct TokenCache +{ + Subtree token; + Subtree last_external_token; + uint32_t byte_index; +} TokenCache; + +struct TSParser +{ + Lexer lexer; + Stack *stack; + SubtreePool tree_pool; + const TSLanguage *language; + ReduceActionSet reduce_actions; + Subtree finished_tree; + SubtreeArray trailing_extras; + SubtreeArray trailing_extras2; + SubtreeArray scratch_trees; + TokenCache token_cache; + ReusableNode reusable_node; + void *external_scanner_payload; + FILE *dot_graph_file; + TSClock end_clock; + TSDuration timeout_duration; + unsigned accept_count; + unsigned operation_count; + const volatile size_t *cancellation_flag; + Subtree old_tree; + TSRangeArray included_range_differences; + unsigned included_range_difference_index; + bool has_scanner_error; +}; + +typedef struct ErrorStatus +{ + unsigned cost; + unsigned node_count; + int dynamic_precedence; + bool is_in_error; +} ErrorStatus; + +typedef enum ErrorComparison +{ + ErrorComparisonTakeLeft, + ErrorComparisonPreferLeft, + ErrorComparisonNone, + ErrorComparisonPreferRight, + ErrorComparisonTakeRight, +} ErrorComparison; + +typedef struct TSStringInput +{ + const char *string; + uint32_t length; +} TSStringInput; + +// StringInput + +static const char *ts_string_input_read(void *_self, uint32_t byte, TSPoint point, uint32_t *length) +{ + (void)point; + TSStringInput *self = (TSStringInput *)_self; + if (byte >= self->length) + { + *length = 0; + return ""; + } + else + { + *length = self->length - byte; + return self->string + byte; + } +} + +// Parser - Private + +static void ts_parser__log(TSParser *self) +{ + if (self->lexer.logger.log) + { + self->lexer.logger.log(self->lexer.logger.payload, TSLogTypeParse, self->lexer.debug_buffer); + } + + if (self->dot_graph_file) + { + fprintf(self->dot_graph_file, "graph {\nlabel=\""); + for (char *chr = &self->lexer.debug_buffer[0]; *chr != 0; chr++) + { + if (*chr == '"' || *chr == '\\') + fputc('\\', self->dot_graph_file); + fputc(*chr, self->dot_graph_file); + } + fprintf(self->dot_graph_file, "\"\n}\n\n"); + } +} + +static bool ts_parser__breakdown_top_of_stack(TSParser *self, StackVersion version) +{ + bool did_break_down = false; + bool pending = false; + + do + { + StackSliceArray pop = ts_stack_pop_pending(self->stack, version); + if (!pop.size) + break; + + did_break_down = true; + pending = false; + for (uint32_t i = 0; i < pop.size; i++) + { + StackSlice slice = pop.contents[i]; + TSStateId state = ts_stack_state(self->stack, slice.version); + Subtree parent = *array_front(&slice.subtrees); + + for (uint32_t j = 0, n = ts_subtree_child_count(parent); j < n; j++) + { + Subtree child = ts_subtree_children(parent)[j]; + pending = ts_subtree_child_count(child) > 0; + + if (ts_subtree_is_error(child)) + { + state = ERROR_STATE; + } + else if (!ts_subtree_extra(child)) + { + state = ts_language_next_state(self->language, state, ts_subtree_symbol(child)); + } + + ts_subtree_retain(child); + ts_stack_push(self->stack, slice.version, child, pending, state); + } + + for (uint32_t j = 1; j < slice.subtrees.size; j++) + { + Subtree tree = slice.subtrees.contents[j]; + ts_stack_push(self->stack, slice.version, tree, false, state); + } + + ts_subtree_release(&self->tree_pool, parent); + array_delete(&slice.subtrees); + + LOG("breakdown_top_of_stack tree:%s", TREE_NAME(parent)); + LOG_STACK(); + } + } while (pending); + + return did_break_down; +} + +static void ts_parser__breakdown_lookahead(TSParser *self, Subtree *lookahead, TSStateId state, ReusableNode *reusable_node) +{ + bool did_descend = false; + Subtree tree = reusable_node_tree(reusable_node); + while (ts_subtree_child_count(tree) > 0 && ts_subtree_parse_state(tree) != state) + { + LOG("state_mismatch sym:%s", TREE_NAME(tree)); + reusable_node_descend(reusable_node); + tree = reusable_node_tree(reusable_node); + did_descend = true; + } + + if (did_descend) + { + ts_subtree_release(&self->tree_pool, *lookahead); + *lookahead = tree; + ts_subtree_retain(*lookahead); + } +} + +static ErrorComparison ts_parser__compare_versions(TSParser *self, ErrorStatus a, ErrorStatus b) +{ + (void)self; + if (!a.is_in_error && b.is_in_error) + { + if (a.cost < b.cost) + { + return ErrorComparisonTakeLeft; + } + else + { + return ErrorComparisonPreferLeft; + } + } + + if (a.is_in_error && !b.is_in_error) + { + if (b.cost < a.cost) + { + return ErrorComparisonTakeRight; + } + else + { + return ErrorComparisonPreferRight; + } + } + + if (a.cost < b.cost) + { + if ((b.cost - a.cost) * (1 + a.node_count) > MAX_COST_DIFFERENCE) + { + return ErrorComparisonTakeLeft; + } + else + { + return ErrorComparisonPreferLeft; + } + } + + if (b.cost < a.cost) + { + if ((a.cost - b.cost) * (1 + b.node_count) > MAX_COST_DIFFERENCE) + { + return ErrorComparisonTakeRight; + } + else + { + return ErrorComparisonPreferRight; + } + } + + if (a.dynamic_precedence > b.dynamic_precedence) + return ErrorComparisonPreferLeft; + if (b.dynamic_precedence > a.dynamic_precedence) + return ErrorComparisonPreferRight; + return ErrorComparisonNone; +} + +static ErrorStatus ts_parser__version_status(TSParser *self, StackVersion version) +{ + unsigned cost = ts_stack_error_cost(self->stack, version); + bool is_paused = ts_stack_is_paused(self->stack, version); + if (is_paused) + cost += ERROR_COST_PER_SKIPPED_TREE; + return (ErrorStatus){.cost = cost, + .node_count = ts_stack_node_count_since_error(self->stack, version), + .dynamic_precedence = ts_stack_dynamic_precedence(self->stack, version), + .is_in_error = is_paused || ts_stack_state(self->stack, version) == ERROR_STATE}; +} + +static bool ts_parser__better_version_exists(TSParser *self, StackVersion version, bool is_in_error, unsigned cost) +{ + if (self->finished_tree.ptr && ts_subtree_error_cost(self->finished_tree) <= cost) + { + return true; + } + + Length position = ts_stack_position(self->stack, version); + ErrorStatus status = { + .cost = cost, + .is_in_error = is_in_error, + .dynamic_precedence = ts_stack_dynamic_precedence(self->stack, version), + .node_count = ts_stack_node_count_since_error(self->stack, version), + }; + + for (StackVersion i = 0, n = ts_stack_version_count(self->stack); i < n; i++) + { + if (i == version || !ts_stack_is_active(self->stack, i) || ts_stack_position(self->stack, i).bytes < position.bytes) + continue; + ErrorStatus status_i = ts_parser__version_status(self, i); + switch (ts_parser__compare_versions(self, status, status_i)) + { + case ErrorComparisonTakeRight: + return true; + case ErrorComparisonPreferRight: + if (ts_stack_can_merge(self->stack, i, version)) + return true; + break; + default: + break; + } + } + + return false; +} + +static bool ts_parser__call_main_lex_fn(TSParser *self, TSLexMode lex_mode) +{ + return self->language->lex_fn(&self->lexer.data, lex_mode.lex_state); +} + +static bool ts_parser__call_keyword_lex_fn(TSParser *self, TSLexMode lex_mode) +{ + (void)(lex_mode); + return self->language->keyword_lex_fn(&self->lexer.data, 0); +} + +static void ts_parser__external_scanner_create(TSParser *self) +{ + if (self->language && self->language->external_scanner.states) + { + if (self->language->external_scanner.create) + { + self->external_scanner_payload = self->language->external_scanner.create(); + } + } +} + +static void ts_parser__external_scanner_destroy(TSParser *self) +{ + if (self->language && self->external_scanner_payload && self->language->external_scanner.destroy) + { + self->language->external_scanner.destroy(self->external_scanner_payload); + } + self->external_scanner_payload = NULL; +} + +static unsigned ts_parser__external_scanner_serialize(TSParser *self) +{ + uint32_t length = self->language->external_scanner.serialize(self->external_scanner_payload, self->lexer.debug_buffer); + assert(length <= TREE_SITTER_SERIALIZATION_BUFFER_SIZE); + return length; +} + +static void ts_parser__external_scanner_deserialize(TSParser *self, Subtree external_token) +{ + const char *data = NULL; + uint32_t length = 0; + if (external_token.ptr) + { + data = ts_external_scanner_state_data(&external_token.ptr->inner.external_scanner_state); + length = external_token.ptr->inner.external_scanner_state.length; + } + + { + self->language->external_scanner.deserialize(self->external_scanner_payload, data, length); + } +} + +static bool ts_parser__external_scanner_scan(TSParser *self, TSStateId external_lex_state) +{ + { + const bool *valid_external_tokens = ts_language_enabled_external_tokens(self->language, external_lex_state); + return self->language->external_scanner.scan(self->external_scanner_payload, &self->lexer.data, valid_external_tokens); + } +} + +static bool ts_parser__can_reuse_first_leaf(TSParser *self, TSStateId state, Subtree tree, TableEntry *table_entry) +{ + TSLexMode current_lex_mode = self->language->lex_modes[state]; + TSSymbol leaf_symbol = ts_subtree_leaf_symbol(tree); + TSStateId leaf_state = ts_subtree_leaf_parse_state(tree); + TSLexMode leaf_lex_mode = self->language->lex_modes[leaf_state]; + + // At the end of a non-terminal extra node, the lexer normally returns + // NULL, which indicates that the parser should look for a reduce action + // at symbol `0`. Avoid reusing tokens in this situation to ensure that + // the same thing happens when incrementally reparsing. + if (current_lex_mode.lex_state == (uint16_t)(-1)) + return false; + + // If the token was created in a state with the same set of lookaheads, it is reusable. + if (table_entry->action_count > 0 && memcmp(&leaf_lex_mode, ¤t_lex_mode, sizeof(TSLexMode)) == 0 && + (leaf_symbol != self->language->keyword_capture_token || (!ts_subtree_is_keyword(tree) && ts_subtree_parse_state(tree) == state))) + return true; + + // Empty tokens are not reusable in states with different lookaheads. + if (ts_subtree_size(tree).bytes == 0 && leaf_symbol != ts_builtin_sym_end) + return false; + + // If the current state allows external tokens or other tokens that conflict with this + // token, this token is not reusable. + return current_lex_mode.external_lex_state == 0 && table_entry->is_reusable; +} + +static Subtree ts_parser__lex(TSParser *self, StackVersion version, TSStateId parse_state) +{ + TSLexMode lex_mode = self->language->lex_modes[parse_state]; + if (lex_mode.lex_state == (uint16_t)-1) + { + LOG("no_lookahead_after_non_terminal_extra"); + return NULL_SUBTREE; + } + + const Length start_position = ts_stack_position(self->stack, version); + const Subtree external_token = ts_stack_last_external_token(self->stack, version); + + bool found_external_token = false; + bool error_mode = parse_state == ERROR_STATE; + bool skipped_error = false; + bool called_get_column = false; + int32_t first_error_character = 0; + Length error_start_position = length_zero(); + Length error_end_position = length_zero(); + uint32_t lookahead_end_byte = 0; + uint32_t external_scanner_state_len = 0; + bool external_scanner_state_changed = false; + ts_lexer_reset(&self->lexer, start_position); + + for (;;) + { + bool found_token = false; + Length current_position = self->lexer.current_position; + + if (lex_mode.external_lex_state != 0) + { + LOG("lex_external state:%d, row:%u, column:%u", lex_mode.external_lex_state, current_position.extent.row, + current_position.extent.column); + ts_lexer_start(&self->lexer); + ts_parser__external_scanner_deserialize(self, external_token); + found_token = ts_parser__external_scanner_scan(self, lex_mode.external_lex_state); + if (self->has_scanner_error) + return NULL_SUBTREE; + ts_lexer_finish(&self->lexer, &lookahead_end_byte); + + if (found_token) + { + external_scanner_state_len = ts_parser__external_scanner_serialize(self); + external_scanner_state_changed = !ts_external_scanner_state_eq(ts_subtree_external_scanner_state(external_token), + self->lexer.debug_buffer, external_scanner_state_len); + + // When recovering from an error, ignore any zero-length external tokens + // unless they have changed the external scanner's state. This helps to + // avoid infinite loops which could otherwise occur, because the lexer is + // looking for any possible token, instead of looking for the specific set of + // tokens that are valid in some parse state. + // + // Note that it's possible that the token end position may be *before* the + // original position of the lexer because of the way that tokens are positioned + // at included range boundaries: when a token is terminated at the start of + // an included range, it is marked as ending at the *end* of the preceding + // included range. + if (self->lexer.token_end_position.bytes <= current_position.bytes && + (error_mode || !ts_stack_has_advanced_since_error(self->stack, version)) && !external_scanner_state_changed) + { + LOG("ignore_empty_external_token symbol:%s", + SYM_NAME(self->language->external_scanner.symbol_map[self->lexer.data.result_symbol])) + found_token = false; + } + } + + if (found_token) + { + found_external_token = true; + called_get_column = self->lexer.did_get_column; + break; + } + + ts_lexer_reset(&self->lexer, current_position); + } + + LOG("lex_internal state:%d, row:%u, column:%u", lex_mode.lex_state, current_position.extent.row, current_position.extent.column); + ts_lexer_start(&self->lexer); + found_token = ts_parser__call_main_lex_fn(self, lex_mode); + ts_lexer_finish(&self->lexer, &lookahead_end_byte); + if (found_token) + break; + + if (!error_mode) + { + error_mode = true; + lex_mode = self->language->lex_modes[ERROR_STATE]; + ts_lexer_reset(&self->lexer, start_position); + continue; + } + + if (!skipped_error) + { + LOG("skip_unrecognized_character"); + skipped_error = true; + error_start_position = self->lexer.token_start_position; + error_end_position = self->lexer.token_start_position; + first_error_character = self->lexer.data.lookahead; + } + + if (self->lexer.current_position.bytes == error_end_position.bytes) + { + if (self->lexer.data.eof(&self->lexer.data)) + { + self->lexer.data.result_symbol = ts_builtin_sym_error; + break; + } + self->lexer.data.advance(&self->lexer.data, false); + } + + error_end_position = self->lexer.current_position; + } + + Subtree result; + if (skipped_error) + { + Length padding = length_sub(error_start_position, start_position); + Length size = length_sub(error_end_position, error_start_position); + uint32_t lookahead_bytes = lookahead_end_byte - error_end_position.bytes; + result = ts_subtree_new_error(&self->tree_pool, first_error_character, padding, size, lookahead_bytes, parse_state, self->language); + } + else + { + bool is_keyword = false; + TSSymbol symbol = self->lexer.data.result_symbol; + Length padding = length_sub(self->lexer.token_start_position, start_position); + Length size = length_sub(self->lexer.token_end_position, self->lexer.token_start_position); + uint32_t lookahead_bytes = lookahead_end_byte - self->lexer.token_end_position.bytes; + + if (found_external_token) + { + symbol = self->language->external_scanner.symbol_map[symbol]; + } + else if (symbol == self->language->keyword_capture_token && symbol != 0) + { + uint32_t end_byte = self->lexer.token_end_position.bytes; + ts_lexer_reset(&self->lexer, self->lexer.token_start_position); + ts_lexer_start(&self->lexer); + + is_keyword = ts_parser__call_keyword_lex_fn(self, lex_mode); + + if (is_keyword && self->lexer.token_end_position.bytes == end_byte && + ts_language_has_actions(self->language, parse_state, self->lexer.data.result_symbol)) + { + symbol = self->lexer.data.result_symbol; + } + } + + result = ts_subtree_new_leaf(&self->tree_pool, symbol, padding, size, lookahead_bytes, parse_state, found_external_token, + called_get_column, is_keyword, self->language); + + if (found_external_token) + { + MutableSubtree mut_result = ts_subtree_to_mut_unsafe(result); + ts_external_scanner_state_init(&mut_result.ptr->inner.external_scanner_state, self->lexer.debug_buffer, external_scanner_state_len); + mut_result.ptr->has_external_scanner_state_change = external_scanner_state_changed; + } + } + + LOG_LOOKAHEAD(SYM_NAME(ts_subtree_symbol(result)), ts_subtree_total_size(result).bytes); + return result; +} + +static Subtree ts_parser__get_cached_token(TSParser *self, TSStateId state, size_t position, Subtree last_external_token, + TableEntry *table_entry) +{ + TokenCache *cache = &self->token_cache; + if (cache->token.ptr && cache->byte_index == position && + ts_subtree_external_scanner_state_eq(cache->last_external_token, last_external_token)) + { + ts_language_table_entry(self->language, state, ts_subtree_symbol(cache->token), table_entry); + if (ts_parser__can_reuse_first_leaf(self, state, cache->token, table_entry)) + { + ts_subtree_retain(cache->token); + return cache->token; + } + } + return NULL_SUBTREE; +} + +static void ts_parser__set_cached_token(TSParser *self, uint32_t byte_index, Subtree last_external_token, Subtree token) +{ + TokenCache *cache = &self->token_cache; + if (token.ptr) + ts_subtree_retain(token); + if (last_external_token.ptr) + ts_subtree_retain(last_external_token); + if (cache->token.ptr) + ts_subtree_release(&self->tree_pool, cache->token); + if (cache->last_external_token.ptr) + ts_subtree_release(&self->tree_pool, cache->last_external_token); + cache->token = token; + cache->byte_index = byte_index; + cache->last_external_token = last_external_token; +} + +static bool ts_parser__has_included_range_difference(const TSParser *self, uint32_t start_position, uint32_t end_position) +{ + return ts_range_array_intersects(&self->included_range_differences, self->included_range_difference_index, start_position, + end_position); +} + +static Subtree ts_parser__reuse_node(TSParser *self, StackVersion version, TSStateId *state, uint32_t position, Subtree last_external_token, + TableEntry *table_entry) +{ + Subtree result; + while ((result = reusable_node_tree(&self->reusable_node)).ptr) + { + uint32_t byte_offset = reusable_node_byte_offset(&self->reusable_node); + uint32_t end_byte_offset = byte_offset + ts_subtree_total_bytes(result); + + // Do not reuse an EOF node if the included ranges array has changes + // later on in the file. + if (ts_subtree_is_eof(result)) + end_byte_offset = UINT32_MAX; + + if (byte_offset > position) + { + LOG("before_reusable_node symbol:%s", TREE_NAME(result)); + break; + } + + if (byte_offset < position) + { + LOG("past_reusable_node symbol:%s", TREE_NAME(result)); + if (end_byte_offset <= position || !reusable_node_descend(&self->reusable_node)) + { + reusable_node_advance(&self->reusable_node); + } + continue; + } + + if (!ts_subtree_external_scanner_state_eq(self->reusable_node.last_external_token, last_external_token)) + { + LOG("reusable_node_has_different_external_scanner_state symbol:%s", TREE_NAME(result)); + reusable_node_advance(&self->reusable_node); + continue; + } + + const char *reason = NULL; + if (ts_subtree_has_changes(result)) + { + reason = "has_changes"; + } + else if (ts_subtree_is_error(result)) + { + reason = "is_error"; + } + else if (ts_subtree_missing(result)) + { + reason = "is_missing"; + } + else if (ts_subtree_is_fragile(result)) + { + reason = "is_fragile"; + } + else if (ts_parser__has_included_range_difference(self, byte_offset, end_byte_offset)) + { + reason = "contains_different_included_range"; + } + + if (reason) + { + LOG("cant_reuse_node_%s tree:%s", reason, TREE_NAME(result)); + if (!reusable_node_descend(&self->reusable_node)) + { + reusable_node_advance(&self->reusable_node); + ts_parser__breakdown_top_of_stack(self, version); + *state = ts_stack_state(self->stack, version); + } + continue; + } + + TSSymbol leaf_symbol = ts_subtree_leaf_symbol(result); + ts_language_table_entry(self->language, *state, leaf_symbol, table_entry); + if (!ts_parser__can_reuse_first_leaf(self, *state, result, table_entry)) + { + LOG("cant_reuse_node symbol:%s, first_leaf_symbol:%s", TREE_NAME(result), SYM_NAME(leaf_symbol)); + reusable_node_advance_past_leaf(&self->reusable_node); + break; + } + + LOG("reuse_node symbol:%s", TREE_NAME(result)); + ts_subtree_retain(result); + return result; + } + + return NULL_SUBTREE; +} + +// Determine if a given tree should be replaced by an alternative tree. +// +// The decision is based on the trees' error costs (if any), their dynamic precedence, +// and finally, as a default, by a recursive comparison of the trees' symbols. +static bool ts_parser__select_tree(TSParser *self, Subtree left, Subtree right) +{ + if (!left.ptr) + return true; + if (!right.ptr) + return false; + + if (ts_subtree_error_cost(right) < ts_subtree_error_cost(left)) + { + LOG("select_smaller_error symbol:%s, over_symbol:%s", TREE_NAME(right), TREE_NAME(left)); + return true; + } + + if (ts_subtree_error_cost(left) < ts_subtree_error_cost(right)) + { + LOG("select_smaller_error symbol:%s, over_symbol:%s", TREE_NAME(left), TREE_NAME(right)); + return false; + } + + if (ts_subtree_dynamic_precedence(right) > ts_subtree_dynamic_precedence(left)) + { + LOG("select_higher_precedence symbol:%s, prec:%" PRId32 ", over_symbol:%s, other_prec:%" PRId32, TREE_NAME(right), + ts_subtree_dynamic_precedence(right), TREE_NAME(left), ts_subtree_dynamic_precedence(left)); + return true; + } + + if (ts_subtree_dynamic_precedence(left) > ts_subtree_dynamic_precedence(right)) + { + LOG("select_higher_precedence symbol:%s, prec:%" PRId32 ", over_symbol:%s, other_prec:%" PRId32, TREE_NAME(left), + ts_subtree_dynamic_precedence(left), TREE_NAME(right), ts_subtree_dynamic_precedence(right)); + return false; + } + + if (ts_subtree_error_cost(left) > 0) + return true; + + int comparison = ts_subtree_compare(left, right, &self->tree_pool); + switch (comparison) + { + case -1: + LOG("select_earlier symbol:%s, over_symbol:%s", TREE_NAME(left), TREE_NAME(right)); + return false; + break; + case 1: + LOG("select_earlier symbol:%s, over_symbol:%s", TREE_NAME(right), TREE_NAME(left)); + return true; + default: + LOG("select_existing symbol:%s, over_symbol:%s", TREE_NAME(left), TREE_NAME(right)); + return false; + } +} + +// Determine if a given tree's children should be replaced by an alternative +// array of children. +static bool ts_parser__select_children(TSParser *self, Subtree left, const SubtreeArray *children) +{ + array_assign(&self->scratch_trees, children); + + // Create a temporary subtree using the scratch trees array. This node does + // not perform any allocation except for possibly growing the array to make + // room for its own heap data. The scratch tree is never explicitly released, + // so the same 'scratch trees' array can be reused again later. + MutableSubtree scratch_tree = ts_subtree_new_node(ts_subtree_symbol(left), &self->scratch_trees, 0, self->language); + + return ts_parser__select_tree(self, left, ts_subtree_from_mut(scratch_tree)); +} + +static void ts_parser__shift(TSParser *self, StackVersion version, TSStateId state, Subtree lookahead, bool extra) +{ + bool is_leaf = ts_subtree_child_count(lookahead) == 0; + Subtree subtree_to_push = lookahead; + if (extra != ts_subtree_extra(lookahead) && is_leaf) + { + MutableSubtree result = ts_subtree_make_mut(&self->tree_pool, lookahead); + ts_subtree_set_extra(&result, extra); + subtree_to_push = ts_subtree_from_mut(result); + } + + ts_stack_push(self->stack, version, subtree_to_push, !is_leaf, state); + if (ts_subtree_has_external_tokens(subtree_to_push)) + { + ts_stack_set_last_external_token(self->stack, version, ts_subtree_last_external_token(subtree_to_push)); + } +} + +static StackVersion ts_parser__reduce(TSParser *self, StackVersion version, TSSymbol symbol, uint32_t count, int dynamic_precedence, + uint16_t production_id, bool is_fragile, bool end_of_non_terminal_extra) +{ + uint32_t initial_version_count = ts_stack_version_count(self->stack); + + // Pop the given number of nodes from the given version of the parse stack. + // If stack versions have previously merged, then there may be more than one + // path back through the stack. For each path, create a new parent node to + // contain the popped children, and push it onto the stack in place of the + // children. + StackSliceArray pop = ts_stack_pop_count(self->stack, version, count); + uint32_t removed_version_count = 0; + for (uint32_t i = 0; i < pop.size; i++) + { + StackSlice slice = pop.contents[i]; + StackVersion slice_version = slice.version - removed_version_count; + + // This is where new versions are added to the parse stack. The versions + // will all be sorted and truncated at the end of the outer parsing loop. + // Allow the maximum version count to be temporarily exceeded, but only + // by a limited threshold. + if (slice_version > MAX_VERSION_COUNT + MAX_VERSION_COUNT_OVERFLOW) + { + ts_stack_remove_version(self->stack, slice_version); + ts_subtree_array_delete(&self->tree_pool, &slice.subtrees); + removed_version_count++; + while (i + 1 < pop.size) + { + StackSlice next_slice = pop.contents[i + 1]; + if (next_slice.version != slice.version) + break; + ts_subtree_array_delete(&self->tree_pool, &next_slice.subtrees); + i++; + } + continue; + } + + // Extra tokens on top of the stack should not be included in this new parent + // node. They will be re-pushed onto the stack after the parent node is + // created and pushed. + SubtreeArray children = slice.subtrees; + ts_subtree_array_remove_trailing_extras(&children, &self->trailing_extras); + + MutableSubtree parent = ts_subtree_new_node(symbol, &children, production_id, self->language); + + // This pop operation may have caused multiple stack versions to collapse + // into one, because they all diverged from a common state. In that case, + // choose one of the arrays of trees to be the parent node's children, and + // delete the rest of the tree arrays. + while (i + 1 < pop.size) + { + StackSlice next_slice = pop.contents[i + 1]; + if (next_slice.version != slice.version) + break; + i++; + + SubtreeArray next_slice_children = next_slice.subtrees; + ts_subtree_array_remove_trailing_extras(&next_slice_children, &self->trailing_extras2); + + if (ts_parser__select_children(self, ts_subtree_from_mut(parent), &next_slice_children)) + { + ts_subtree_array_clear(&self->tree_pool, &self->trailing_extras); + ts_subtree_release(&self->tree_pool, ts_subtree_from_mut(parent)); + array_swap(&self->trailing_extras, &self->trailing_extras2); + parent = ts_subtree_new_node(symbol, &next_slice_children, production_id, self->language); + } + else + { + array_clear(&self->trailing_extras2); + ts_subtree_array_delete(&self->tree_pool, &next_slice.subtrees); + } + } + + TSStateId state = ts_stack_state(self->stack, slice_version); + TSStateId next_state = ts_language_next_state(self->language, state, symbol); + if (end_of_non_terminal_extra && next_state == state) + { + parent.ptr->extra = true; + } + if (is_fragile || pop.size > 1 || initial_version_count > 1) + { + parent.ptr->fragile_left = true; + parent.ptr->fragile_right = true; + parent.ptr->parse_state = TS_TREE_STATE_NONE; + } + else + { + parent.ptr->parse_state = state; + } + parent.ptr->inner.non_terminal.dynamic_precedence += dynamic_precedence; + + // Push the parent node onto the stack, along with any extra tokens that + // were previously on top of the stack. + ts_stack_push(self->stack, slice_version, ts_subtree_from_mut(parent), false, next_state); + for (uint32_t j = 0; j < self->trailing_extras.size; j++) + { + ts_stack_push(self->stack, slice_version, self->trailing_extras.contents[j], false, next_state); + } + + for (StackVersion j = 0; j < slice_version; j++) + { + if (j == version) + continue; + if (ts_stack_merge(self->stack, j, slice_version)) + { + removed_version_count++; + break; + } + } + } + + // Return the first new stack version that was created. + return ts_stack_version_count(self->stack) > initial_version_count ? initial_version_count : STACK_VERSION_NONE; +} + +static void ts_parser__accept(TSParser *self, StackVersion version, Subtree lookahead) +{ + assert(ts_subtree_is_eof(lookahead)); + ts_stack_push(self->stack, version, lookahead, false, 1); + + StackSliceArray pop = ts_stack_pop_all(self->stack, version); + for (uint32_t i = 0; i < pop.size; i++) + { + SubtreeArray trees = pop.contents[i].subtrees; + + Subtree root = NULL_SUBTREE; + for (uint32_t j = trees.size - 1; j + 1 > 0; j--) + { + Subtree tree = trees.contents[j]; + if (!ts_subtree_extra(tree)) + { + assert(!tree.data.is_inline); + uint32_t child_count = ts_subtree_child_count(tree); + const Subtree *children = ts_subtree_children(tree); + for (uint32_t k = 0; k < child_count; k++) + { + ts_subtree_retain(children[k]); + } + array_splice(&trees, j, 1, child_count, children); + root = ts_subtree_from_mut(ts_subtree_new_node(ts_subtree_symbol(tree), &trees, tree.ptr->inner.non_terminal.production_id, self->language)); + ts_subtree_release(&self->tree_pool, tree); + break; + } + } + + assert(root.ptr); + self->accept_count++; + + if (self->finished_tree.ptr) + { + if (ts_parser__select_tree(self, self->finished_tree, root)) + { + ts_subtree_release(&self->tree_pool, self->finished_tree); + self->finished_tree = root; + } + else + { + ts_subtree_release(&self->tree_pool, root); + } + } + else + { + self->finished_tree = root; + } + } + + ts_stack_remove_version(self->stack, pop.contents[0].version); + ts_stack_halt(self->stack, version); +} + +static bool ts_parser__do_all_potential_reductions(TSParser *self, StackVersion starting_version, TSSymbol lookahead_symbol) +{ + uint32_t initial_version_count = ts_stack_version_count(self->stack); + + bool can_shift_lookahead_symbol = false; + StackVersion version = starting_version; + for (unsigned i = 0; true; i++) + { + uint32_t version_count = ts_stack_version_count(self->stack); + if (version >= version_count) + break; + + bool merged = false; + for (StackVersion j = initial_version_count; j < version; j++) + { + if (ts_stack_merge(self->stack, j, version)) + { + merged = true; + break; + } + } + if (merged) + continue; + + TSStateId state = ts_stack_state(self->stack, version); + bool has_shift_action = false; + array_clear(&self->reduce_actions); + + TSSymbol first_symbol, end_symbol; + if (lookahead_symbol != 0) + { + first_symbol = lookahead_symbol; + end_symbol = lookahead_symbol + 1; + } + else + { + first_symbol = 1; + end_symbol = self->language->token_count; + } + + for (TSSymbol symbol = first_symbol; symbol < end_symbol; symbol++) + { + TableEntry entry; + ts_language_table_entry(self->language, state, symbol, &entry); + for (uint32_t j = 0; j < entry.action_count; j++) + { + TSParseAction action = entry.actions[j]; + switch (action.type) + { + case TSParseActionTypeShift: + case TSParseActionTypeRecover: + if (!action.shift.extra && !action.shift.repetition) + has_shift_action = true; + break; + case TSParseActionTypeReduce: + if (action.reduce.child_count > 0) + ts_reduce_action_set_add(&self->reduce_actions, (ReduceAction){ + .symbol = action.reduce.symbol, + .count = action.reduce.child_count, + .dynamic_precedence = action.reduce.dynamic_precedence, + .production_id = action.reduce.production_id, + }); + break; + default: + break; + } + } + } + + StackVersion reduction_version = STACK_VERSION_NONE; + for (uint32_t j = 0; j < self->reduce_actions.size; j++) + { + ReduceAction action = self->reduce_actions.contents[j]; + + reduction_version = + ts_parser__reduce(self, version, action.symbol, action.count, action.dynamic_precedence, action.production_id, true, false); + } + + if (has_shift_action) + { + can_shift_lookahead_symbol = true; + } + else if (reduction_version != STACK_VERSION_NONE && i < MAX_VERSION_COUNT) + { + ts_stack_renumber_version(self->stack, reduction_version, version); + continue; + } + else if (lookahead_symbol != 0) + { + ts_stack_remove_version(self->stack, version); + } + + if (version == starting_version) + { + version = version_count; + } + else + { + version++; + } + } + + return can_shift_lookahead_symbol; +} + +static bool ts_parser__recover_to_state(TSParser *self, StackVersion version, unsigned depth, TSStateId goal_state) +{ + StackSliceArray pop = ts_stack_pop_count(self->stack, version, depth); + StackVersion previous_version = STACK_VERSION_NONE; + + for (unsigned i = 0; i < pop.size; i++) + { + StackSlice slice = pop.contents[i]; + + if (slice.version == previous_version) + { + ts_subtree_array_delete(&self->tree_pool, &slice.subtrees); + array_erase(&pop, i--); + continue; + } + + if (ts_stack_state(self->stack, slice.version) != goal_state) + { + ts_stack_halt(self->stack, slice.version); + ts_subtree_array_delete(&self->tree_pool, &slice.subtrees); + array_erase(&pop, i--); + continue; + } + + SubtreeArray error_trees = ts_stack_pop_error(self->stack, slice.version); + if (error_trees.size > 0) + { + assert(error_trees.size == 1); + Subtree error_tree = error_trees.contents[0]; + uint32_t error_child_count = ts_subtree_child_count(error_tree); + if (error_child_count > 0) + { + array_splice(&slice.subtrees, 0, 0, error_child_count, ts_subtree_children(error_tree)); + for (unsigned j = 0; j < error_child_count; j++) + { + ts_subtree_retain(slice.subtrees.contents[j]); + } + } + ts_subtree_array_delete(&self->tree_pool, &error_trees); + } + + ts_subtree_array_remove_trailing_extras(&slice.subtrees, &self->trailing_extras); + + if (slice.subtrees.size > 0) + { + Subtree error = ts_subtree_new_error_node(&slice.subtrees, true, self->language); + ts_stack_push(self->stack, slice.version, error, false, goal_state); + } + else + { + array_delete(&slice.subtrees); + } + + for (unsigned j = 0; j < self->trailing_extras.size; j++) + { + Subtree tree = self->trailing_extras.contents[j]; + ts_stack_push(self->stack, slice.version, tree, false, goal_state); + } + + previous_version = slice.version; + } + + return previous_version != STACK_VERSION_NONE; +} + +static void ts_parser__recover(TSParser *self, StackVersion version, Subtree lookahead) +{ + bool did_recover = false; + unsigned previous_version_count = ts_stack_version_count(self->stack); + Length position = ts_stack_position(self->stack, version); + StackSummary *summary = ts_stack_get_summary(self->stack, version); + unsigned node_count_since_error = ts_stack_node_count_since_error(self->stack, version); + unsigned current_error_cost = ts_stack_error_cost(self->stack, version); + + // When the parser is in the error state, there are two strategies for recovering with a + // given lookahead token: + // 1. Find a previous state on the stack in which that lookahead token would be valid. Then, + // create a new stack version that is in that state again. This entails popping all of the + // subtrees that have been pushed onto the stack since that previous state, and wrapping + // them in an ERROR node. + // 2. Wrap the lookahead token in an ERROR node, push that ERROR node onto the stack, and + // move on to the next lookahead token, remaining in the error state. + // + // First, try the strategy 1. Upon entering the error state, the parser recorded a summary + // of the previous parse states and their depths. Look at each state in the summary, to see + // if the current lookahead token would be valid in that state. + if (summary && !ts_subtree_is_error(lookahead)) + { + for (unsigned i = 0; i < summary->size; i++) + { + StackSummaryEntry entry = summary->contents[i]; + + if (entry.state == ERROR_STATE) + continue; + if (entry.position.bytes == position.bytes) + continue; + unsigned depth = entry.depth; + if (node_count_since_error > 0) + depth++; + + // Do not recover in ways that create redundant stack versions. + bool would_merge = false; + for (unsigned j = 0; j < previous_version_count; j++) + { + if (ts_stack_state(self->stack, j) == entry.state && ts_stack_position(self->stack, j).bytes == position.bytes) + { + would_merge = true; + break; + } + } + if (would_merge) + continue; + + // Do not recover if the result would clearly be worse than some existing stack version. + unsigned new_cost = current_error_cost + entry.depth * ERROR_COST_PER_SKIPPED_TREE + + (position.bytes - entry.position.bytes) * ERROR_COST_PER_SKIPPED_CHAR + + (position.extent.row - entry.position.extent.row) * ERROR_COST_PER_SKIPPED_LINE; + if (ts_parser__better_version_exists(self, version, false, new_cost)) + break; + + // If the current lookahead token is valid in some previous state, recover to that state. + // Then stop looking for further recoveries. + if (ts_language_has_actions(self->language, entry.state, ts_subtree_symbol(lookahead))) + { + if (ts_parser__recover_to_state(self, version, depth, entry.state)) + { + did_recover = true; + LOG("recover_to_previous state:%u, depth:%u", entry.state, depth); + LOG_STACK(); + break; + } + } + } + } + + // In the process of attempting to recover, some stack versions may have been created + // and subsequently halted. Remove those versions. + for (unsigned i = previous_version_count; i < ts_stack_version_count(self->stack); i++) + { + if (!ts_stack_is_active(self->stack, i)) + { + ts_stack_remove_version(self->stack, i--); + } + } + + // If strategy 1 succeeded, a new stack version will have been created which is able to handle + // the current lookahead token. Now, in addition, try strategy 2 described above: skip the + // current lookahead token by wrapping it in an ERROR node. + + // Don't pursue this additional strategy if there are already too many stack versions. + if (did_recover && ts_stack_version_count(self->stack) > MAX_VERSION_COUNT) + { + ts_stack_halt(self->stack, version); + ts_subtree_release(&self->tree_pool, lookahead); + return; + } + + if (did_recover && ts_subtree_has_external_scanner_state_change(lookahead)) + { + ts_stack_halt(self->stack, version); + ts_subtree_release(&self->tree_pool, lookahead); + return; + } + + // If the parser is still in the error state at the end of the file, just wrap everything + // in an ERROR node and terminate. + if (ts_subtree_is_eof(lookahead)) + { + LOG("recover_eof"); + SubtreeArray children = array_new(); + Subtree parent = ts_subtree_new_error_node(&children, false, self->language); + ts_stack_push(self->stack, version, parent, false, 1); + ts_parser__accept(self, version, lookahead); + return; + } + + // Do not recover if the result would clearly be worse than some existing stack version. + unsigned new_cost = current_error_cost + ERROR_COST_PER_SKIPPED_TREE + ts_subtree_total_bytes(lookahead) * ERROR_COST_PER_SKIPPED_CHAR + + ts_subtree_total_size(lookahead).extent.row * ERROR_COST_PER_SKIPPED_LINE; + if (ts_parser__better_version_exists(self, version, false, new_cost)) + { + ts_stack_halt(self->stack, version); + ts_subtree_release(&self->tree_pool, lookahead); + return; + } + + // If the current lookahead token is an extra token, mark it as extra. This means it won't + // be counted in error cost calculations. + unsigned n; + const TSParseAction *actions = ts_language_actions(self->language, 1, ts_subtree_symbol(lookahead), &n); + if (n > 0 && actions[n - 1].type == TSParseActionTypeShift && actions[n - 1].shift.extra) + { + MutableSubtree mutable_lookahead = ts_subtree_make_mut(&self->tree_pool, lookahead); + ts_subtree_set_extra(&mutable_lookahead, true); + lookahead = ts_subtree_from_mut(mutable_lookahead); + } + + // Wrap the lookahead token in an ERROR. + LOG("skip_token symbol:%s", TREE_NAME(lookahead)); + SubtreeArray children = array_new(); + array_reserve(&children, 1); + array_push(&children, lookahead); + MutableSubtree error_repeat = ts_subtree_new_node(ts_builtin_sym_error_repeat, &children, 0, self->language); + + // If other tokens have already been skipped, so there is already an ERROR at the top of the + // stack, then pop that ERROR off the stack and wrap the two ERRORs together into one larger + // ERROR. + if (node_count_since_error > 0) + { + StackSliceArray pop = ts_stack_pop_count(self->stack, version, 1); + + // TODO: Figure out how to make this condition occur. + // See https://github.com/atom/atom/issues/18450#issuecomment-439579778 + // If multiple stack versions have merged at this point, just pick one of the errors + // arbitrarily and discard the rest. + if (pop.size > 1) + { + for (unsigned i = 1; i < pop.size; i++) + { + ts_subtree_array_delete(&self->tree_pool, &pop.contents[i].subtrees); + } + while (ts_stack_version_count(self->stack) > pop.contents[0].version + 1) + { + ts_stack_remove_version(self->stack, pop.contents[0].version + 1); + } + } + + ts_stack_renumber_version(self->stack, pop.contents[0].version, version); + array_push(&pop.contents[0].subtrees, ts_subtree_from_mut(error_repeat)); + error_repeat = ts_subtree_new_node(ts_builtin_sym_error_repeat, &pop.contents[0].subtrees, 0, self->language); + } + + // Push the new ERROR onto the stack. + ts_stack_push(self->stack, version, ts_subtree_from_mut(error_repeat), false, ERROR_STATE); + if (ts_subtree_has_external_tokens(lookahead)) + { + ts_stack_set_last_external_token(self->stack, version, ts_subtree_last_external_token(lookahead)); + } +} + +static void ts_parser__handle_error(TSParser *self, StackVersion version, Subtree lookahead) +{ + uint32_t previous_version_count = ts_stack_version_count(self->stack); + + // Perform any reductions that can happen in this state, regardless of the lookahead. After + // skipping one or more invalid tokens, the parser might find a token that would have allowed + // a reduction to take place. + ts_parser__do_all_potential_reductions(self, version, 0); + uint32_t version_count = ts_stack_version_count(self->stack); + Length position = ts_stack_position(self->stack, version); + + // Push a discontinuity onto the stack. Merge all of the stack versions that + // were created in the previous step. + bool did_insert_missing_token = false; + for (StackVersion v = version; v < version_count;) + { + if (!did_insert_missing_token) + { + TSStateId state = ts_stack_state(self->stack, v); + for (TSSymbol missing_symbol = 1; missing_symbol < (uint16_t)self->language->token_count; missing_symbol++) + { + TSStateId state_after_missing_symbol = ts_language_next_state(self->language, state, missing_symbol); + if (state_after_missing_symbol == 0 || state_after_missing_symbol == state) + { + continue; + } + + if (ts_language_has_reduce_action(self->language, state_after_missing_symbol, ts_subtree_leaf_symbol(lookahead))) + { + // In case the parser is currently outside of any included range, the lexer will + // snap to the beginning of the next included range. The missing token's padding + // must be assigned to position it within the next included range. + ts_lexer_reset(&self->lexer, position); + ts_lexer_mark_end(&self->lexer); + Length padding = length_sub(self->lexer.token_end_position, position); + uint32_t lookahead_bytes = ts_subtree_total_bytes(lookahead) + ts_subtree_lookahead_bytes(lookahead); + + StackVersion version_with_missing_tree = ts_stack_copy_version(self->stack, v); + Subtree missing_tree = + ts_subtree_new_missing_leaf(&self->tree_pool, missing_symbol, padding, lookahead_bytes, self->language); + ts_stack_push(self->stack, version_with_missing_tree, missing_tree, false, state_after_missing_symbol); + + if (ts_parser__do_all_potential_reductions(self, version_with_missing_tree, ts_subtree_leaf_symbol(lookahead))) + { + LOG("recover_with_missing symbol:%s, state:%u", SYM_NAME(missing_symbol), + ts_stack_state(self->stack, version_with_missing_tree)); + did_insert_missing_token = true; + break; + } + } + } + } + + ts_stack_push(self->stack, v, NULL_SUBTREE, false, ERROR_STATE); + v = (v == version) ? previous_version_count : v + 1; + } + + for (unsigned i = previous_version_count; i < version_count; i++) + { + bool did_merge = ts_stack_merge(self->stack, version, previous_version_count); + assert(did_merge); + (void)did_merge; // fix warning/error with clang -Os + } + + ts_stack_record_summary(self->stack, version, MAX_SUMMARY_DEPTH); + + // Begin recovery with the current lookahead node, rather than waiting for the + // next turn of the parse loop. This ensures that the tree accounts for the + // current lookahead token's "lookahead bytes" value, which describes how far + // the lexer needed to look ahead beyond the content of the token in order to + // recognize it. + if (ts_subtree_child_count(lookahead) > 0) + { + ts_parser__breakdown_lookahead(self, &lookahead, ERROR_STATE, &self->reusable_node); + } + ts_parser__recover(self, version, lookahead); + + LOG_STACK(); +} + +static bool ts_parser__advance(TSParser *self, StackVersion version, bool allow_node_reuse) +{ + TSStateId state = ts_stack_state(self->stack, version); + uint32_t position = ts_stack_position(self->stack, version).bytes; + Subtree last_external_token = ts_stack_last_external_token(self->stack, version); + + bool did_reuse = true; + Subtree lookahead = NULL_SUBTREE; + TableEntry table_entry = {.action_count = 0}; + + // If possible, reuse a node from the previous syntax tree. + if (allow_node_reuse) + { + lookahead = ts_parser__reuse_node(self, version, &state, position, last_external_token, &table_entry); + } + + // If no node from the previous syntax tree could be reused, then try to + // reuse the token previously returned by the lexer. + if (!lookahead.ptr) + { + did_reuse = false; + lookahead = ts_parser__get_cached_token(self, state, position, last_external_token, &table_entry); + } + + bool needs_lex = !lookahead.ptr; + for (;;) + { + // Otherwise, re-run the lexer. + if (needs_lex) + { + needs_lex = false; + lookahead = ts_parser__lex(self, version, state); + if (self->has_scanner_error) + return false; + + if (lookahead.ptr) + { + ts_parser__set_cached_token(self, position, last_external_token, lookahead); + ts_language_table_entry(self->language, state, ts_subtree_symbol(lookahead), &table_entry); + } + + // When parsing a non-terminal extra, a null lookahead indicates the + // end of the rule. The reduction is stored in the EOF table entry. + // After the reduction, the lexer needs to be run again. + else + { + ts_language_table_entry(self->language, state, ts_builtin_sym_end, &table_entry); + } + } + + // If a cancellation flag or a timeout was provided, then check every + // time a fixed number of parse actions has been processed. + if (++self->operation_count == OP_COUNT_PER_TIMEOUT_CHECK) + { + self->operation_count = 0; + } + if (self->operation_count == 0 && ((self->cancellation_flag && atomic_load(self->cancellation_flag)) || + (!clock_is_null(self->end_clock) && clock_is_gt(clock_now(), self->end_clock)))) + { + if (lookahead.ptr) + { + ts_subtree_release(&self->tree_pool, lookahead); + } + return false; + } + + // Process each parse action for the current lookahead token in + // the current state. If there are multiple actions, then this is + // an ambiguous state. REDUCE actions always create a new stack + // version, whereas SHIFT actions update the existing stack version + // and terminate this loop. + StackVersion last_reduction_version = STACK_VERSION_NONE; + for (uint32_t i = 0; i < table_entry.action_count; i++) + { + TSParseAction action = table_entry.actions[i]; + + switch (action.type) + { + case TSParseActionTypeShift: { + if (action.shift.repetition) + break; + TSStateId next_state; + if (action.shift.extra) + { + next_state = state; + LOG("shift_extra"); + } + else + { + next_state = action.shift.state; + LOG("shift state:%u", next_state); + } + + if (ts_subtree_child_count(lookahead) > 0) + { + ts_parser__breakdown_lookahead(self, &lookahead, state, &self->reusable_node); + next_state = ts_language_next_state(self->language, state, ts_subtree_symbol(lookahead)); + } + + ts_parser__shift(self, version, next_state, lookahead, action.shift.extra); + if (did_reuse) + reusable_node_advance(&self->reusable_node); + return true; + } + + case TSParseActionTypeReduce: { + bool is_fragile = table_entry.action_count > 1; + bool end_of_non_terminal_extra = lookahead.ptr == NULL; + LOG("reduce sym:%s, child_count:%u", SYM_NAME(action.reduce.symbol), action.reduce.child_count); + StackVersion reduction_version = + ts_parser__reduce(self, version, action.reduce.symbol, action.reduce.child_count, action.reduce.dynamic_precedence, + action.reduce.production_id, is_fragile, end_of_non_terminal_extra); + if (reduction_version != STACK_VERSION_NONE) + { + last_reduction_version = reduction_version; + } + break; + } + + case TSParseActionTypeAccept: { + LOG("accept"); + ts_parser__accept(self, version, lookahead); + return true; + } + + case TSParseActionTypeRecover: { + if (ts_subtree_child_count(lookahead) > 0) + { + ts_parser__breakdown_lookahead(self, &lookahead, ERROR_STATE, &self->reusable_node); + } + + ts_parser__recover(self, version, lookahead); + if (did_reuse) + reusable_node_advance(&self->reusable_node); + return true; + } + } + } + + // If a reduction was performed, then replace the current stack version + // with one of the stack versions created by a reduction, and continue + // processing this version of the stack with the same lookahead symbol. + if (last_reduction_version != STACK_VERSION_NONE) + { + ts_stack_renumber_version(self->stack, last_reduction_version, version); + LOG_STACK(); + state = ts_stack_state(self->stack, version); + + // At the end of a non-terminal extra rule, the lexer will return a + // null subtree, because the parser needs to perform a fixed reduction + // regardless of the lookahead node. After performing that reduction, + // (and completing the non-terminal extra rule) run the lexer again based + // on the current parse state. + if (!lookahead.ptr) + { + needs_lex = true; + } + else + { + ts_language_table_entry(self->language, state, ts_subtree_leaf_symbol(lookahead), &table_entry); + } + + continue; + } + + // A non-terminal extra rule was reduced and merged into an existing + // stack version. This version can be discarded. + if (!lookahead.ptr) + { + ts_stack_halt(self->stack, version); + return true; + } + + // If there were no parse actions for the current lookahead token, then + // it is not valid in this state. If the current lookahead token is a + // keyword, then switch to treating it as the normal word token if that + // token is valid in this state. + if (ts_subtree_is_keyword(lookahead) && ts_subtree_symbol(lookahead) != self->language->keyword_capture_token) + { + ts_language_table_entry(self->language, state, self->language->keyword_capture_token, &table_entry); + if (table_entry.action_count > 0) + { + LOG("switch from_keyword:%s, to_word_token:%s", TREE_NAME(lookahead), SYM_NAME(self->language->keyword_capture_token)); + + MutableSubtree mutable_lookahead = ts_subtree_make_mut(&self->tree_pool, lookahead); + ts_subtree_set_symbol(&mutable_lookahead, self->language->keyword_capture_token, self->language); + lookahead = ts_subtree_from_mut(mutable_lookahead); + continue; + } + } + + // If the current lookahead token is not valid and the parser is + // already in the error state, restart the error recovery process. + // TODO - can this be unified with the other `RECOVER` case above? + if (state == ERROR_STATE) + { + ts_parser__recover(self, version, lookahead); + return true; + } + + // If the current lookahead token is not valid and the previous + // subtree on the stack was reused from an old tree, it isn't actually + // valid to reuse it. Remove it from the stack, and in its place, + // push each of its children. Then try again to process the current + // lookahead. + if (ts_parser__breakdown_top_of_stack(self, version)) + { + state = ts_stack_state(self->stack, version); + ts_subtree_release(&self->tree_pool, lookahead); + needs_lex = true; + continue; + } + + // At this point, the current lookahead token is definitely not valid + // for this parse stack version. Mark this version as paused and continue + // processing any other stack versions that might exist. If some other + // version advances successfully, then this version can simply be removed. + // But if all versions end up paused, then error recovery is needed. + LOG("detect_error"); + ts_stack_pause(self->stack, version, lookahead); + return true; + } +} + +static unsigned ts_parser__condense_stack(TSParser *self) +{ + bool made_changes = false; + unsigned min_error_cost = UINT_MAX; + for (StackVersion i = 0; i < ts_stack_version_count(self->stack); i++) + { + // Prune any versions that have been marked for removal. + if (ts_stack_is_halted(self->stack, i)) + { + ts_stack_remove_version(self->stack, i); + i--; + continue; + } + + // Keep track of the minimum error cost of any stack version so + // that it can be returned. + ErrorStatus status_i = ts_parser__version_status(self, i); + if (!status_i.is_in_error && status_i.cost < min_error_cost) + { + min_error_cost = status_i.cost; + } + + // Examine each pair of stack versions, removing any versions that + // are clearly worse than another version. Ensure that the versions + // are ordered from most promising to least promising. + for (StackVersion j = 0; j < i; j++) + { + ErrorStatus status_j = ts_parser__version_status(self, j); + + switch (ts_parser__compare_versions(self, status_j, status_i)) + { + case ErrorComparisonTakeLeft: + made_changes = true; + ts_stack_remove_version(self->stack, i); + i--; + j = i; + break; + + case ErrorComparisonPreferLeft: + case ErrorComparisonNone: + if (ts_stack_merge(self->stack, j, i)) + { + made_changes = true; + i--; + j = i; + } + break; + + case ErrorComparisonPreferRight: + made_changes = true; + if (ts_stack_merge(self->stack, j, i)) + { + i--; + j = i; + } + else + { + ts_stack_swap_versions(self->stack, i, j); + } + break; + + case ErrorComparisonTakeRight: + made_changes = true; + ts_stack_remove_version(self->stack, j); + i--; + j--; + break; + } + } + } + + // Enforce a hard upper bound on the number of stack versions by + // discarding the least promising versions. + while (ts_stack_version_count(self->stack) > MAX_VERSION_COUNT) + { + ts_stack_remove_version(self->stack, MAX_VERSION_COUNT); + made_changes = true; + } + + // If the best-performing stack version is currently paused, or all + // versions are paused, then resume the best paused version and begin + // the error recovery process. Otherwise, remove the paused versions. + if (ts_stack_version_count(self->stack) > 0) + { + bool has_unpaused_version = false; + for (StackVersion i = 0, n = ts_stack_version_count(self->stack); i < n; i++) + { + if (ts_stack_is_paused(self->stack, i)) + { + if (!has_unpaused_version && self->accept_count < MAX_VERSION_COUNT) + { + LOG("resume version:%u", i); + min_error_cost = ts_stack_error_cost(self->stack, i); + Subtree lookahead = ts_stack_resume(self->stack, i); + ts_parser__handle_error(self, i, lookahead); + has_unpaused_version = true; + } + else + { + ts_stack_remove_version(self->stack, i); + i--; + n--; + } + } + else + { + has_unpaused_version = true; + } + } + } + + if (made_changes) + { + LOG("condense"); + LOG_STACK(); + } + + return min_error_cost; +} + +static bool ts_parser_has_outstanding_parse(TSParser *self) +{ + return (self->external_scanner_payload || ts_stack_state(self->stack, 0) != 1 || ts_stack_node_count_since_error(self->stack, 0) != 0); +} + +// Parser - Public + +TSParser *ts_parser_new(void) +{ + TSParser *self = ts_calloc(1, sizeof(TSParser)); + ts_lexer_init(&self->lexer); + array_init(&self->reduce_actions); + array_reserve(&self->reduce_actions, 4); + self->tree_pool = ts_subtree_pool_new(32); + self->stack = ts_stack_new(&self->tree_pool); + self->finished_tree = NULL_SUBTREE; + self->reusable_node = reusable_node_new(); + self->dot_graph_file = NULL; + self->cancellation_flag = NULL; + self->timeout_duration = 0; + self->language = NULL; + self->has_scanner_error = false; + self->external_scanner_payload = NULL; + self->end_clock = clock_null(); + self->operation_count = 0; + self->old_tree = NULL_SUBTREE; + self->included_range_differences = (TSRangeArray)array_new(); + self->included_range_difference_index = 0; + ts_parser__set_cached_token(self, 0, NULL_SUBTREE, NULL_SUBTREE); + return self; +} + +void ts_parser_delete(TSParser *self) +{ + if (!self) + return; + + ts_parser_set_language(self, NULL); + ts_stack_delete(self->stack); + if (self->reduce_actions.contents) + { + array_delete(&self->reduce_actions); + } + if (self->included_range_differences.contents) + { + array_delete(&self->included_range_differences); + } + if (self->old_tree.ptr) + { + ts_subtree_release(&self->tree_pool, self->old_tree); + self->old_tree = NULL_SUBTREE; + } + ts_lexer_delete(&self->lexer); + ts_parser__set_cached_token(self, 0, NULL_SUBTREE, NULL_SUBTREE); + ts_subtree_pool_delete(&self->tree_pool); + reusable_node_delete(&self->reusable_node); + array_delete(&self->trailing_extras); + array_delete(&self->trailing_extras2); + array_delete(&self->scratch_trees); + ts_free(self); +} + +const TSLanguage *ts_parser_language(const TSParser *self) +{ + return self->language; +} + +bool ts_parser_set_language(TSParser *self, const TSLanguage *language) +{ + ts_parser_reset(self); + ts_language_delete(self->language); + self->language = NULL; + + if (language) + { + if (language->version > TREE_SITTER_LANGUAGE_VERSION || language->version < TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION) + return false; + } + + self->language = ts_language_copy(language); + return true; +} + +TSLogger ts_parser_logger(const TSParser *self) +{ + return self->lexer.logger; +} + +void ts_parser_set_logger(TSParser *self, TSLogger logger) +{ + self->lexer.logger = logger; +} + +void ts_parser_print_dot_graphs(TSParser *self, int fd) +{ + if (self->dot_graph_file) + { + fclose(self->dot_graph_file); + } + + if (fd >= 0) + { +#ifdef _WIN32 + self->dot_graph_file = _fdopen(fd, "a"); +#else + self->dot_graph_file = fdopen(fd, "a"); +#endif + } + else + { + self->dot_graph_file = NULL; + } +} + +const size_t *ts_parser_cancellation_flag(const TSParser *self) +{ + return (const size_t *)self->cancellation_flag; +} + +void ts_parser_set_cancellation_flag(TSParser *self, const size_t *flag) +{ + self->cancellation_flag = (const volatile size_t *)flag; +} + +uint64_t ts_parser_timeout_micros(const TSParser *self) +{ + return duration_to_micros(self->timeout_duration); +} + +void ts_parser_set_timeout_micros(TSParser *self, uint64_t timeout_micros) +{ + self->timeout_duration = duration_from_micros(timeout_micros); +} + +bool ts_parser_set_included_ranges(TSParser *self, const TSRange *ranges, uint32_t count) +{ + return ts_lexer_set_included_ranges(&self->lexer, ranges, count); +} + +const TSRange *ts_parser_included_ranges(const TSParser *self, uint32_t *count) +{ + return ts_lexer_included_ranges(&self->lexer, count); +} + +void ts_parser_reset(TSParser *self) +{ + ts_parser__external_scanner_destroy(self); + + if (self->old_tree.ptr) + { + ts_subtree_release(&self->tree_pool, self->old_tree); + self->old_tree = NULL_SUBTREE; + } + + reusable_node_clear(&self->reusable_node); + ts_lexer_reset(&self->lexer, length_zero()); + ts_stack_clear(self->stack); + ts_parser__set_cached_token(self, 0, NULL_SUBTREE, NULL_SUBTREE); + if (self->finished_tree.ptr) + { + ts_subtree_release(&self->tree_pool, self->finished_tree); + self->finished_tree = NULL_SUBTREE; + } + self->accept_count = 0; + self->has_scanner_error = false; +} + +TSTree *ts_parser_parse(TSParser *self, const TSTree *old_tree, TSInput input) +{ + TSTree *result = NULL; + if (!self->language || !input.read) + return NULL; + + ts_lexer_set_input(&self->lexer, input); + array_clear(&self->included_range_differences); + self->included_range_difference_index = 0; + + if (ts_parser_has_outstanding_parse(self)) + { + LOG("resume_parsing"); + } + else + { + ts_parser__external_scanner_create(self); + if (self->has_scanner_error) + goto exit; + + if (old_tree) + { + ts_subtree_retain(old_tree->root); + self->old_tree = old_tree->root; + ts_range_array_get_changed_ranges(old_tree->included_ranges, old_tree->included_range_count, self->lexer.included_ranges, + self->lexer.included_range_count, &self->included_range_differences); + reusable_node_reset(&self->reusable_node, old_tree->root); + LOG("parse_after_edit"); + LOG_TREE(self->old_tree); + for (unsigned i = 0; i < self->included_range_differences.size; i++) + { + TSRange *range = &self->included_range_differences.contents[i]; + LOG("different_included_range %u - %u", range->start_byte, range->end_byte); + } + } + else + { + reusable_node_clear(&self->reusable_node); + LOG("new_parse"); + } + } + + self->operation_count = 0; + if (self->timeout_duration) + { + self->end_clock = clock_after(clock_now(), self->timeout_duration); + } + else + { + self->end_clock = clock_null(); + } + + uint32_t position = 0, last_position = 0, version_count = 0; + do + { + for (StackVersion version = 0; version_count = ts_stack_version_count(self->stack), version < version_count; version++) + { + bool allow_node_reuse = version_count == 1; + while (ts_stack_is_active(self->stack, version)) + { + LOG("process version:%u, version_count:%u, state:%d, row:%u, col:%u", version, ts_stack_version_count(self->stack), + ts_stack_state(self->stack, version), ts_stack_position(self->stack, version).extent.row, + ts_stack_position(self->stack, version).extent.column); + + if (!ts_parser__advance(self, version, allow_node_reuse)) + { + if (self->has_scanner_error) + goto exit; + return NULL; + } + + LOG_STACK(); + + position = ts_stack_position(self->stack, version).bytes; + if (position > last_position || (version > 0 && position == last_position)) + { + last_position = position; + break; + } + } + } + + // After advancing each version of the stack, re-sort the versions by their cost, + // removing any versions that are no longer worth pursuing. + unsigned min_error_cost = ts_parser__condense_stack(self); + + // If there's already a finished parse tree that's better than any in-progress version, + // then terminate parsing. Clear the parse stack to remove any extra references to subtrees + // within the finished tree, ensuring that these subtrees can be safely mutated in-place + // for rebalancing. + if (self->finished_tree.ptr && ts_subtree_error_cost(self->finished_tree) < min_error_cost) + { + ts_stack_clear(self->stack); + break; + } + + while (self->included_range_difference_index < self->included_range_differences.size) + { + TSRange *range = &self->included_range_differences.contents[self->included_range_difference_index]; + if (range->end_byte <= position) + { + self->included_range_difference_index++; + } + else + { + break; + } + } + } while (version_count != 0); + + assert(self->finished_tree.ptr); + ts_subtree_balance(self->finished_tree, &self->tree_pool, self->language); + LOG("done"); + LOG_TREE(self->finished_tree); + + result = ts_tree_new(self->finished_tree, self->language, self->lexer.included_ranges, self->lexer.included_range_count); + self->finished_tree = NULL_SUBTREE; + +exit: + ts_parser_reset(self); + return result; +} + +TSTree *ts_parser_parse_string(TSParser *self, const TSTree *old_tree, const char *string, uint32_t length) +{ + return ts_parser_parse_string_encoding(self, old_tree, string, length, TSInputEncodingUTF8); +} + +TSTree *ts_parser_parse_string_encoding(TSParser *self, const TSTree *old_tree, const char *string, uint32_t length, + TSInputEncoding encoding) +{ + TSStringInput input = {string, length}; + return ts_parser_parse(self, old_tree, + (TSInput){ + &input, + ts_string_input_read, + encoding, + }); +} + +void ts_parser_set_wasm_store(TSParser *self, TSWasmStore *store) +{ + (void)(self); + (void)(store); +} + +TSWasmStore *ts_parser_take_wasm_store(TSParser *self) +{ + (void)(self); + return (NULL); +} + +#undef LOG diff --git a/parser/nsrc/parser.h b/parser/nsrc/parser.h new file mode 100644 index 00000000..84a8057b --- /dev/null +++ b/parser/nsrc/parser.h @@ -0,0 +1,285 @@ +#ifndef TREE_SITTER_PARSER_H_ +#define TREE_SITTER_PARSER_H_ + +#ifdef __cplusplus +extern "C" +{ +#endif + +#include +#include +#include + +#define ts_builtin_sym_error ((TSSymbol)-1) +#define ts_builtin_sym_end 0 +#define TREE_SITTER_SERIALIZATION_BUFFER_SIZE 1024 + +#ifndef TREE_SITTER_API_H_ + typedef uint16_t TSStateId; + typedef uint16_t TSSymbol; + typedef uint16_t TSFieldId; + typedef struct TSLanguage TSLanguage; +#endif + + typedef struct TSFieldMapEntry + { + TSFieldId field_id; + uint8_t child_index; + bool inherited; + } TSFieldMapEntry; + + typedef struct TSFieldMapSlice + { + uint16_t index; + uint16_t length; + } TSFieldMapSlice; + + typedef struct TSSymbolMetadata + { + bool visible; + bool named; + bool supertype; + } TSSymbolMetadata; + + typedef struct TSLexer TSLexer; + + struct TSLexer + { + int32_t lookahead; + TSSymbol result_symbol; + void (*advance)(TSLexer *, bool); + void (*mark_end)(TSLexer *); + uint32_t (*get_column)(TSLexer *); + bool (*is_at_included_range_start)(const TSLexer *); + bool (*eof)(const TSLexer *); + }; + + typedef enum TSParseActionType + { + TSParseActionTypeShift, + TSParseActionTypeReduce, + TSParseActionTypeAccept, + TSParseActionTypeRecover, + } TSParseActionType; + + typedef union TSParseAction { + struct TSParseActionShift + { + uint8_t type; + TSStateId state; + bool extra; + bool repetition; + } shift; + struct TSParseActionReduce + { + uint8_t type; + uint8_t child_count; + TSSymbol symbol; + int16_t dynamic_precedence; + uint16_t production_id; + } reduce; + uint8_t type; + } TSParseAction; + + typedef struct TSLexMode + { + uint16_t lex_state; + uint16_t external_lex_state; + } TSLexMode; + + typedef union TSParseActionEntry { + TSParseAction action; + struct TSParseActionEntryData + { + uint8_t count; + bool reusable; + } entry; + } TSParseActionEntry; + + typedef struct TSCharacterRange + { + int32_t start; + int32_t end; + } TSCharacterRange; + + struct TSLanguage + { + uint32_t version; + uint32_t symbol_count; + uint32_t alias_count; + uint32_t token_count; + uint32_t external_token_count; + uint32_t state_count; + uint32_t large_state_count; + uint32_t production_id_count; + uint32_t field_count; + uint16_t max_alias_sequence_length; + const uint16_t *parse_table; + const uint16_t *small_parse_table; + const uint32_t *small_parse_table_map; + const TSParseActionEntry *parse_actions; + const char *const *symbol_names; + const char *const *field_names; + const TSFieldMapSlice *field_map_slices; + const TSFieldMapEntry *field_map_entries; + const TSSymbolMetadata *symbol_metadata; + const TSSymbol *public_symbol_map; + const uint16_t *alias_map; + const TSSymbol *alias_sequences; + const TSLexMode *lex_modes; + bool (*lex_fn)(TSLexer *, TSStateId); + bool (*keyword_lex_fn)(TSLexer *, TSStateId); + TSSymbol keyword_capture_token; + struct ExternalScannerDefinition + { + const bool *states; + const TSSymbol *symbol_map; + void *(*create)(void); + void (*destroy)(void *); + bool (*scan)(void *, TSLexer *, const bool *symbol_whitelist); + unsigned (*serialize)(void *, char *); + void (*deserialize)(void *, const char *, unsigned); + } external_scanner; + const TSStateId *primary_state_ids; + }; + + static inline bool set_contains(TSCharacterRange *ranges, uint32_t len, int32_t lookahead) + { + uint32_t index = 0; + uint32_t size = len - index; + while (size > 1) + { + uint32_t half_size = size / 2; + uint32_t mid_index = index + half_size; + TSCharacterRange *range = &ranges[mid_index]; + if (lookahead >= range->start && lookahead <= range->end) + { + return true; + } + else if (lookahead > range->end) + { + index = mid_index; + } + size -= half_size; + } + TSCharacterRange *range = &ranges[index]; + return (lookahead >= range->start && lookahead <= range->end); + } + + /* + * Lexer Macros + */ + +#ifdef _MSC_VER +# define UNUSED __pragma(warning(suppress : 4101)) +#else +# define UNUSED __attribute__((unused)) +#endif + +#define START_LEXER() \ + bool result = false; \ + bool skip = false; \ + UNUSED \ + bool eof = false; \ + int32_t lookahead; \ + goto start; \ +next_state: \ + lexer->advance(lexer, skip); \ +start: \ + skip = false; \ + lookahead = lexer->lookahead; + +#define ADVANCE(state_value) \ + { \ + state = state_value; \ + goto next_state; \ + } + +#define ADVANCE_MAP(...) \ + { \ + static const uint16_t map[] = {__VA_ARGS__}; \ + for (uint32_t i = 0; i < sizeof(map) / sizeof(map[0]); i += 2) \ + { \ + if (map[i] == lookahead) \ + { \ + state = map[i + 1]; \ + goto next_state; \ + } \ + } \ + } + +#define SKIP(state_value) \ + { \ + skip = true; \ + state = state_value; \ + goto next_state; \ + } + +#define ACCEPT_TOKEN(symbol_value) \ + result = true; \ + lexer->result_symbol = symbol_value; \ + lexer->mark_end(lexer); + +#define END_STATE() return result; + + /* + * Parse Table Macros + */ + +#define SMALL_STATE(id) ((id)-LARGE_STATE_COUNT) + +#define STATE(id) id + +#define ACTIONS(id) id + +#define SHIFT(state_value) \ + { \ + { \ + .shift = {.type = TSParseActionTypeShift, .state = (state_value) } \ + } \ + } + +#define SHIFT_REPEAT(state_value) \ + { \ + { \ + .shift = {.type = TSParseActionTypeShift, .state = (state_value), .repetition = true } \ + } \ + } + +#define SHIFT_EXTRA() \ + { \ + { \ + .shift = {.type = TSParseActionTypeShift, .extra = true } \ + } \ + } + +#define REDUCE(symbol_name, children, precedence, prod_id) \ + { \ + { \ + .reduce = {.type = TSParseActionTypeReduce, \ + .symbol = symbol_name, \ + .child_count = children, \ + .dynamic_precedence = precedence, \ + .production_id = prod_id}, \ + } \ + } + +#define RECOVER() \ + { \ + { \ + .type = TSParseActionTypeRecover \ + } \ + } + +#define ACCEPT_INPUT() \ + { \ + { \ + .type = TSParseActionTypeAccept \ + } \ + } + +#ifdef __cplusplus +} +#endif + +#endif // TREE_SITTER_PARSER_H_ diff --git a/parser/nsrc/point.h b/parser/nsrc/point.h new file mode 100644 index 00000000..a6c11196 --- /dev/null +++ b/parser/nsrc/point.h @@ -0,0 +1,72 @@ +#ifndef TREE_SITTER_POINT_H_ +#define TREE_SITTER_POINT_H_ + +#include "./api.h" + +#define POINT_ZERO ((TSPoint){0, 0}) +#define POINT_MAX ((TSPoint){UINT32_MAX, UINT32_MAX}) + +static inline TSPoint point__new(unsigned row, unsigned column) +{ + TSPoint result = {row, column}; + return result; +} + +static inline TSPoint point_add(TSPoint a, TSPoint b) +{ + if (b.row > 0) + return point__new(a.row + b.row, b.column); + else + return point__new(a.row, a.column + b.column); +} + +static inline TSPoint point_sub(TSPoint a, TSPoint b) +{ + if (a.row > b.row) + return point__new(a.row - b.row, a.column); + else + return point__new(0, a.column - b.column); +} + +static inline bool point_lte(TSPoint a, TSPoint b) +{ + return (a.row < b.row) || (a.row == b.row && a.column <= b.column); +} + +static inline bool point_lt(TSPoint a, TSPoint b) +{ + return (a.row < b.row) || (a.row == b.row && a.column < b.column); +} + +static inline bool point_gt(TSPoint a, TSPoint b) +{ + return (a.row > b.row) || (a.row == b.row && a.column > b.column); +} + +static inline bool point_gte(TSPoint a, TSPoint b) +{ + return (a.row > b.row) || (a.row == b.row && a.column >= b.column); +} + +static inline bool point_eq(TSPoint a, TSPoint b) +{ + return a.row == b.row && a.column == b.column; +} + +static inline TSPoint point_min(TSPoint a, TSPoint b) +{ + if (a.row < b.row || (a.row == b.row && a.column < b.column)) + return a; + else + return b; +} + +static inline TSPoint point_max(TSPoint a, TSPoint b) +{ + if (a.row > b.row || (a.row == b.row && a.column > b.column)) + return a; + else + return b; +} + +#endif diff --git a/parser/nsrc/query.c b/parser/nsrc/query.c new file mode 100644 index 00000000..67c2dddd --- /dev/null +++ b/parser/nsrc/query.c @@ -0,0 +1,4146 @@ +#include "./alloc.h" +#include "./api.h" +#include "./array.h" +#include "./language.h" +#include "./point.h" +#include "./tree_cursor.h" +#include "./unicode.h" +#include + +// #define DEBUG_ANALYZE_QUERY +// #define DEBUG_EXECUTE_QUERY + +#define MAX_STEP_CAPTURE_COUNT 3 +#define MAX_NEGATED_FIELD_COUNT 8 +#define MAX_STATE_PREDECESSOR_COUNT 256 +#define MAX_ANALYSIS_STATE_DEPTH 8 +#define MAX_ANALYSIS_ITERATION_COUNT 256 + +/* + * Stream - A sequence of unicode characters derived from a UTF8 string. + * This struct is used in parsing queries from S-expressions. + */ +typedef struct Stream +{ + const char *input; + const char *start; + const char *end; + int32_t next; + uint8_t next_size; +} Stream; + +/* + * QueryStep - A step in the process of matching a query. Each node within + * a query S-expression corresponds to one of these steps. An entire pattern + * is represented as a sequence of these steps. The basic properties of a + * node are represented by these fields: + * - `symbol` - The grammar symbol to match. A zero value represents the + * wildcard symbol, '_'. + * - `field` - The field name to match. A zero value means that a field name + * was not specified. + * - `capture_ids` - An array of integers representing the names of captures + * associated with this node in the pattern, terminated by a `NONE` value. + * - `depth` - The depth where this node occurs in the pattern. The root node + * of the pattern has depth zero. + * - `negated_field_list_id` - An id representing a set of fields that must + * not be present on a node matching this step. + * + * Steps have some additional fields in order to handle the `.` (or "anchor") operator, + * which forbids additional child nodes: + * - `is_immediate` - Indicates that the node matching this step cannot be preceded + * by other sibling nodes that weren't specified in the pattern. + * - `is_last_child` - Indicates that the node matching this step cannot have any + * subsequent named siblings. + * + * For simple patterns, steps are matched in sequential order. But in order to + * handle alternative/repeated/optional sub-patterns, query steps are not always + * structured as a linear sequence; they sometimes need to split and merge. This + * is done using the following fields: + * - `alternative_index` - The index of a different query step that serves as + * an alternative to this step. A `NONE` value represents no alternative. + * When a query state reaches a step with an alternative index, the state + * is duplicated, with one copy remaining at the original step, and one copy + * moving to the alternative step. The alternative may have its own alternative + * step, so this splitting is an iterative process. + * - `is_dead_end` - Indicates that this state cannot be passed directly, and + * exists only in order to redirect to an alternative index, with no splitting. + * - `is_pass_through` - Indicates that state has no matching logic of its own, + * and exists only to split a state. One copy of the state advances immediately + * to the next step, and one moves to the alternative step. + * - `alternative_is_immediate` - Indicates that this step's alternative step + * should be treated as if `is_immediate` is true. + * + * Steps also store some derived state that summarizes how they relate to other + * steps within the same pattern. This is used to optimize the matching process: + * - `contains_captures` - Indicates that this step or one of its child steps + * has a non-empty `capture_ids` list. + * - `parent_pattern_guaranteed` - Indicates that if this step is reached, then + * it and all of its subsequent sibling steps within the same parent pattern + * are guaranteed to match. + * - `root_pattern_guaranteed` - Similar to `parent_pattern_guaranteed`, but + * for the entire top-level pattern. When iterating through a query's + * captures using `ts_query_cursor_next_capture`, this field is used to + * detect that a capture can safely be returned from a match that has not + * even completed yet. + */ +typedef struct QueryStep +{ + TSSymbol symbol; + TSSymbol supertype_symbol; + TSFieldId field; + uint16_t capture_ids[MAX_STEP_CAPTURE_COUNT]; + uint16_t depth; + uint16_t alternative_index; + uint16_t negated_field_list_id; + bool is_named : 1; + bool is_immediate : 1; + bool is_last_child : 1; + bool is_pass_through : 1; + bool is_dead_end : 1; + bool alternative_is_immediate : 1; + bool contains_captures : 1; + bool root_pattern_guaranteed : 1; + bool parent_pattern_guaranteed : 1; +} QueryStep; + +/* + * Slice - A slice of an external array. Within a query, capture names, + * literal string values, and predicate step information are stored in three + * contiguous arrays. Individual captures, string values, and predicates are + * represented as slices of these three arrays. + */ +typedef struct Slice +{ + uint32_t offset; + uint32_t length; +} Slice; + +/* + * SymbolTable - a two-way mapping of strings to ids. + */ +typedef struct SymbolTable +{ + Array(char) characters; + Array(Slice) slices; +} SymbolTable; + +/** + * CaptureQuantififers - a data structure holding the quantifiers of pattern captures. + */ +typedef Array(uint8_t) CaptureQuantifiers; + +/* + * PatternEntry - Information about the starting point for matching a particular + * pattern. These entries are stored in a 'pattern map' - a sorted array that + * makes it possible to efficiently lookup patterns based on the symbol for their + * first step. The entry consists of the following fields: + * - `pattern_index` - the index of the pattern within the query + * - `step_index` - the index of the pattern's first step in the shared `steps` array + * - `is_rooted` - whether or not the pattern has a single root node. This property + * affects decisions about whether or not to start the pattern for nodes outside + * of a QueryCursor's range restriction. + */ +typedef struct PatternEntry +{ + uint16_t step_index; + uint16_t pattern_index; + bool is_rooted; +} PatternEntry; + +typedef struct QueryPattern +{ + Slice steps; + Slice predicate_steps; + uint32_t start_byte; + bool is_non_local; +} QueryPattern; + +typedef struct StepOffset +{ + uint32_t byte_offset; + uint16_t step_index; +} StepOffset; + +/* + * QueryState - The state of an in-progress match of a particular pattern + * in a query. While executing, a `TSQueryCursor` must keep track of a number + * of possible in-progress matches. Each of those possible matches is + * represented as one of these states. Fields: + * - `id` - A numeric id that is exposed to the public API. This allows the + * caller to remove a given match, preventing any more of its captures + * from being returned. + * - `start_depth` - The depth in the tree where the first step of the state's + * pattern was matched. + * - `pattern_index` - The pattern that the state is matching. + * - `consumed_capture_count` - The number of captures from this match that + * have already been returned. + * - `capture_list_id` - A numeric id that can be used to retrieve the state's + * list of captures from the `CaptureListPool`. + * - `seeking_immediate_match` - A flag that indicates that the state's next + * step must be matched by the very next sibling. This is used when + * processing repetitions. + * - `has_in_progress_alternatives` - A flag that indicates that there is are + * other states that have the same captures as this state, but are at + * different steps in their pattern. This means that in order to obey the + * 'longest-match' rule, this state should not be returned as a match until + * it is clear that there can be no other alternative match with more captures. + */ +typedef struct QueryState +{ + uint32_t id; + uint32_t capture_list_id; + uint16_t start_depth; + uint16_t step_index; + uint16_t pattern_index; + uint16_t consumed_capture_count : 12; + bool seeking_immediate_match : 1; + bool has_in_progress_alternatives : 1; + bool dead : 1; + bool needs_parent : 1; +} QueryState; + +typedef Array(TSQueryCapture) CaptureList; + +/* + * CaptureListPool - A collection of *lists* of captures. Each query state needs + * to maintain its own list of captures. To avoid repeated allocations, this struct + * maintains a fixed set of capture lists, and keeps track of which ones are + * currently in use by a query state. + */ +typedef struct CaptureListPool +{ + Array(CaptureList) list; + CaptureList empty_list; + // The maximum number of capture lists that we are allowed to allocate. We + // never allow `list` to allocate more entries than this, dropping pending + // matches if needed to stay under the limit. + uint32_t max_capture_list_count; + // The number of capture lists allocated in `list` that are not currently in + // use. We reuse those existing-but-unused capture lists before trying to + // allocate any new ones. We use an invalid value (UINT32_MAX) for a capture + // list's length to indicate that it's not in use. + uint32_t free_capture_list_count; +} CaptureListPool; + +/* + * AnalysisState - The state needed for walking the parse table when analyzing + * a query pattern, to determine at which steps the pattern might fail to match. + */ +typedef struct AnalysisStateEntry +{ + TSStateId parse_state; + TSSymbol parent_symbol; + uint16_t child_index; + TSFieldId field_id : 15; + bool done : 1; +} AnalysisStateEntry; + +typedef struct AnalysisState +{ + AnalysisStateEntry stack[MAX_ANALYSIS_STATE_DEPTH]; + uint16_t depth; + uint16_t step_index; + TSSymbol root_symbol; +} AnalysisState; + +typedef Array(AnalysisState *) AnalysisStateSet; + +typedef struct QueryAnalysis +{ + AnalysisStateSet states; + AnalysisStateSet next_states; + AnalysisStateSet deeper_states; + AnalysisStateSet state_pool; + Array(uint16_t) final_step_indices; + Array(TSSymbol) finished_parent_symbols; + bool did_abort; +} QueryAnalysis; + +/* + * AnalysisSubgraph - A subset of the states in the parse table that are used + * in constructing nodes with a certain symbol. Each state is accompanied by + * some information about the possible node that could be produced in + * downstream states. + */ +typedef struct AnalysisSubgraphNode +{ + TSStateId state; + uint16_t production_id; + uint8_t child_index : 7; + bool done : 1; +} AnalysisSubgraphNode; + +typedef struct AnalysisSubgraph +{ + TSSymbol symbol; + Array(TSStateId) start_states; + Array(AnalysisSubgraphNode) nodes; +} AnalysisSubgraph; + +typedef Array(AnalysisSubgraph) AnalysisSubgraphArray; + +/* + * StatePredecessorMap - A map that stores the predecessors of each parse state. + * This is used during query analysis to determine which parse states can lead + * to which reduce actions. + */ +typedef struct StatePredecessorMap +{ + TSStateId *contents; +} StatePredecessorMap; + +/* + * TSQuery - A tree query, compiled from a string of S-expressions. The query + * itself is immutable. The mutable state used in the process of executing the + * query is stored in a `TSQueryCursor`. + */ +struct TSQuery +{ + SymbolTable captures; + SymbolTable predicate_values; + Array(CaptureQuantifiers) capture_quantifiers; + Array(QueryStep) steps; + Array(PatternEntry) pattern_map; + Array(TSQueryPredicateStep) predicate_steps; + Array(QueryPattern) patterns; + Array(StepOffset) step_offsets; + Array(TSFieldId) negated_fields; + Array(char) string_buffer; + Array(TSSymbol) repeat_symbols_with_rootless_patterns; + const TSLanguage *language; + uint16_t wildcard_root_pattern_count; +}; + +/* + * TSQueryCursor - A stateful struct used to execute a query on a tree. + */ +struct TSQueryCursor +{ + const TSQuery *query; + TSTreeCursor cursor; + Array(QueryState) states; + Array(QueryState) finished_states; + CaptureListPool capture_list_pool; + uint32_t depth; + uint32_t max_start_depth; + uint32_t start_byte; + uint32_t end_byte; + TSPoint start_point; + TSPoint end_point; + uint32_t next_state_id; + bool on_visible_node; + bool ascending; + bool halted; + bool did_exceed_match_limit; +}; + +static const TSQueryError PARENT_DONE = -1; +static const uint16_t PATTERN_DONE_MARKER = UINT16_MAX; +static const uint16_t NONE = UINT16_MAX; +static const TSSymbol WILDCARD_SYMBOL = 0; + +/********** + * Stream + **********/ + +// Advance to the next unicode code point in the stream. +static bool stream_advance(Stream *self) +{ + self->input += self->next_size; + if (self->input < self->end) + { + uint32_t size = ts_decode_ascii((const uint8_t *)self->input, (uint32_t)(self->end - self->input), &self->next); + if (size > 0) + { + self->next_size = size; + return true; + } + } + else + { + self->next_size = 0; + self->next = '\0'; + } + return false; +} + +// Reset the stream to the given input position, represented as a pointer +// into the input string. +static void stream_reset(Stream *self, const char *input) +{ + self->input = input; + self->next_size = 0; + stream_advance(self); +} + +static Stream stream_new(const char *string, uint32_t length) +{ + Stream self = { + .next = 0, + .input = string, + .start = string, + .end = string + length, + }; + stream_advance(&self); + return self; +} + +static void stream_skip_whitespace(Stream *self) +{ + for (;;) + { + if (iswspace(self->next)) + { + stream_advance(self); + } + else if (self->next == ';') + { + // skip over comments + stream_advance(self); + while (self->next && self->next != '\n') + { + if (!stream_advance(self)) + break; + } + } + else + { + break; + } + } +} + +static bool stream_is_ident_start(Stream *self) +{ + return iswalnum(self->next) || self->next == '_' || self->next == '-'; +} + +static void stream_scan_identifier(Stream *stream) +{ + do + { + stream_advance(stream); + } while (iswalnum(stream->next) || stream->next == '_' || stream->next == '-' || stream->next == '.' || stream->next == '?' || + stream->next == '!'); +} + +static uint32_t stream_offset(Stream *self) +{ + return (uint32_t)(self->input - self->start); +} + +/****************** + * CaptureListPool + ******************/ + +static CaptureListPool capture_list_pool_new(void) +{ + return (CaptureListPool){ + .list = array_new(), + .empty_list = array_new(), + .max_capture_list_count = UINT32_MAX, + .free_capture_list_count = 0, + }; +} + +static void capture_list_pool_reset(CaptureListPool *self) +{ + for (uint16_t i = 0; i < (uint16_t)self->list.size; i++) + { + // This invalid size means that the list is not in use. + self->list.contents[i].size = UINT32_MAX; + } + self->free_capture_list_count = self->list.size; +} + +static void capture_list_pool_delete(CaptureListPool *self) +{ + for (uint16_t i = 0; i < (uint16_t)self->list.size; i++) + { + array_delete(&self->list.contents[i]); + } + array_delete(&self->list); +} + +static const CaptureList *capture_list_pool_get(const CaptureListPool *self, uint16_t id) +{ + if (id >= self->list.size) + return &self->empty_list; + return &self->list.contents[id]; +} + +static CaptureList *capture_list_pool_get_mut(CaptureListPool *self, uint16_t id) +{ + assert(id < self->list.size); + return &self->list.contents[id]; +} + +static bool capture_list_pool_is_empty(const CaptureListPool *self) +{ + // The capture list pool is empty if all allocated lists are in use, and we + // have reached the maximum allowed number of allocated lists. + return self->free_capture_list_count == 0 && self->list.size >= self->max_capture_list_count; +} + +static uint16_t capture_list_pool_acquire(CaptureListPool *self) +{ + // First see if any already allocated capture list is currently unused. + if (self->free_capture_list_count > 0) + { + for (uint16_t i = 0; i < (uint16_t)self->list.size; i++) + { + if (self->list.contents[i].size == UINT32_MAX) + { + array_clear(&self->list.contents[i]); + self->free_capture_list_count--; + return i; + } + } + } + + // Otherwise allocate and initialize a new capture list, as long as that + // doesn't put us over the requested maximum. + uint32_t i = self->list.size; + if (i >= self->max_capture_list_count) + { + return NONE; + } + CaptureList list; + array_init(&list); + array_push(&self->list, list); + return i; +} + +static void capture_list_pool_release(CaptureListPool *self, uint16_t id) +{ + if (id >= self->list.size) + return; + self->list.contents[id].size = UINT32_MAX; + self->free_capture_list_count++; +} + +/************** + * Quantifiers + **************/ + +static TSQuantifier quantifier_mul(TSQuantifier left, TSQuantifier right) +{ + switch (left) + { + case TSQuantifierZero: + return TSQuantifierZero; + case TSQuantifierZeroOrOne: + switch (right) + { + case TSQuantifierZero: + return TSQuantifierZero; + case TSQuantifierZeroOrOne: + case TSQuantifierOne: + return TSQuantifierZeroOrOne; + case TSQuantifierZeroOrMore: + case TSQuantifierOneOrMore: + return TSQuantifierZeroOrMore; + }; + break; + case TSQuantifierZeroOrMore: + switch (right) + { + case TSQuantifierZero: + return TSQuantifierZero; + case TSQuantifierZeroOrOne: + case TSQuantifierZeroOrMore: + case TSQuantifierOne: + case TSQuantifierOneOrMore: + return TSQuantifierZeroOrMore; + }; + break; + case TSQuantifierOne: + return right; + case TSQuantifierOneOrMore: + switch (right) + { + case TSQuantifierZero: + return TSQuantifierZero; + case TSQuantifierZeroOrOne: + case TSQuantifierZeroOrMore: + return TSQuantifierZeroOrMore; + case TSQuantifierOne: + case TSQuantifierOneOrMore: + return TSQuantifierOneOrMore; + }; + break; + } + return TSQuantifierZero; // to make compiler happy, but all cases should be covered above! +} + +static TSQuantifier quantifier_join(TSQuantifier left, TSQuantifier right) +{ + switch (left) + { + case TSQuantifierZero: + switch (right) + { + case TSQuantifierZero: + return TSQuantifierZero; + case TSQuantifierZeroOrOne: + case TSQuantifierOne: + return TSQuantifierZeroOrOne; + case TSQuantifierZeroOrMore: + case TSQuantifierOneOrMore: + return TSQuantifierZeroOrMore; + }; + break; + case TSQuantifierZeroOrOne: + switch (right) + { + case TSQuantifierZero: + case TSQuantifierZeroOrOne: + case TSQuantifierOne: + return TSQuantifierZeroOrOne; + break; + case TSQuantifierZeroOrMore: + case TSQuantifierOneOrMore: + return TSQuantifierZeroOrMore; + break; + }; + break; + case TSQuantifierZeroOrMore: + return TSQuantifierZeroOrMore; + case TSQuantifierOne: + switch (right) + { + case TSQuantifierZero: + case TSQuantifierZeroOrOne: + return TSQuantifierZeroOrOne; + case TSQuantifierZeroOrMore: + return TSQuantifierZeroOrMore; + case TSQuantifierOne: + return TSQuantifierOne; + case TSQuantifierOneOrMore: + return TSQuantifierOneOrMore; + }; + break; + case TSQuantifierOneOrMore: + switch (right) + { + case TSQuantifierZero: + case TSQuantifierZeroOrOne: + case TSQuantifierZeroOrMore: + return TSQuantifierZeroOrMore; + case TSQuantifierOne: + case TSQuantifierOneOrMore: + return TSQuantifierOneOrMore; + }; + break; + } + return TSQuantifierZero; // to make compiler happy, but all cases should be covered above! +} + +static TSQuantifier quantifier_add(TSQuantifier left, TSQuantifier right) +{ + switch (left) + { + case TSQuantifierZero: + return right; + case TSQuantifierZeroOrOne: + switch (right) + { + case TSQuantifierZero: + return TSQuantifierZeroOrOne; + case TSQuantifierZeroOrOne: + case TSQuantifierZeroOrMore: + return TSQuantifierZeroOrMore; + case TSQuantifierOne: + case TSQuantifierOneOrMore: + return TSQuantifierOneOrMore; + }; + break; + case TSQuantifierZeroOrMore: + switch (right) + { + case TSQuantifierZero: + return TSQuantifierZeroOrMore; + case TSQuantifierZeroOrOne: + case TSQuantifierZeroOrMore: + return TSQuantifierZeroOrMore; + case TSQuantifierOne: + case TSQuantifierOneOrMore: + return TSQuantifierOneOrMore; + }; + break; + case TSQuantifierOne: + switch (right) + { + case TSQuantifierZero: + return TSQuantifierOne; + case TSQuantifierZeroOrOne: + case TSQuantifierZeroOrMore: + case TSQuantifierOne: + case TSQuantifierOneOrMore: + return TSQuantifierOneOrMore; + }; + break; + case TSQuantifierOneOrMore: + return TSQuantifierOneOrMore; + } + return TSQuantifierZero; // to make compiler happy, but all cases should be covered above! +} + +// Create new capture quantifiers structure +static CaptureQuantifiers capture_quantifiers_new(void) +{ + return (CaptureQuantifiers)array_new(); +} + +// Delete capture quantifiers structure +static void capture_quantifiers_delete(CaptureQuantifiers *self) +{ + array_delete(self); +} + +// Clear capture quantifiers structure +static void capture_quantifiers_clear(CaptureQuantifiers *self) +{ + array_clear(self); +} + +// Replace capture quantifiers with the given quantifiers +static void capture_quantifiers_replace(CaptureQuantifiers *self, CaptureQuantifiers *quantifiers) +{ + array_clear(self); + array_push_all(self, quantifiers); +} + +// Return capture quantifier for the given capture id +static TSQuantifier capture_quantifier_for_id(const CaptureQuantifiers *self, uint16_t id) +{ + return (self->size <= id) ? TSQuantifierZero : (TSQuantifier)*array_get(self, id); +} + +// Add the given quantifier to the current value for id +static void capture_quantifiers_add_for_id(CaptureQuantifiers *self, uint16_t id, TSQuantifier quantifier) +{ + if (self->size <= id) + { + array_grow_by(self, id + 1 - self->size); + } + uint8_t *own_quantifier = array_get(self, id); + *own_quantifier = (uint8_t)quantifier_add((TSQuantifier)*own_quantifier, quantifier); +} + +// Point-wise add the given quantifiers to the current values +static void capture_quantifiers_add_all(CaptureQuantifiers *self, CaptureQuantifiers *quantifiers) +{ + if (self->size < quantifiers->size) + { + array_grow_by(self, quantifiers->size - self->size); + } + for (uint16_t id = 0; id < (uint16_t)quantifiers->size; id++) + { + uint8_t *quantifier = array_get(quantifiers, id); + uint8_t *own_quantifier = array_get(self, id); + *own_quantifier = (uint8_t)quantifier_add((TSQuantifier)*own_quantifier, (TSQuantifier)*quantifier); + } +} + +// Join the given quantifier with the current values +static void capture_quantifiers_mul(CaptureQuantifiers *self, TSQuantifier quantifier) +{ + for (uint16_t id = 0; id < (uint16_t)self->size; id++) + { + uint8_t *own_quantifier = array_get(self, id); + *own_quantifier = (uint8_t)quantifier_mul((TSQuantifier)*own_quantifier, quantifier); + } +} + +// Point-wise join the quantifiers from a list of alternatives with the current values +static void capture_quantifiers_join_all(CaptureQuantifiers *self, CaptureQuantifiers *quantifiers) +{ + if (self->size < quantifiers->size) + { + array_grow_by(self, quantifiers->size - self->size); + } + for (uint32_t id = 0; id < quantifiers->size; id++) + { + uint8_t *quantifier = array_get(quantifiers, id); + uint8_t *own_quantifier = array_get(self, id); + *own_quantifier = (uint8_t)quantifier_join((TSQuantifier)*own_quantifier, (TSQuantifier)*quantifier); + } + for (uint32_t id = quantifiers->size; id < self->size; id++) + { + uint8_t *own_quantifier = array_get(self, id); + *own_quantifier = (uint8_t)quantifier_join((TSQuantifier)*own_quantifier, TSQuantifierZero); + } +} + +/************** + * SymbolTable + **************/ + +static SymbolTable symbol_table_new(void) +{ + return (SymbolTable){ + .characters = array_new(), + .slices = array_new(), + }; +} + +static void symbol_table_delete(SymbolTable *self) +{ + array_delete(&self->characters); + array_delete(&self->slices); +} + +static int symbol_table_id_for_name(const SymbolTable *self, const char *name, uint32_t length) +{ + for (unsigned i = 0; i < self->slices.size; i++) + { + Slice slice = self->slices.contents[i]; + if (slice.length == length && !strncmp(&self->characters.contents[slice.offset], name, length)) + return i; + } + return -1; +} + +static const char *symbol_table_name_for_id(const SymbolTable *self, uint16_t id, uint32_t *length) +{ + Slice slice = self->slices.contents[id]; + *length = slice.length; + return &self->characters.contents[slice.offset]; +} + +static uint16_t symbol_table_insert_name(SymbolTable *self, const char *name, uint32_t length) +{ + int id = symbol_table_id_for_name(self, name, length); + if (id >= 0) + return (uint16_t)id; + Slice slice = { + .offset = self->characters.size, + .length = length, + }; + array_grow_by(&self->characters, length + 1); + memcpy(&self->characters.contents[slice.offset], name, length); + self->characters.contents[self->characters.size - 1] = 0; + array_push(&self->slices, slice); + return self->slices.size - 1; +} + +/************ + * QueryStep + ************/ + +static QueryStep query_step__new(TSSymbol symbol, uint16_t depth, bool is_immediate) +{ + QueryStep step = { + .symbol = symbol, + .depth = depth, + .field = 0, + .alternative_index = NONE, + .negated_field_list_id = 0, + .contains_captures = false, + .is_last_child = false, + .is_named = false, + .is_pass_through = false, + .is_dead_end = false, + .root_pattern_guaranteed = false, + .is_immediate = is_immediate, + .alternative_is_immediate = false, + }; + for (unsigned i = 0; i < MAX_STEP_CAPTURE_COUNT; i++) + { + step.capture_ids[i] = NONE; + } + return step; +} + +static void query_step__add_capture(QueryStep *self, uint16_t capture_id) +{ + for (unsigned i = 0; i < MAX_STEP_CAPTURE_COUNT; i++) + { + if (self->capture_ids[i] == NONE) + { + self->capture_ids[i] = capture_id; + break; + } + } +} + +static void query_step__remove_capture(QueryStep *self, uint16_t capture_id) +{ + for (unsigned i = 0; i < MAX_STEP_CAPTURE_COUNT; i++) + { + if (self->capture_ids[i] == capture_id) + { + self->capture_ids[i] = NONE; + while (i + 1 < MAX_STEP_CAPTURE_COUNT) + { + if (self->capture_ids[i + 1] == NONE) + break; + self->capture_ids[i] = self->capture_ids[i + 1]; + self->capture_ids[i + 1] = NONE; + i++; + } + break; + } + } +} + +/********************** + * StatePredecessorMap + **********************/ + +static inline StatePredecessorMap state_predecessor_map_new(const TSLanguage *language) +{ + return (StatePredecessorMap){ + .contents = ts_calloc((size_t)language->state_count * (MAX_STATE_PREDECESSOR_COUNT + 1), sizeof(TSStateId)), + }; +} + +static inline void state_predecessor_map_delete(StatePredecessorMap *self) +{ + ts_free(self->contents); +} + +static inline void state_predecessor_map_add(StatePredecessorMap *self, TSStateId state, TSStateId predecessor) +{ + size_t index = (size_t)state * (MAX_STATE_PREDECESSOR_COUNT + 1); + TSStateId *count = &self->contents[index]; + if (*count == 0 || (*count < MAX_STATE_PREDECESSOR_COUNT && self->contents[index + *count] != predecessor)) + { + (*count)++; + self->contents[index + *count] = predecessor; + } +} + +static inline const TSStateId *state_predecessor_map_get(const StatePredecessorMap *self, TSStateId state, unsigned *count) +{ + size_t index = (size_t)state * (MAX_STATE_PREDECESSOR_COUNT + 1); + *count = self->contents[index]; + return &self->contents[index + 1]; +} + +/**************** + * AnalysisState + ****************/ + +static unsigned analysis_state__recursion_depth(const AnalysisState *self) +{ + unsigned result = 0; + for (unsigned i = 0; i < self->depth; i++) + { + TSSymbol symbol = self->stack[i].parent_symbol; + for (unsigned j = 0; j < i; j++) + { + if (self->stack[j].parent_symbol == symbol) + { + result++; + break; + } + } + } + return result; +} + +static inline int analysis_state__compare_position(AnalysisState *const *self, AnalysisState *const *other) +{ + for (unsigned i = 0; i < (*self)->depth; i++) + { + if (i >= (*other)->depth) + return -1; + if ((*self)->stack[i].child_index < (*other)->stack[i].child_index) + return -1; + if ((*self)->stack[i].child_index > (*other)->stack[i].child_index) + return 1; + } + if ((*self)->depth < (*other)->depth) + return 1; + if ((*self)->step_index < (*other)->step_index) + return -1; + if ((*self)->step_index > (*other)->step_index) + return 1; + return 0; +} + +static inline int analysis_state__compare(AnalysisState *const *self, AnalysisState *const *other) +{ + int result = analysis_state__compare_position(self, other); + if (result != 0) + return result; + for (unsigned i = 0; i < (*self)->depth; i++) + { + if ((*self)->stack[i].parent_symbol < (*other)->stack[i].parent_symbol) + return -1; + if ((*self)->stack[i].parent_symbol > (*other)->stack[i].parent_symbol) + return 1; + if ((*self)->stack[i].parse_state < (*other)->stack[i].parse_state) + return -1; + if ((*self)->stack[i].parse_state > (*other)->stack[i].parse_state) + return 1; + if ((*self)->stack[i].field_id < (*other)->stack[i].field_id) + return -1; + if ((*self)->stack[i].field_id > (*other)->stack[i].field_id) + return 1; + } + return 0; +} + +static inline AnalysisStateEntry *analysis_state__top(AnalysisState *self) +{ + if (self->depth == 0) + { + return &self->stack[0]; + } + return &self->stack[self->depth - 1]; +} + +static inline bool analysis_state__has_supertype(AnalysisState *self, TSSymbol symbol) +{ + for (unsigned i = 0; i < self->depth; i++) + { + if (self->stack[i].parent_symbol == symbol) + return true; + } + return false; +} + +/****************** + * AnalysisStateSet + ******************/ + +// Obtains an `AnalysisState` instance, either by consuming one from this set's object pool, or by +// cloning one from scratch. +static inline AnalysisState *analysis_state_pool__clone_or_reuse(AnalysisStateSet *self, AnalysisState *borrowed_item) +{ + AnalysisState *new_item; + if (self->size) + { + new_item = array_pop(self); + } + else + { + new_item = ts_malloc(sizeof(AnalysisState)); + } + *new_item = *borrowed_item; + return new_item; +} + +// Inserts a clone of the passed-in item at the appropriate position to maintain ordering in this +// set. The set does not contain duplicates, so if the item is already present, it will not be +// inserted, and no clone will be made. +// +// The caller retains ownership of the passed-in memory. However, the clone that is created by this +// function will be managed by the state set. +static inline void analysis_state_set__insert_sorted(AnalysisStateSet *self, AnalysisStateSet *pool, AnalysisState *borrowed_item) +{ + unsigned index, exists; + array_search_sorted_with(self, analysis_state__compare, &borrowed_item, &index, &exists); + if (!exists) + { + AnalysisState *new_item = analysis_state_pool__clone_or_reuse(pool, borrowed_item); + array_insert(self, index, new_item); + } +} + +// Inserts a clone of the passed-in item at the end position of this list. +// +// IMPORTANT: The caller MUST ENSURE that this item is larger (by the comparison function +// `analysis_state__compare`) than largest item already in this set. If items are inserted in the +// wrong order, the set will not function properly for future use. +// +// The caller retains ownership of the passed-in memory. However, the clone that is created by this +// function will be managed by the state set. +static inline void analysis_state_set__push(AnalysisStateSet *self, AnalysisStateSet *pool, AnalysisState *borrowed_item) +{ + AnalysisState *new_item = analysis_state_pool__clone_or_reuse(pool, borrowed_item); + array_push(self, new_item); +} + +// Removes all items from this set, returning it to an empty state. +static inline void analysis_state_set__clear(AnalysisStateSet *self, AnalysisStateSet *pool) +{ + array_push_all(pool, self); + array_clear(self); +} + +// Releases all memory that is managed with this state set, including any items currently present. +// After calling this function, the set is no longer suitable for use. +static inline void analysis_state_set__delete(AnalysisStateSet *self) +{ + for (unsigned i = 0; i < self->size; i++) + { + ts_free(self->contents[i]); + } + array_delete(self); +} + +/**************** + * QueryAnalyzer + ****************/ + +static inline QueryAnalysis query_analysis__new(void) +{ + return (QueryAnalysis){ + .states = array_new(), + .next_states = array_new(), + .deeper_states = array_new(), + .state_pool = array_new(), + .final_step_indices = array_new(), + .finished_parent_symbols = array_new(), + .did_abort = false, + }; +} + +static inline void query_analysis__delete(QueryAnalysis *self) +{ + analysis_state_set__delete(&self->states); + analysis_state_set__delete(&self->next_states); + analysis_state_set__delete(&self->deeper_states); + analysis_state_set__delete(&self->state_pool); + array_delete(&self->final_step_indices); + array_delete(&self->finished_parent_symbols); +} + +/*********************** + * AnalysisSubgraphNode + ***********************/ + +static inline int analysis_subgraph_node__compare(const AnalysisSubgraphNode *self, const AnalysisSubgraphNode *other) +{ + if (self->state < other->state) + return -1; + if (self->state > other->state) + return 1; + if (self->child_index < other->child_index) + return -1; + if (self->child_index > other->child_index) + return 1; + if (self->done < other->done) + return -1; + if (self->done > other->done) + return 1; + if (self->production_id < other->production_id) + return -1; + if (self->production_id > other->production_id) + return 1; + return 0; +} + +/********* + * Query + *********/ + +// The `pattern_map` contains a mapping from TSSymbol values to indices in the +// `steps` array. For a given syntax node, the `pattern_map` makes it possible +// to quickly find the starting steps of all of the patterns whose root matches +// that node. Each entry has two fields: a `pattern_index`, which identifies one +// of the patterns in the query, and a `step_index`, which indicates the start +// offset of that pattern's steps within the `steps` array. +// +// The entries are sorted by the patterns' root symbols, and lookups use a +// binary search. This ensures that the cost of this initial lookup step +// scales logarithmically with the number of patterns in the query. +// +// This returns `true` if the symbol is present and `false` otherwise. +// If the symbol is not present `*result` is set to the index where the +// symbol should be inserted. +static inline bool ts_query__pattern_map_search(const TSQuery *self, TSSymbol needle, uint32_t *result) +{ + uint32_t base_index = self->wildcard_root_pattern_count; + uint32_t size = self->pattern_map.size - base_index; + if (size == 0) + { + *result = base_index; + return false; + } + while (size > 1) + { + uint32_t half_size = size / 2; + uint32_t mid_index = base_index + half_size; + TSSymbol mid_symbol = self->steps.contents[self->pattern_map.contents[mid_index].step_index].symbol; + if (needle > mid_symbol) + base_index = mid_index; + size -= half_size; + } + + TSSymbol symbol = self->steps.contents[self->pattern_map.contents[base_index].step_index].symbol; + + if (needle > symbol) + { + base_index++; + if (base_index < self->pattern_map.size) + { + symbol = self->steps.contents[self->pattern_map.contents[base_index].step_index].symbol; + } + } + + *result = base_index; + return needle == symbol; +} + +// Insert a new pattern's start index into the pattern map, maintaining +// the pattern map's ordering invariant. +static inline void ts_query__pattern_map_insert(TSQuery *self, TSSymbol symbol, PatternEntry new_entry) +{ + uint32_t index; + ts_query__pattern_map_search(self, symbol, &index); + + // Ensure that the entries are sorted not only by symbol, but also + // by pattern_index. This way, states for earlier patterns will be + // initiated first, which allows the ordering of the states array + // to be maintained more efficiently. + while (index < self->pattern_map.size) + { + PatternEntry *entry = &self->pattern_map.contents[index]; + if (self->steps.contents[entry->step_index].symbol == symbol && entry->pattern_index < new_entry.pattern_index) + { + index++; + } + else + { + break; + } + } + + array_insert(&self->pattern_map, index, new_entry); +} + +// Walk the subgraph for this non-terminal, tracking all of the possible +// sequences of progress within the pattern. +static void ts_query__perform_analysis(TSQuery *self, const AnalysisSubgraphArray *subgraphs, QueryAnalysis *analysis) +{ + unsigned recursion_depth_limit = 0; + unsigned prev_final_step_count = 0; + array_clear(&analysis->final_step_indices); + array_clear(&analysis->finished_parent_symbols); + + for (unsigned iteration = 0;; iteration++) + { + if (iteration == MAX_ANALYSIS_ITERATION_COUNT) + { + analysis->did_abort = true; + break; + } + +#ifdef DEBUG_ANALYZE_QUERY + printf("Iteration: %u. Final step indices:", iteration); + for (unsigned j = 0; j < analysis->final_step_indices.size; j++) + { + printf(" %4u", analysis->final_step_indices.contents[j]); + } + printf("\n"); + for (unsigned j = 0; j < analysis->states.size; j++) + { + AnalysisState *state = analysis->states.contents[j]; + printf(" %3u: step: %u, stack: [", j, state->step_index); + for (unsigned k = 0; k < state->depth; k++) + { + printf(" {%s, child: %u, state: %4u", self->language->symbol_names[state->stack[k].parent_symbol], + state->stack[k].child_index, state->stack[k].parse_state); + if (state->stack[k].field_id) + printf(", field: %s", self->language->field_names[state->stack[k].field_id]); + if (state->stack[k].done) + printf(", DONE"); + printf("}"); + } + printf(" ]\n"); + } +#endif + + // If no further progress can be made within the current recursion depth limit, then + // bump the depth limit by one, and continue to process the states the exceeded the + // limit. But only allow this if progress has been made since the last time the depth + // limit was increased. + if (analysis->states.size == 0) + { + if (analysis->deeper_states.size > 0 && analysis->final_step_indices.size > prev_final_step_count) + { +#ifdef DEBUG_ANALYZE_QUERY + printf("Increase recursion depth limit to %u\n", recursion_depth_limit + 1); +#endif + + prev_final_step_count = analysis->final_step_indices.size; + recursion_depth_limit++; + AnalysisStateSet _states = analysis->states; + analysis->states = analysis->deeper_states; + analysis->deeper_states = _states; + continue; + } + + break; + } + + analysis_state_set__clear(&analysis->next_states, &analysis->state_pool); + for (unsigned j = 0; j < analysis->states.size; j++) + { + AnalysisState *const state = analysis->states.contents[j]; + + // For efficiency, it's important to avoid processing the same analysis state more + // than once. To achieve this, keep the states in order of ascending position within + // their hypothetical syntax trees. In each iteration of this loop, start by advancing + // the states that have made the least progress. Avoid advancing states that have already + // made more progress. + if (analysis->next_states.size > 0) + { + int comparison = analysis_state__compare_position(&state, array_back(&analysis->next_states)); + if (comparison == 0) + { + analysis_state_set__insert_sorted(&analysis->next_states, &analysis->state_pool, state); + continue; + } + else if (comparison > 0) + { +#ifdef DEBUG_ANALYZE_QUERY + printf("Terminate iteration at state %u\n", j); +#endif + while (j < analysis->states.size) + { + analysis_state_set__push(&analysis->next_states, &analysis->state_pool, analysis->states.contents[j]); + j++; + } + break; + } + } + + const TSStateId parse_state = analysis_state__top(state)->parse_state; + const TSSymbol parent_symbol = analysis_state__top(state)->parent_symbol; + const TSFieldId parent_field_id = analysis_state__top(state)->field_id; + const unsigned child_index = analysis_state__top(state)->child_index; + const QueryStep *const step = &self->steps.contents[state->step_index]; + + unsigned subgraph_index, exists; + array_search_sorted_by(subgraphs, .symbol, parent_symbol, &subgraph_index, &exists); + if (!exists) + continue; + const AnalysisSubgraph *subgraph = &subgraphs->contents[subgraph_index]; + + // Follow every possible path in the parse table, but only visit states that + // are part of the subgraph for the current symbol. + LookaheadIterator lookahead_iterator = ts_language_lookaheads(self->language, parse_state); + while (ts_lookahead_iterator__next(&lookahead_iterator)) + { + TSSymbol sym = lookahead_iterator.symbol; + + AnalysisSubgraphNode successor = { + .state = parse_state, + .child_index = child_index, + }; + if (lookahead_iterator.action_count) + { + const TSParseAction *action = &lookahead_iterator.actions[lookahead_iterator.action_count - 1]; + if (action->type == TSParseActionTypeShift) + { + if (!action->shift.extra) + { + successor.state = action->shift.state; + successor.child_index++; + } + } + else + { + continue; + } + } + else if (lookahead_iterator.next_state != 0) + { + successor.state = lookahead_iterator.next_state; + successor.child_index++; + } + else + { + continue; + } + + unsigned node_index; + array_search_sorted_with(&subgraph->nodes, analysis_subgraph_node__compare, &successor, &node_index, &exists); + while (node_index < subgraph->nodes.size) + { + AnalysisSubgraphNode *node = &subgraph->nodes.contents[node_index++]; + if (node->state != successor.state || node->child_index != successor.child_index) + break; + + // Use the subgraph to determine what alias and field will eventually be applied + // to this child node. + TSSymbol alias = ts_language_alias_at(self->language, node->production_id, child_index); + TSSymbol visible_symbol = alias ? alias + : self->language->symbol_metadata[sym].visible ? self->language->public_symbol_map[sym] + : 0; + TSFieldId field_id = parent_field_id; + if (!field_id) + { + const TSFieldMapEntry *field_map, *field_map_end; + ts_language_field_map(self->language, node->production_id, &field_map, &field_map_end); + for (; field_map != field_map_end; field_map++) + { + if (!field_map->inherited && field_map->child_index == child_index) + { + field_id = field_map->field_id; + break; + } + } + } + + // Create a new state that has advanced past this hypothetical subtree. + AnalysisState next_state = *state; + AnalysisStateEntry *next_state_top = analysis_state__top(&next_state); + next_state_top->child_index = successor.child_index; + next_state_top->parse_state = successor.state; + if (node->done) + next_state_top->done = true; + + // Determine if this hypothetical child node would match the current step + // of the query pattern. + bool does_match = false; + if (visible_symbol) + { + does_match = true; + if (step->symbol == WILDCARD_SYMBOL) + { + if (step->is_named && !self->language->symbol_metadata[visible_symbol].named) + does_match = false; + } + else if (step->symbol != visible_symbol) + { + does_match = false; + } + if (step->field && step->field != field_id) + { + does_match = false; + } + if (step->supertype_symbol && !analysis_state__has_supertype(state, step->supertype_symbol)) + does_match = false; + } + + // If this child is hidden, then descend into it and walk through its children. + // If the top entry of the stack is at the end of its rule, then that entry can + // be replaced. Otherwise, push a new entry onto the stack. + else if (sym >= self->language->token_count) + { + if (!next_state_top->done) + { + if (next_state.depth + 1 >= MAX_ANALYSIS_STATE_DEPTH) + { +#ifdef DEBUG_ANALYZE_QUERY + printf("Exceeded depth limit for state %u\n", j); +#endif + + analysis->did_abort = true; + continue; + } + + next_state.depth++; + next_state_top = analysis_state__top(&next_state); + } + + *next_state_top = (AnalysisStateEntry){ + .parse_state = parse_state, + .parent_symbol = sym, + .child_index = 0, + .field_id = field_id, + .done = false, + }; + + if (analysis_state__recursion_depth(&next_state) > recursion_depth_limit) + { + analysis_state_set__insert_sorted(&analysis->deeper_states, &analysis->state_pool, &next_state); + continue; + } + } + + // Pop from the stack when this state reached the end of its current syntax node. + while (next_state.depth > 0 && next_state_top->done) + { + next_state.depth--; + next_state_top = analysis_state__top(&next_state); + } + + // If this hypothetical child did match the current step of the query pattern, + // then advance to the next step at the current depth. This involves skipping + // over any descendant steps of the current child. + const QueryStep *next_step = step; + if (does_match) + { + for (;;) + { + next_state.step_index++; + next_step = &self->steps.contents[next_state.step_index]; + if (next_step->depth == PATTERN_DONE_MARKER || next_step->depth <= step->depth) + break; + } + } + else if (successor.state == parse_state) + { + continue; + } + + for (;;) + { + // Skip pass-through states. Although these states have alternatives, they are only + // used to implement repetitions, and query analysis does not need to process + // repetitions in order to determine whether steps are possible and definite. + if (next_step->is_pass_through) + { + next_state.step_index++; + next_step++; + continue; + } + + // If the pattern is finished or hypothetical parent node is complete, then + // record that matching can terminate at this step of the pattern. Otherwise, + // add this state to the list of states to process on the next iteration. + if (!next_step->is_dead_end) + { + bool did_finish_pattern = self->steps.contents[next_state.step_index].depth != step->depth; + if (did_finish_pattern) + { + array_insert_sorted_by(&analysis->finished_parent_symbols, , state->root_symbol); + } + else if (next_state.depth == 0) + { + array_insert_sorted_by(&analysis->final_step_indices, , next_state.step_index); + } + else + { + analysis_state_set__insert_sorted(&analysis->next_states, &analysis->state_pool, &next_state); + } + } + + // If the state has advanced to a step with an alternative step, then add another state + // at that alternative step. This process is simpler than the process of actually matching a + // pattern during query execution, because for the purposes of query analysis, there is no + // need to process repetitions. + if (does_match && next_step->alternative_index != NONE && next_step->alternative_index > next_state.step_index) + { + next_state.step_index = next_step->alternative_index; + next_step = &self->steps.contents[next_state.step_index]; + } + else + { + break; + } + } + } + } + } + + AnalysisStateSet _states = analysis->states; + analysis->states = analysis->next_states; + analysis->next_states = _states; + } +} + +static bool ts_query__analyze_patterns(TSQuery *self, unsigned *error_offset) +{ + Array(uint16_t) non_rooted_pattern_start_steps = array_new(); + for (unsigned i = 0; i < self->pattern_map.size; i++) + { + PatternEntry *pattern = &self->pattern_map.contents[i]; + if (!pattern->is_rooted) + { + QueryStep *step = &self->steps.contents[pattern->step_index]; + if (step->symbol != WILDCARD_SYMBOL) + { + array_push(&non_rooted_pattern_start_steps, i); + } + } + } + + // Walk forward through all of the steps in the query, computing some + // basic information about each step. Mark all of the steps that contain + // captures, and record the indices of all of the steps that have child steps. + Array(uint32_t) parent_step_indices = array_new(); + for (unsigned i = 0; i < self->steps.size; i++) + { + QueryStep *step = &self->steps.contents[i]; + if (step->depth == PATTERN_DONE_MARKER) + { + step->parent_pattern_guaranteed = true; + step->root_pattern_guaranteed = true; + continue; + } + + bool has_children = false; + bool is_wildcard = step->symbol == WILDCARD_SYMBOL; + step->contains_captures = step->capture_ids[0] != NONE; + for (unsigned j = i + 1; j < self->steps.size; j++) + { + QueryStep *next_step = &self->steps.contents[j]; + if (next_step->depth == PATTERN_DONE_MARKER || next_step->depth <= step->depth) + break; + if (next_step->capture_ids[0] != NONE) + { + step->contains_captures = true; + } + if (!is_wildcard) + { + next_step->root_pattern_guaranteed = true; + next_step->parent_pattern_guaranteed = true; + } + has_children = true; + } + + if (has_children && !is_wildcard) + { + array_push(&parent_step_indices, i); + } + } + + // For every parent symbol in the query, initialize an 'analysis subgraph'. + // This subgraph lists all of the states in the parse table that are directly + // involved in building subtrees for this symbol. + // + // In addition to the parent symbols in the query, construct subgraphs for all + // of the hidden symbols in the grammar, because these might occur within + // one of the parent nodes, such that their children appear to belong to the + // parent. + AnalysisSubgraphArray subgraphs = array_new(); + for (unsigned i = 0; i < parent_step_indices.size; i++) + { + uint32_t parent_step_index = parent_step_indices.contents[i]; + TSSymbol parent_symbol = self->steps.contents[parent_step_index].symbol; + AnalysisSubgraph subgraph = {.symbol = parent_symbol}; + array_insert_sorted_by(&subgraphs, .symbol, subgraph); + } + for (TSSymbol sym = (uint16_t)self->language->token_count; sym < (uint16_t)self->language->symbol_count; sym++) + { + if (!ts_language_symbol_metadata(self->language, sym).visible) + { + AnalysisSubgraph subgraph = {.symbol = sym}; + array_insert_sorted_by(&subgraphs, .symbol, subgraph); + } + } + + // Scan the parse table to find the data needed to populate these subgraphs. + // Collect three things during this scan: + // 1) All of the parse states where one of these symbols can start. + // 2) All of the parse states where one of these symbols can end, along + // with information about the node that would be created. + // 3) A list of predecessor states for each state. + StatePredecessorMap predecessor_map = state_predecessor_map_new(self->language); + for (TSStateId state = 1; state < (uint16_t)self->language->state_count; state++) + { + unsigned subgraph_index, exists; + LookaheadIterator lookahead_iterator = ts_language_lookaheads(self->language, state); + while (ts_lookahead_iterator__next(&lookahead_iterator)) + { + if (lookahead_iterator.action_count) + { + for (unsigned i = 0; i < lookahead_iterator.action_count; i++) + { + const TSParseAction *action = &lookahead_iterator.actions[i]; + if (action->type == TSParseActionTypeReduce) + { + const TSSymbol *aliases, *aliases_end; + ts_language_aliases_for_symbol(self->language, action->reduce.symbol, &aliases, &aliases_end); + for (const TSSymbol *symbol = aliases; symbol < aliases_end; symbol++) + { + array_search_sorted_by(&subgraphs, .symbol, *symbol, &subgraph_index, &exists); + if (exists) + { + AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index]; + if (subgraph->nodes.size == 0 || array_back(&subgraph->nodes)->state != state) + { + array_push(&subgraph->nodes, ((AnalysisSubgraphNode){ + .state = state, + .production_id = action->reduce.production_id, + .child_index = action->reduce.child_count, + .done = true, + })); + } + } + } + } + else if (action->type == TSParseActionTypeShift && !action->shift.extra) + { + TSStateId next_state = action->shift.state; + state_predecessor_map_add(&predecessor_map, next_state, state); + } + } + } + else if (lookahead_iterator.next_state != 0) + { + if (lookahead_iterator.next_state != state) + { + state_predecessor_map_add(&predecessor_map, lookahead_iterator.next_state, state); + } + if (ts_language_state_is_primary(self->language, state)) + { + const TSSymbol *aliases, *aliases_end; + ts_language_aliases_for_symbol(self->language, lookahead_iterator.symbol, &aliases, &aliases_end); + for (const TSSymbol *symbol = aliases; symbol < aliases_end; symbol++) + { + array_search_sorted_by(&subgraphs, .symbol, *symbol, &subgraph_index, &exists); + if (exists) + { + AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index]; + if (subgraph->start_states.size == 0 || *array_back(&subgraph->start_states) != state) + array_push(&subgraph->start_states, state); + } + } + } + } + } + } + + // For each subgraph, compute the preceding states by walking backward + // from the end states using the predecessor map. + Array(AnalysisSubgraphNode) next_nodes = array_new(); + for (unsigned i = 0; i < subgraphs.size; i++) + { + AnalysisSubgraph *subgraph = &subgraphs.contents[i]; + if (subgraph->nodes.size == 0) + { + array_delete(&subgraph->start_states); + array_erase(&subgraphs, i); + i--; + continue; + } + array_assign(&next_nodes, &subgraph->nodes); + while (next_nodes.size > 0) + { + AnalysisSubgraphNode node = array_pop(&next_nodes); + if (node.child_index > 1) + { + unsigned predecessor_count; + const TSStateId *predecessors = state_predecessor_map_get(&predecessor_map, node.state, &predecessor_count); + for (unsigned j = 0; j < predecessor_count; j++) + { + AnalysisSubgraphNode predecessor_node = { + .state = predecessors[j], + .child_index = node.child_index - 1, + .production_id = node.production_id, + .done = false, + }; + unsigned index, exists; + array_search_sorted_with(&subgraph->nodes, analysis_subgraph_node__compare, &predecessor_node, &index, &exists); + if (!exists) + { + array_insert(&subgraph->nodes, index, predecessor_node); + array_push(&next_nodes, predecessor_node); + } + } + } + } + } + +#ifdef DEBUG_ANALYZE_QUERY + printf("\nSubgraphs:\n"); + for (unsigned i = 0; i < subgraphs.size; i++) + { + AnalysisSubgraph *subgraph = &subgraphs.contents[i]; + printf(" %u, %s:\n", subgraph->symbol, ts_language_symbol_name(self->language, subgraph->symbol)); + for (unsigned j = 0; j < subgraph->start_states.size; j++) + { + printf(" {state: %u}\n", subgraph->start_states.contents[j]); + } + for (unsigned j = 0; j < subgraph->nodes.size; j++) + { + AnalysisSubgraphNode *node = &subgraph->nodes.contents[j]; + printf(" {state: %u, child_index: %u, production_id: %u, done: %d}\n", node->state, node->child_index, node->production_id, + node->done); + } + printf("\n"); + } +#endif + + // For each non-terminal pattern, determine if the pattern can successfully match, + // and identify all of the possible children within the pattern where matching could fail. + bool all_patterns_are_valid = true; + QueryAnalysis analysis = query_analysis__new(); + for (unsigned i = 0; i < parent_step_indices.size; i++) + { + uint16_t parent_step_index = parent_step_indices.contents[i]; + uint16_t parent_depth = self->steps.contents[parent_step_index].depth; + TSSymbol parent_symbol = self->steps.contents[parent_step_index].symbol; + if (parent_symbol == ts_builtin_sym_error) + continue; + + // Find the subgraph that corresponds to this pattern's root symbol. If the pattern's + // root symbol is a terminal, then return an error. + unsigned subgraph_index, exists; + array_search_sorted_by(&subgraphs, .symbol, parent_symbol, &subgraph_index, &exists); + if (!exists) + { + unsigned first_child_step_index = parent_step_index + 1; + uint32_t j, child_exists; + array_search_sorted_by(&self->step_offsets, .step_index, first_child_step_index, &j, &child_exists); + assert(child_exists); + *error_offset = self->step_offsets.contents[j].byte_offset; + all_patterns_are_valid = false; + break; + } + + // Initialize an analysis state at every parse state in the table where + // this parent symbol can occur. + AnalysisSubgraph *subgraph = &subgraphs.contents[subgraph_index]; + analysis_state_set__clear(&analysis.states, &analysis.state_pool); + analysis_state_set__clear(&analysis.deeper_states, &analysis.state_pool); + for (unsigned j = 0; j < subgraph->start_states.size; j++) + { + TSStateId parse_state = subgraph->start_states.contents[j]; + analysis_state_set__push(&analysis.states, &analysis.state_pool, + &((AnalysisState){ + .step_index = parent_step_index + 1, + .stack = + { + [0] = + { + .parse_state = parse_state, + .parent_symbol = parent_symbol, + .child_index = 0, + .field_id = 0, + .done = false, + }, + }, + .depth = 1, + .root_symbol = parent_symbol, + })); + } + +#ifdef DEBUG_ANALYZE_QUERY + printf("\nWalk states for %s:\n", ts_language_symbol_name(self->language, analysis.states.contents[0]->stack[0].parent_symbol)); +#endif + + analysis.did_abort = false; + ts_query__perform_analysis(self, &subgraphs, &analysis); + + // If this pattern could not be fully analyzed, then every step should + // be considered fallible. + if (analysis.did_abort) + { + for (unsigned j = parent_step_index + 1; j < self->steps.size; j++) + { + QueryStep *step = &self->steps.contents[j]; + if (step->depth <= parent_depth || step->depth == PATTERN_DONE_MARKER) + break; + if (!step->is_dead_end) + { + step->parent_pattern_guaranteed = false; + step->root_pattern_guaranteed = false; + } + } + continue; + } + + // If this pattern cannot match, store the pattern index so that it can be + // returned to the caller. + if (analysis.finished_parent_symbols.size == 0) + { + assert(analysis.final_step_indices.size > 0); + uint16_t impossible_step_index = *array_back(&analysis.final_step_indices); + uint32_t j, impossible_exists; + array_search_sorted_by(&self->step_offsets, .step_index, impossible_step_index, &j, &impossible_exists); + if (j >= self->step_offsets.size) + j = self->step_offsets.size - 1; + *error_offset = self->step_offsets.contents[j].byte_offset; + all_patterns_are_valid = false; + break; + } + + // Mark as fallible any step where a match terminated. + // Later, this property will be propagated to all of the step's predecessors. + for (unsigned j = 0; j < analysis.final_step_indices.size; j++) + { + uint32_t final_step_index = analysis.final_step_indices.contents[j]; + QueryStep *step = &self->steps.contents[final_step_index]; + if (step->depth != PATTERN_DONE_MARKER && step->depth > parent_depth && !step->is_dead_end) + { + step->parent_pattern_guaranteed = false; + step->root_pattern_guaranteed = false; + } + } + } + + // Mark as indefinite any step with captures that are used in predicates. + Array(uint16_t) predicate_capture_ids = array_new(); + for (unsigned i = 0; i < self->patterns.size; i++) + { + QueryPattern *pattern = &self->patterns.contents[i]; + + // Gather all of the captures that are used in predicates for this pattern. + array_clear(&predicate_capture_ids); + for (unsigned start = pattern->predicate_steps.offset, end = start + pattern->predicate_steps.length, j = start; j < end; j++) + { + TSQueryPredicateStep *step = &self->predicate_steps.contents[j]; + if (step->type == TSQueryPredicateStepTypeCapture) + { + uint16_t value_id = step->value_id; + array_insert_sorted_by(&predicate_capture_ids, , value_id); + } + } + + // Find all of the steps that have these captures. + for (unsigned start = pattern->steps.offset, end = start + pattern->steps.length, j = start; j < end; j++) + { + QueryStep *step = &self->steps.contents[j]; + for (unsigned k = 0; k < MAX_STEP_CAPTURE_COUNT; k++) + { + uint16_t capture_id = step->capture_ids[k]; + if (capture_id == NONE) + break; + unsigned index, exists; + array_search_sorted_by(&predicate_capture_ids, , capture_id, &index, &exists); + if (exists) + { + step->root_pattern_guaranteed = false; + break; + } + } + } + } + + // Propagate fallibility. If a pattern is fallible at a given step, then it is + // fallible at all of its preceding steps. + bool done = self->steps.size == 0; + while (!done) + { + done = true; + for (unsigned i = self->steps.size - 1; i > 0; i--) + { + QueryStep *step = &self->steps.contents[i]; + if (step->depth == PATTERN_DONE_MARKER) + continue; + + // Determine if this step is definite or has definite alternatives. + bool parent_pattern_guaranteed = false; + for (;;) + { + if (step->root_pattern_guaranteed) + { + parent_pattern_guaranteed = true; + break; + } + if (step->alternative_index == NONE || step->alternative_index < i) + { + break; + } + step = &self->steps.contents[step->alternative_index]; + } + + // If not, mark its predecessor as indefinite. + if (!parent_pattern_guaranteed) + { + QueryStep *prev_step = &self->steps.contents[i - 1]; + if (!prev_step->is_dead_end && prev_step->depth != PATTERN_DONE_MARKER && prev_step->root_pattern_guaranteed) + { + prev_step->root_pattern_guaranteed = false; + done = false; + } + } + } + } + +#ifdef DEBUG_ANALYZE_QUERY + printf("Steps:\n"); + for (unsigned i = 0; i < self->steps.size; i++) + { + QueryStep *step = &self->steps.contents[i]; + if (step->depth == PATTERN_DONE_MARKER) + { + printf(" %u: DONE\n", i); + } + else + { + printf(" %u: {symbol: %s, field: %s, depth: %u, parent_pattern_guaranteed: %d, root_pattern_guaranteed: %d}\n", i, + (step->symbol == WILDCARD_SYMBOL) ? "ANY" : ts_language_symbol_name(self->language, step->symbol), + (step->field ? ts_language_field_name_for_id(self->language, step->field) : "-"), step->depth, + step->parent_pattern_guaranteed, step->root_pattern_guaranteed); + } + } +#endif + + // Determine which repetition symbols in this language have the possibility + // of matching non-rooted patterns in this query. These repetition symbols + // prevent certain optimizations with range restrictions. + analysis.did_abort = false; + for (uint32_t i = 0; i < non_rooted_pattern_start_steps.size; i++) + { + uint16_t pattern_entry_index = non_rooted_pattern_start_steps.contents[i]; + PatternEntry *pattern_entry = &self->pattern_map.contents[pattern_entry_index]; + + analysis_state_set__clear(&analysis.states, &analysis.state_pool); + analysis_state_set__clear(&analysis.deeper_states, &analysis.state_pool); + for (unsigned j = 0; j < subgraphs.size; j++) + { + AnalysisSubgraph *subgraph = &subgraphs.contents[j]; + TSSymbolMetadata metadata = ts_language_symbol_metadata(self->language, subgraph->symbol); + if (metadata.visible || metadata.named) + continue; + + for (uint32_t k = 0; k < subgraph->start_states.size; k++) + { + TSStateId parse_state = subgraph->start_states.contents[k]; + analysis_state_set__push(&analysis.states, &analysis.state_pool, + &((AnalysisState){ + .step_index = pattern_entry->step_index, + .stack = + { + [0] = + { + .parse_state = parse_state, + .parent_symbol = subgraph->symbol, + .child_index = 0, + .field_id = 0, + .done = false, + }, + }, + .root_symbol = subgraph->symbol, + .depth = 1, + })); + } + } + +#ifdef DEBUG_ANALYZE_QUERY + printf("\nWalk states for rootless pattern step %u:\n", pattern_entry->step_index); +#endif + + ts_query__perform_analysis(self, &subgraphs, &analysis); + + if (analysis.finished_parent_symbols.size > 0) + { + self->patterns.contents[pattern_entry->pattern_index].is_non_local = true; + } + + for (unsigned k = 0; k < analysis.finished_parent_symbols.size; k++) + { + TSSymbol symbol = analysis.finished_parent_symbols.contents[k]; + array_insert_sorted_by(&self->repeat_symbols_with_rootless_patterns, , symbol); + } + } + +#ifdef DEBUG_ANALYZE_QUERY + if (self->repeat_symbols_with_rootless_patterns.size > 0) + { + printf("\nRepetition symbols with rootless patterns:\n"); + printf("aborted analysis: %d\n", analysis.did_abort); + for (unsigned i = 0; i < self->repeat_symbols_with_rootless_patterns.size; i++) + { + TSSymbol symbol = self->repeat_symbols_with_rootless_patterns.contents[i]; + printf(" %u, %s\n", symbol, ts_language_symbol_name(self->language, symbol)); + } + printf("\n"); + } +#endif + + // Cleanup + for (unsigned i = 0; i < subgraphs.size; i++) + { + array_delete(&subgraphs.contents[i].start_states); + array_delete(&subgraphs.contents[i].nodes); + } + array_delete(&subgraphs); + query_analysis__delete(&analysis); + array_delete(&next_nodes); + array_delete(&non_rooted_pattern_start_steps); + array_delete(&parent_step_indices); + array_delete(&predicate_capture_ids); + state_predecessor_map_delete(&predecessor_map); + + return all_patterns_are_valid; +} + +static void ts_query__add_negated_fields(TSQuery *self, uint16_t step_index, TSFieldId *field_ids, uint16_t field_count) +{ + QueryStep *step = &self->steps.contents[step_index]; + + // The negated field array stores a list of field lists, separated by zeros. + // Try to find the start index of an existing list that matches this new list. + bool failed_match = false; + unsigned match_count = 0; + unsigned start_i = 0; + for (unsigned i = 0; i < self->negated_fields.size; i++) + { + TSFieldId existing_field_id = self->negated_fields.contents[i]; + + // At each zero value, terminate the match attempt. If we've exactly + // matched the new field list, then reuse this index. Otherwise, + // start over the matching process. + if (existing_field_id == 0) + { + if (match_count == field_count) + { + step->negated_field_list_id = start_i; + return; + } + else + { + start_i = i + 1; + match_count = 0; + failed_match = false; + } + } + + // If the existing list matches our new list so far, then advance + // to the next element of the new list. + else if (match_count < field_count && existing_field_id == field_ids[match_count] && !failed_match) + { + match_count++; + } + + // Otherwise, this existing list has failed to match. + else + { + match_count = 0; + failed_match = true; + } + } + + step->negated_field_list_id = self->negated_fields.size; + array_extend(&self->negated_fields, field_count, field_ids); + array_push(&self->negated_fields, 0); +} + +static TSQueryError ts_query__parse_string_literal(TSQuery *self, Stream *stream) +{ + const char *string_start = stream->input; + if (stream->next != '"') + return TSQueryErrorSyntax; + stream_advance(stream); + const char *prev_position = stream->input; + + bool is_escaped = false; + array_clear(&self->string_buffer); + for (;;) + { + if (is_escaped) + { + is_escaped = false; + switch (stream->next) + { + case 'n': + array_push(&self->string_buffer, '\n'); + break; + case 'r': + array_push(&self->string_buffer, '\r'); + break; + case 't': + array_push(&self->string_buffer, '\t'); + break; + case '0': + array_push(&self->string_buffer, '\0'); + break; + default: + array_extend(&self->string_buffer, stream->next_size, stream->input); + break; + } + prev_position = stream->input + stream->next_size; + } + else + { + if (stream->next == '\\') + { + array_extend(&self->string_buffer, (uint32_t)(stream->input - prev_position), prev_position); + prev_position = stream->input + 1; + is_escaped = true; + } + else if (stream->next == '"') + { + array_extend(&self->string_buffer, (uint32_t)(stream->input - prev_position), prev_position); + stream_advance(stream); + return TSQueryErrorNone; + } + else if (stream->next == '\n') + { + stream_reset(stream, string_start); + return TSQueryErrorSyntax; + } + } + if (!stream_advance(stream)) + { + stream_reset(stream, string_start); + return TSQueryErrorSyntax; + } + } +} + +// Parse a single predicate associated with a pattern, adding it to the +// query's internal `predicate_steps` array. Predicates are arbitrary +// S-expressions associated with a pattern which are meant to be handled at +// a higher level of abstraction, such as the Rust/JavaScript bindings. They +// can contain '@'-prefixed capture names, double-quoted strings, and bare +// symbols, which also represent strings. +static TSQueryError ts_query__parse_predicate(TSQuery *self, Stream *stream) +{ + if (!stream_is_ident_start(stream)) + return TSQueryErrorSyntax; + const char *predicate_name = stream->input; + stream_scan_identifier(stream); + uint32_t length = (uint32_t)(stream->input - predicate_name); + uint16_t id = symbol_table_insert_name(&self->predicate_values, predicate_name, length); + array_push(&self->predicate_steps, ((TSQueryPredicateStep){ + .type = TSQueryPredicateStepTypeString, + .value_id = id, + })); + stream_skip_whitespace(stream); + + for (;;) + { + if (stream->next == ')') + { + stream_advance(stream); + stream_skip_whitespace(stream); + array_push(&self->predicate_steps, ((TSQueryPredicateStep){ + .type = TSQueryPredicateStepTypeDone, + .value_id = 0, + })); + break; + } + + // Parse an '@'-prefixed capture name + else if (stream->next == '@') + { + stream_advance(stream); + + // Parse the capture name + if (!stream_is_ident_start(stream)) + return TSQueryErrorSyntax; + const char *capture_name = stream->input; + stream_scan_identifier(stream); + uint32_t capture_length = (uint32_t)(stream->input - capture_name); + + // Add the capture id to the first step of the pattern + int capture_id = symbol_table_id_for_name(&self->captures, capture_name, capture_length); + if (capture_id == -1) + { + stream_reset(stream, capture_name); + return TSQueryErrorCapture; + } + + array_push(&self->predicate_steps, ((TSQueryPredicateStep){ + .type = TSQueryPredicateStepTypeCapture, + .value_id = capture_id, + })); + } + + // Parse a string literal + else if (stream->next == '"') + { + TSQueryError e = ts_query__parse_string_literal(self, stream); + if (e) + return e; + uint16_t query_id = symbol_table_insert_name(&self->predicate_values, self->string_buffer.contents, self->string_buffer.size); + array_push(&self->predicate_steps, ((TSQueryPredicateStep){ + .type = TSQueryPredicateStepTypeString, + .value_id = query_id, + })); + } + + // Parse a bare symbol + else if (stream_is_ident_start(stream)) + { + const char *symbol_start = stream->input; + stream_scan_identifier(stream); + uint32_t symbol_length = (uint32_t)(stream->input - symbol_start); + uint16_t query_id = symbol_table_insert_name(&self->predicate_values, symbol_start, symbol_length); + array_push(&self->predicate_steps, ((TSQueryPredicateStep){ + .type = TSQueryPredicateStepTypeString, + .value_id = query_id, + })); + } + + else + { + return TSQueryErrorSyntax; + } + + stream_skip_whitespace(stream); + } + + return 0; +} + +// Read one S-expression pattern from the stream, and incorporate it into +// the query's internal state machine representation. For nested patterns, +// this function calls itself recursively. +// +// The caller is responsible for passing in a dedicated CaptureQuantifiers. +// These should not be shared between different calls to ts_query__parse_pattern! +static TSQueryError ts_query__parse_pattern(TSQuery *self, Stream *stream, uint32_t depth, bool is_immediate, + CaptureQuantifiers *capture_quantifiers) +{ + if (stream->next == 0) + return TSQueryErrorSyntax; + if (stream->next == ')' || stream->next == ']') + return PARENT_DONE; + + const uint32_t starting_step_index = self->steps.size; + + // Store the byte offset of each step in the query. + if (self->step_offsets.size == 0 || array_back(&self->step_offsets)->step_index != starting_step_index) + { + array_push(&self->step_offsets, ((StepOffset){ + .step_index = starting_step_index, + .byte_offset = stream_offset(stream), + })); + } + + // An open bracket is the start of an alternation. + if (stream->next == '[') + { + stream_advance(stream); + stream_skip_whitespace(stream); + + // Parse each branch, and add a placeholder step in between the branches. + Array(uint32_t) branch_step_indices = array_new(); + CaptureQuantifiers branch_capture_quantifiers = capture_quantifiers_new(); + for (;;) + { + uint32_t start_index = self->steps.size; + TSQueryError e = ts_query__parse_pattern(self, stream, depth, is_immediate, &branch_capture_quantifiers); + + if (e == PARENT_DONE) + { + if (stream->next == ']' && branch_step_indices.size > 0) + { + stream_advance(stream); + break; + } + e = TSQueryErrorSyntax; + } + if (e) + { + capture_quantifiers_delete(&branch_capture_quantifiers); + array_delete(&branch_step_indices); + return e; + } + + if (start_index == starting_step_index) + { + capture_quantifiers_replace(capture_quantifiers, &branch_capture_quantifiers); + } + else + { + capture_quantifiers_join_all(capture_quantifiers, &branch_capture_quantifiers); + } + + array_push(&branch_step_indices, start_index); + array_push(&self->steps, query_step__new(0, depth, false)); + capture_quantifiers_clear(&branch_capture_quantifiers); + } + (void)array_pop(&self->steps); + + // For all of the branches except for the last one, add the subsequent branch as an + // alternative, and link the end of the branch to the current end of the steps. + for (unsigned i = 0; i < branch_step_indices.size - 1; i++) + { + uint32_t step_index = branch_step_indices.contents[i]; + uint32_t next_step_index = branch_step_indices.contents[i + 1]; + QueryStep *start_step = &self->steps.contents[step_index]; + QueryStep *end_step = &self->steps.contents[next_step_index - 1]; + start_step->alternative_index = next_step_index; + end_step->alternative_index = self->steps.size; + end_step->is_dead_end = true; + } + + capture_quantifiers_delete(&branch_capture_quantifiers); + array_delete(&branch_step_indices); + } + + // An open parenthesis can be the start of three possible constructs: + // * A grouped sequence + // * A predicate + // * A named node + else if (stream->next == '(') + { + stream_advance(stream); + stream_skip_whitespace(stream); + + // If this parenthesis is followed by a node, then it represents a grouped sequence. + if (stream->next == '(' || stream->next == '"' || stream->next == '[') + { + bool child_is_immediate = is_immediate; + CaptureQuantifiers child_capture_quantifiers = capture_quantifiers_new(); + for (;;) + { + if (stream->next == '.') + { + child_is_immediate = true; + stream_advance(stream); + stream_skip_whitespace(stream); + } + TSQueryError e = ts_query__parse_pattern(self, stream, depth, child_is_immediate, &child_capture_quantifiers); + if (e == PARENT_DONE) + { + if (stream->next == ')') + { + stream_advance(stream); + break; + } + e = TSQueryErrorSyntax; + } + if (e) + { + capture_quantifiers_delete(&child_capture_quantifiers); + return e; + } + + capture_quantifiers_add_all(capture_quantifiers, &child_capture_quantifiers); + capture_quantifiers_clear(&child_capture_quantifiers); + child_is_immediate = false; + } + + capture_quantifiers_delete(&child_capture_quantifiers); + } + + // A dot/pound character indicates the start of a predicate. + else if (stream->next == '.' || stream->next == '#') + { + stream_advance(stream); + return ts_query__parse_predicate(self, stream); + } + + // Otherwise, this parenthesis is the start of a named node. + else + { + TSSymbol symbol; + + // Parse a normal node name + if (stream_is_ident_start(stream)) + { + const char *node_name = stream->input; + stream_scan_identifier(stream); + uint32_t length = (uint32_t)(stream->input - node_name); + + // Parse the wildcard symbol + if (length == 1 && node_name[0] == '_') + { + symbol = WILDCARD_SYMBOL; + } + + else + { + symbol = ts_language_symbol_for_name(self->language, node_name, length, true); + if (!symbol) + { + stream_reset(stream, node_name); + return TSQueryErrorNodeType; + } + } + } + else + { + return TSQueryErrorSyntax; + } + + // Add a step for the node. + array_push(&self->steps, query_step__new(symbol, depth, is_immediate)); + QueryStep *step = array_back(&self->steps); + if (ts_language_symbol_metadata(self->language, symbol).supertype) + { + step->supertype_symbol = step->symbol; + step->symbol = WILDCARD_SYMBOL; + } + if (symbol == WILDCARD_SYMBOL) + { + step->is_named = true; + } + + stream_skip_whitespace(stream); + + if (stream->next == '/') + { + stream_advance(stream); + if (!stream_is_ident_start(stream)) + { + return TSQueryErrorSyntax; + } + + const char *node_name = stream->input; + stream_scan_identifier(stream); + uint32_t length = (uint32_t)(stream->input - node_name); + + step->symbol = ts_language_symbol_for_name(self->language, node_name, length, true); + if (!step->symbol) + { + stream_reset(stream, node_name); + return TSQueryErrorNodeType; + } + + stream_skip_whitespace(stream); + } + + // Parse the child patterns + bool child_is_immediate = false; + uint16_t last_child_step_index = 0; + uint16_t negated_field_count = 0; + TSFieldId negated_field_ids[MAX_NEGATED_FIELD_COUNT]; + CaptureQuantifiers child_capture_quantifiers = capture_quantifiers_new(); + for (;;) + { + // Parse a negated field assertion + if (stream->next == '!') + { + stream_advance(stream); + stream_skip_whitespace(stream); + if (!stream_is_ident_start(stream)) + { + capture_quantifiers_delete(&child_capture_quantifiers); + return TSQueryErrorSyntax; + } + const char *field_name = stream->input; + stream_scan_identifier(stream); + uint32_t length = (uint32_t)(stream->input - field_name); + stream_skip_whitespace(stream); + + TSFieldId field_id = ts_language_field_id_for_name(self->language, field_name, length); + if (!field_id) + { + stream->input = field_name; + capture_quantifiers_delete(&child_capture_quantifiers); + return TSQueryErrorField; + } + + // Keep the field ids sorted. + if (negated_field_count < MAX_NEGATED_FIELD_COUNT) + { + negated_field_ids[negated_field_count] = field_id; + negated_field_count++; + } + + continue; + } + + // Parse a sibling anchor + if (stream->next == '.') + { + child_is_immediate = true; + stream_advance(stream); + stream_skip_whitespace(stream); + } + + uint16_t step_index = self->steps.size; + TSQueryError e = ts_query__parse_pattern(self, stream, depth + 1, child_is_immediate, &child_capture_quantifiers); + if (e == PARENT_DONE) + { + if (stream->next == ')') + { + if (child_is_immediate) + { + if (last_child_step_index == 0) + { + capture_quantifiers_delete(&child_capture_quantifiers); + return TSQueryErrorSyntax; + } + self->steps.contents[last_child_step_index].is_last_child = true; + } + + if (negated_field_count) + { + ts_query__add_negated_fields(self, starting_step_index, negated_field_ids, negated_field_count); + } + + stream_advance(stream); + break; + } + e = TSQueryErrorSyntax; + } + if (e) + { + capture_quantifiers_delete(&child_capture_quantifiers); + return e; + } + + capture_quantifiers_add_all(capture_quantifiers, &child_capture_quantifiers); + + last_child_step_index = step_index; + child_is_immediate = false; + capture_quantifiers_clear(&child_capture_quantifiers); + } + capture_quantifiers_delete(&child_capture_quantifiers); + } + } + + // Parse a wildcard pattern + else if (stream->next == '_') + { + stream_advance(stream); + stream_skip_whitespace(stream); + + // Add a step that matches any kind of node + array_push(&self->steps, query_step__new(WILDCARD_SYMBOL, depth, is_immediate)); + } + + // Parse a double-quoted anonymous leaf node expression + else if (stream->next == '"') + { + const char *string_start = stream->input; + TSQueryError e = ts_query__parse_string_literal(self, stream); + if (e) + return e; + + // Add a step for the node + TSSymbol symbol = ts_language_symbol_for_name(self->language, self->string_buffer.contents, self->string_buffer.size, false); + if (!symbol) + { + stream_reset(stream, string_start + 1); + return TSQueryErrorNodeType; + } + array_push(&self->steps, query_step__new(symbol, depth, is_immediate)); + } + + // Parse a field-prefixed pattern + else if (stream_is_ident_start(stream)) + { + // Parse the field name + const char *field_name = stream->input; + stream_scan_identifier(stream); + uint32_t length = (uint32_t)(stream->input - field_name); + stream_skip_whitespace(stream); + + if (stream->next != ':') + { + stream_reset(stream, field_name); + return TSQueryErrorSyntax; + } + stream_advance(stream); + stream_skip_whitespace(stream); + + // Parse the pattern + CaptureQuantifiers field_capture_quantifiers = capture_quantifiers_new(); + TSQueryError e = ts_query__parse_pattern(self, stream, depth, is_immediate, &field_capture_quantifiers); + if (e) + { + capture_quantifiers_delete(&field_capture_quantifiers); + if (e == PARENT_DONE) + e = TSQueryErrorSyntax; + return e; + } + + // Add the field name to the first step of the pattern + TSFieldId field_id = ts_language_field_id_for_name(self->language, field_name, length); + if (!field_id) + { + stream->input = field_name; + return TSQueryErrorField; + } + + uint32_t step_index = starting_step_index; + QueryStep *step = &self->steps.contents[step_index]; + for (;;) + { + step->field = field_id; + if (step->alternative_index != NONE && step->alternative_index > step_index && step->alternative_index < self->steps.size) + { + step_index = step->alternative_index; + step = &self->steps.contents[step_index]; + } + else + { + break; + } + } + + capture_quantifiers_add_all(capture_quantifiers, &field_capture_quantifiers); + capture_quantifiers_delete(&field_capture_quantifiers); + } + + else + { + return TSQueryErrorSyntax; + } + + stream_skip_whitespace(stream); + + // Parse suffixes modifiers for this pattern + TSQuantifier quantifier = TSQuantifierOne; + for (;;) + { + // Parse the one-or-more operator. + if (stream->next == '+') + { + quantifier = quantifier_join(TSQuantifierOneOrMore, quantifier); + + stream_advance(stream); + stream_skip_whitespace(stream); + + QueryStep repeat_step = query_step__new(WILDCARD_SYMBOL, depth, false); + repeat_step.alternative_index = starting_step_index; + repeat_step.is_pass_through = true; + repeat_step.alternative_is_immediate = true; + array_push(&self->steps, repeat_step); + } + + // Parse the zero-or-more repetition operator. + else if (stream->next == '*') + { + quantifier = quantifier_join(TSQuantifierZeroOrMore, quantifier); + + stream_advance(stream); + stream_skip_whitespace(stream); + + QueryStep repeat_step = query_step__new(WILDCARD_SYMBOL, depth, false); + repeat_step.alternative_index = starting_step_index; + repeat_step.is_pass_through = true; + repeat_step.alternative_is_immediate = true; + array_push(&self->steps, repeat_step); + + // Stop when `step->alternative_index` is `NONE` or it points to + // `repeat_step` or beyond. Note that having just been pushed, + // `repeat_step` occupies slot `self->steps.size - 1`. + QueryStep *step = &self->steps.contents[starting_step_index]; + while (step->alternative_index != NONE && step->alternative_index < self->steps.size - 1) + { + step = &self->steps.contents[step->alternative_index]; + } + step->alternative_index = self->steps.size; + } + + // Parse the optional operator. + else if (stream->next == '?') + { + quantifier = quantifier_join(TSQuantifierZeroOrOne, quantifier); + + stream_advance(stream); + stream_skip_whitespace(stream); + + QueryStep *step = &self->steps.contents[starting_step_index]; + while (step->alternative_index != NONE && step->alternative_index < self->steps.size) + { + step = &self->steps.contents[step->alternative_index]; + } + step->alternative_index = self->steps.size; + } + + // Parse an '@'-prefixed capture pattern + else if (stream->next == '@') + { + stream_advance(stream); + if (!stream_is_ident_start(stream)) + return TSQueryErrorSyntax; + const char *capture_name = stream->input; + stream_scan_identifier(stream); + uint32_t length = (uint32_t)(stream->input - capture_name); + stream_skip_whitespace(stream); + + // Add the capture id to the first step of the pattern + uint16_t capture_id = symbol_table_insert_name(&self->captures, capture_name, length); + + // Add the capture quantifier + capture_quantifiers_add_for_id(capture_quantifiers, capture_id, TSQuantifierOne); + + uint32_t step_index = starting_step_index; + for (;;) + { + QueryStep *step = &self->steps.contents[step_index]; + query_step__add_capture(step, capture_id); + if (step->alternative_index != NONE && step->alternative_index > step_index && step->alternative_index < self->steps.size) + { + step_index = step->alternative_index; + } + else + { + break; + } + } + } + + // No more suffix modifiers + else + { + break; + } + } + + capture_quantifiers_mul(capture_quantifiers, quantifier); + + return 0; +} + +TSQuery *ts_query_new(const TSLanguage *language, const char *source, uint32_t source_len, uint32_t *error_offset, TSQueryError *error_type) +{ + if (!language || language->version > TREE_SITTER_LANGUAGE_VERSION || language->version < TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION) + { + *error_type = TSQueryErrorLanguage; + return NULL; + } + + TSQuery *self = ts_malloc(sizeof(TSQuery)); + *self = (TSQuery){ + .steps = array_new(), + .pattern_map = array_new(), + .captures = symbol_table_new(), + .capture_quantifiers = array_new(), + .predicate_values = symbol_table_new(), + .predicate_steps = array_new(), + .patterns = array_new(), + .step_offsets = array_new(), + .string_buffer = array_new(), + .negated_fields = array_new(), + .repeat_symbols_with_rootless_patterns = array_new(), + .wildcard_root_pattern_count = 0, + .language = ts_language_copy(language), + }; + + array_push(&self->negated_fields, 0); + + // Parse all of the S-expressions in the given string. + Stream stream = stream_new(source, source_len); + stream_skip_whitespace(&stream); + while (stream.input < stream.end) + { + uint32_t pattern_index = self->patterns.size; + uint32_t start_step_index = self->steps.size; + uint32_t start_predicate_step_index = self->predicate_steps.size; + array_push(&self->patterns, ((QueryPattern){ + .steps = (Slice){.offset = start_step_index}, + .predicate_steps = (Slice){.offset = start_predicate_step_index}, + .start_byte = stream_offset(&stream), + .is_non_local = false, + })); + CaptureQuantifiers capture_quantifiers = capture_quantifiers_new(); + *error_type = ts_query__parse_pattern(self, &stream, 0, false, &capture_quantifiers); + array_push(&self->steps, query_step__new(0, PATTERN_DONE_MARKER, false)); + + QueryPattern *pattern = array_back(&self->patterns); + pattern->steps.length = self->steps.size - start_step_index; + pattern->predicate_steps.length = self->predicate_steps.size - start_predicate_step_index; + + // If any pattern could not be parsed, then report the error information + // and terminate. + if (*error_type) + { + if (*error_type == PARENT_DONE) + *error_type = TSQueryErrorSyntax; + *error_offset = stream_offset(&stream); + capture_quantifiers_delete(&capture_quantifiers); + ts_query_delete(self); + return NULL; + } + + // Maintain a list of capture quantifiers for each pattern + array_push(&self->capture_quantifiers, capture_quantifiers); + + // Maintain a map that can look up patterns for a given root symbol. + uint16_t wildcard_root_alternative_index = NONE; + for (;;) + { + QueryStep *step = &self->steps.contents[start_step_index]; + + // If a pattern has a wildcard at its root, but it has a non-wildcard child, + // then optimize the matching process by skipping matching the wildcard. + // Later, during the matching process, the query cursor will check that + // there is a parent node, and capture it if necessary. + if (step->symbol == WILDCARD_SYMBOL && step->depth == 0 && !step->field) + { + QueryStep *second_step = &self->steps.contents[start_step_index + 1]; + if (second_step->symbol != WILDCARD_SYMBOL && second_step->depth == 1) + { + wildcard_root_alternative_index = step->alternative_index; + start_step_index += 1; + step = second_step; + } + } + + // Determine whether the pattern has a single root node. This affects + // decisions about whether or not to start matching the pattern when + // a query cursor has a range restriction or when immediately within an + // error node. + uint32_t start_depth = step->depth; + bool is_rooted = start_depth == 0; + for (uint32_t step_index = start_step_index + 1; step_index < self->steps.size; step_index++) + { + QueryStep *child_step = &self->steps.contents[step_index]; + if (child_step->is_dead_end) + break; + if (child_step->depth == start_depth) + { + is_rooted = false; + break; + } + } + + ts_query__pattern_map_insert( + self, step->symbol, (PatternEntry){.step_index = start_step_index, .pattern_index = pattern_index, .is_rooted = is_rooted}); + if (step->symbol == WILDCARD_SYMBOL) + { + self->wildcard_root_pattern_count++; + } + + // If there are alternatives or options at the root of the pattern, + // then add multiple entries to the pattern map. + if (step->alternative_index != NONE) + { + start_step_index = step->alternative_index; + } + else if (wildcard_root_alternative_index != NONE) + { + start_step_index = wildcard_root_alternative_index; + wildcard_root_alternative_index = NONE; + } + else + { + break; + } + } + } + + if (!ts_query__analyze_patterns(self, error_offset)) + { + *error_type = TSQueryErrorStructure; + ts_query_delete(self); + return NULL; + } + + array_delete(&self->string_buffer); + return self; +} + +void ts_query_delete(TSQuery *self) +{ + if (self) + { + array_delete(&self->steps); + array_delete(&self->pattern_map); + array_delete(&self->predicate_steps); + array_delete(&self->patterns); + array_delete(&self->step_offsets); + array_delete(&self->string_buffer); + array_delete(&self->negated_fields); + array_delete(&self->repeat_symbols_with_rootless_patterns); + ts_language_delete(self->language); + symbol_table_delete(&self->captures); + symbol_table_delete(&self->predicate_values); + for (uint32_t index = 0; index < self->capture_quantifiers.size; index++) + { + CaptureQuantifiers *capture_quantifiers = array_get(&self->capture_quantifiers, index); + capture_quantifiers_delete(capture_quantifiers); + } + array_delete(&self->capture_quantifiers); + ts_free(self); + } +} + +uint32_t ts_query_pattern_count(const TSQuery *self) +{ + return self->patterns.size; +} + +uint32_t ts_query_capture_count(const TSQuery *self) +{ + return self->captures.slices.size; +} + +uint32_t ts_query_string_count(const TSQuery *self) +{ + return self->predicate_values.slices.size; +} + +const char *ts_query_capture_name_for_id(const TSQuery *self, uint32_t index, uint32_t *length) +{ + return symbol_table_name_for_id(&self->captures, index, length); +} + +TSQuantifier ts_query_capture_quantifier_for_id(const TSQuery *self, uint32_t pattern_index, uint32_t capture_index) +{ + CaptureQuantifiers *capture_quantifiers = array_get(&self->capture_quantifiers, pattern_index); + return capture_quantifier_for_id(capture_quantifiers, capture_index); +} + +const char *ts_query_string_value_for_id(const TSQuery *self, uint32_t index, uint32_t *length) +{ + return symbol_table_name_for_id(&self->predicate_values, index, length); +} + +const TSQueryPredicateStep *ts_query_predicates_for_pattern(const TSQuery *self, uint32_t pattern_index, uint32_t *step_count) +{ + Slice slice = self->patterns.contents[pattern_index].predicate_steps; + *step_count = slice.length; + if (self->predicate_steps.contents == NULL) + { + return NULL; + } + return &self->predicate_steps.contents[slice.offset]; +} + +uint32_t ts_query_start_byte_for_pattern(const TSQuery *self, uint32_t pattern_index) +{ + return self->patterns.contents[pattern_index].start_byte; +} + +bool ts_query_is_pattern_rooted(const TSQuery *self, uint32_t pattern_index) +{ + for (unsigned i = 0; i < self->pattern_map.size; i++) + { + PatternEntry *entry = &self->pattern_map.contents[i]; + if (entry->pattern_index == pattern_index) + { + if (!entry->is_rooted) + return false; + } + } + return true; +} + +bool ts_query_is_pattern_non_local(const TSQuery *self, uint32_t pattern_index) +{ + if (pattern_index < self->patterns.size) + { + return self->patterns.contents[pattern_index].is_non_local; + } + else + { + return false; + } +} + +bool ts_query_is_pattern_guaranteed_at_step(const TSQuery *self, uint32_t byte_offset) +{ + uint32_t step_index = UINT32_MAX; + for (unsigned i = 0; i < self->step_offsets.size; i++) + { + StepOffset *step_offset = &self->step_offsets.contents[i]; + if (step_offset->byte_offset > byte_offset) + break; + step_index = step_offset->step_index; + } + if (step_index < self->steps.size) + { + return self->steps.contents[step_index].root_pattern_guaranteed; + } + else + { + return false; + } +} + +bool ts_query__step_is_fallible(const TSQuery *self, uint16_t step_index) +{ + assert((uint32_t)step_index + 1 < self->steps.size); + QueryStep *step = &self->steps.contents[step_index]; + QueryStep *next_step = &self->steps.contents[step_index + 1]; + return (next_step->depth != PATTERN_DONE_MARKER && next_step->depth > step->depth && !next_step->parent_pattern_guaranteed); +} + +void ts_query_disable_capture(TSQuery *self, const char *name, uint32_t length) +{ + // Remove capture information for any pattern step that previously + // captured with the given name. + int id = symbol_table_id_for_name(&self->captures, name, length); + if (id != -1) + { + for (unsigned i = 0; i < self->steps.size; i++) + { + QueryStep *step = &self->steps.contents[i]; + query_step__remove_capture(step, id); + } + } +} + +void ts_query_disable_pattern(TSQuery *self, uint32_t pattern_index) +{ + // Remove the given pattern from the pattern map. Its steps will still + // be in the `steps` array, but they will never be read. + for (unsigned i = 0; i < self->pattern_map.size; i++) + { + PatternEntry *pattern = &self->pattern_map.contents[i]; + if (pattern->pattern_index == pattern_index) + { + array_erase(&self->pattern_map, i); + i--; + } + } +} + +/*************** + * QueryCursor + ***************/ + +TSQueryCursor *ts_query_cursor_new(void) +{ + TSQueryCursor *self = ts_malloc(sizeof(TSQueryCursor)); + *self = (TSQueryCursor){ + .did_exceed_match_limit = false, + .ascending = false, + .halted = false, + .states = array_new(), + .finished_states = array_new(), + .capture_list_pool = capture_list_pool_new(), + .start_byte = 0, + .end_byte = UINT32_MAX, + .start_point = {0, 0}, + .end_point = POINT_MAX, + .max_start_depth = UINT32_MAX, + }; + array_reserve(&self->states, 8); + array_reserve(&self->finished_states, 8); + return self; +} + +void ts_query_cursor_delete(TSQueryCursor *self) +{ + array_delete(&self->states); + array_delete(&self->finished_states); + ts_tree_cursor_delete(&self->cursor); + capture_list_pool_delete(&self->capture_list_pool); + ts_free(self); +} + +bool ts_query_cursor_did_exceed_match_limit(const TSQueryCursor *self) +{ + return self->did_exceed_match_limit; +} + +uint32_t ts_query_cursor_match_limit(const TSQueryCursor *self) +{ + return self->capture_list_pool.max_capture_list_count; +} + +void ts_query_cursor_set_match_limit(TSQueryCursor *self, uint32_t limit) +{ + self->capture_list_pool.max_capture_list_count = limit; +} + +#ifdef DEBUG_EXECUTE_QUERY +# define LOG(...) fprintf(stderr, __VA_ARGS__) +#else +# define LOG(...) +#endif + +void ts_query_cursor_exec(TSQueryCursor *self, const TSQuery *query, TSNode node) +{ + if (query) + { + LOG("query steps:\n"); + for (unsigned i = 0; i < query->steps.size; i++) + { + QueryStep *step = &query->steps.contents[i]; + LOG(" %u: {", i); + if (step->depth == PATTERN_DONE_MARKER) + { + LOG("DONE"); + } + else if (step->is_dead_end) + { + LOG("dead_end"); + } + else if (step->is_pass_through) + { + LOG("pass_through"); + } + else if (step->symbol != WILDCARD_SYMBOL) + { + LOG("symbol: %s", query->language->symbol_names[step->symbol]); + } + else + { + LOG("symbol: *"); + } + if (step->field) + { + LOG(", field: %s", query->language->field_names[step->field]); + } + if (step->alternative_index != NONE) + { + LOG(", alternative: %u", step->alternative_index); + } + LOG("},\n"); + } + } + + array_clear(&self->states); + array_clear(&self->finished_states); + ts_tree_cursor_reset(&self->cursor, node); + capture_list_pool_reset(&self->capture_list_pool); + self->on_visible_node = true; + self->next_state_id = 0; + self->depth = 0; + self->ascending = false; + self->halted = false; + self->query = query; + self->did_exceed_match_limit = false; +} + +void ts_query_cursor_set_byte_range(TSQueryCursor *self, uint32_t start_byte, uint32_t end_byte) +{ + if (end_byte == 0) + { + end_byte = UINT32_MAX; + } + self->start_byte = start_byte; + self->end_byte = end_byte; +} + +void ts_query_cursor_set_point_range(TSQueryCursor *self, TSPoint start_point, TSPoint end_point) +{ + if (end_point.row == 0 && end_point.column == 0) + { + end_point = POINT_MAX; + } + self->start_point = start_point; + self->end_point = end_point; +} + +// Search through all of the in-progress states, and find the captured +// node that occurs earliest in the document. +static bool ts_query_cursor__first_in_progress_capture(TSQueryCursor *self, uint32_t *state_index, uint32_t *byte_offset, + uint32_t *pattern_index, bool *root_pattern_guaranteed) +{ + bool result = false; + *state_index = UINT32_MAX; + *byte_offset = UINT32_MAX; + *pattern_index = UINT32_MAX; + for (unsigned i = 0; i < self->states.size; i++) + { + QueryState *state = &self->states.contents[i]; + if (state->dead) + continue; + + const CaptureList *captures = capture_list_pool_get(&self->capture_list_pool, state->capture_list_id); + if (state->consumed_capture_count >= captures->size) + { + continue; + } + + TSNode node = captures->contents[state->consumed_capture_count].node; + if (ts_node_end_byte(node) <= self->start_byte || point_lte(ts_node_end_point(node), self->start_point)) + { + state->consumed_capture_count++; + i--; + continue; + } + + uint32_t node_start_byte = ts_node_start_byte(node); + if (!result || node_start_byte < *byte_offset || (node_start_byte == *byte_offset && state->pattern_index < *pattern_index)) + { + QueryStep *step = &self->query->steps.contents[state->step_index]; + if (root_pattern_guaranteed) + { + *root_pattern_guaranteed = step->root_pattern_guaranteed; + } + else if (step->root_pattern_guaranteed) + { + continue; + } + + result = true; + *state_index = i; + *byte_offset = node_start_byte; + *pattern_index = state->pattern_index; + } + } + return result; +} + +// Determine which node is first in a depth-first traversal +int ts_query_cursor__compare_nodes(TSNode left, TSNode right) +{ + if (left.id != right.id) + { + uint32_t left_start = ts_node_start_byte(left); + uint32_t right_start = ts_node_start_byte(right); + if (left_start < right_start) + return -1; + if (left_start > right_start) + return 1; + uint32_t left_node_count = ts_node_end_byte(left); + uint32_t right_node_count = ts_node_end_byte(right); + if (left_node_count > right_node_count) + return -1; + if (left_node_count < right_node_count) + return 1; + } + return 0; +} + +// Determine if either state contains a superset of the other state's captures. +void ts_query_cursor__compare_captures(TSQueryCursor *self, QueryState *left_state, QueryState *right_state, bool *left_contains_right, + bool *right_contains_left) +{ + const CaptureList *left_captures = capture_list_pool_get(&self->capture_list_pool, left_state->capture_list_id); + const CaptureList *right_captures = capture_list_pool_get(&self->capture_list_pool, right_state->capture_list_id); + *left_contains_right = true; + *right_contains_left = true; + unsigned i = 0, j = 0; + for (;;) + { + if (i < left_captures->size) + { + if (j < right_captures->size) + { + TSQueryCapture *left = &left_captures->contents[i]; + TSQueryCapture *right = &right_captures->contents[j]; + if (left->node.id == right->node.id && left->index == right->index) + { + i++; + j++; + } + else + { + switch (ts_query_cursor__compare_nodes(left->node, right->node)) + { + case -1: + *right_contains_left = false; + i++; + break; + case 1: + *left_contains_right = false; + j++; + break; + default: + *right_contains_left = false; + *left_contains_right = false; + i++; + j++; + break; + } + } + } + else + { + *right_contains_left = false; + break; + } + } + else + { + if (j < right_captures->size) + { + *left_contains_right = false; + } + break; + } + } +} + +static void ts_query_cursor__add_state(TSQueryCursor *self, const PatternEntry *pattern) +{ + QueryStep *step = &self->query->steps.contents[pattern->step_index]; + uint32_t start_depth = self->depth - step->depth; + + // Keep the states array in ascending order of start_depth and pattern_index, + // so that it can be processed more efficiently elsewhere. Usually, there is + // no work to do here because of two facts: + // * States with lower start_depth are naturally added first due to the + // order in which nodes are visited. + // * Earlier patterns are naturally added first because of the ordering of the + // pattern_map data structure that's used to initiate matches. + // + // This loop is only needed in cases where two conditions hold: + // * A pattern consists of more than one sibling node, so that its states + // remain in progress after exiting the node that started the match. + // * The first node in the pattern matches against multiple nodes at the + // same depth. + // + // An example of this is the pattern '((comment)* (function))'. If multiple + // `comment` nodes appear in a row, then we may initiate a new state for this + // pattern while another state for the same pattern is already in progress. + // If there are multiple patterns like this in a query, then this loop will + // need to execute in order to keep the states ordered by pattern_index. + uint32_t index = self->states.size; + while (index > 0) + { + QueryState *prev_state = &self->states.contents[index - 1]; + if (prev_state->start_depth < start_depth) + break; + if (prev_state->start_depth == start_depth) + { + // Avoid inserting an unnecessary duplicate state, which would be + // immediately pruned by the longest-match criteria. + if (prev_state->pattern_index == pattern->pattern_index && prev_state->step_index == pattern->step_index) + return; + if (prev_state->pattern_index <= pattern->pattern_index) + break; + } + index--; + } + + LOG(" start state. pattern:%u, step:%u\n", pattern->pattern_index, pattern->step_index); + array_insert(&self->states, index, + ((QueryState){ + .id = UINT32_MAX, + .capture_list_id = NONE, + .step_index = pattern->step_index, + .pattern_index = pattern->pattern_index, + .start_depth = start_depth, + .consumed_capture_count = 0, + .seeking_immediate_match = true, + .has_in_progress_alternatives = false, + .needs_parent = step->depth == 1, + .dead = false, + })); +} + +// Acquire a capture list for this state. If there are no capture lists left in the +// pool, this will steal the capture list from another existing state, and mark that +// other state as 'dead'. +static CaptureList *ts_query_cursor__prepare_to_capture(TSQueryCursor *self, QueryState *state, unsigned state_index_to_preserve) +{ + if (state->capture_list_id == NONE) + { + state->capture_list_id = capture_list_pool_acquire(&self->capture_list_pool); + + // If there are no capture lists left in the pool, then terminate whichever + // state has captured the earliest node in the document, and steal its + // capture list. + if (state->capture_list_id == NONE) + { + self->did_exceed_match_limit = true; + uint32_t state_index, byte_offset, pattern_index; + if (ts_query_cursor__first_in_progress_capture(self, &state_index, &byte_offset, &pattern_index, NULL) && + state_index != state_index_to_preserve) + { + LOG(" abandon state. index:%u, pattern:%u, offset:%u.\n", state_index, pattern_index, byte_offset); + QueryState *other_state = &self->states.contents[state_index]; + state->capture_list_id = other_state->capture_list_id; + other_state->capture_list_id = NONE; + other_state->dead = true; + CaptureList *list = capture_list_pool_get_mut(&self->capture_list_pool, state->capture_list_id); + array_clear(list); + return list; + } + else + { + LOG(" ran out of capture lists"); + return NULL; + } + } + } + return capture_list_pool_get_mut(&self->capture_list_pool, state->capture_list_id); +} + +static void ts_query_cursor__capture(TSQueryCursor *self, QueryState *state, QueryStep *step, TSNode node) +{ + if (state->dead) + return; + CaptureList *capture_list = ts_query_cursor__prepare_to_capture(self, state, UINT32_MAX); + if (!capture_list) + { + state->dead = true; + return; + } + + for (unsigned j = 0; j < MAX_STEP_CAPTURE_COUNT; j++) + { + uint16_t capture_id = step->capture_ids[j]; + if (step->capture_ids[j] == NONE) + break; + array_push(capture_list, ((TSQueryCapture){node, capture_id})); + LOG(" capture node. type:%s, pattern:%u, capture_id:%u, capture_count:%u\n", ts_node_type(node), state->pattern_index, capture_id, + capture_list->size); + } +} + +// Duplicate the given state and insert the newly-created state immediately after +// the given state in the `states` array. Ensures that the given state reference is +// still valid, even if the states array is reallocated. +static QueryState *ts_query_cursor__copy_state(TSQueryCursor *self, QueryState **state_ref) +{ + const QueryState *state = *state_ref; + uint32_t state_index = (uint32_t)(state - self->states.contents); + QueryState copy = *state; + copy.capture_list_id = NONE; + + // If the state has captures, copy its capture list. + if (state->capture_list_id != NONE) + { + CaptureList *new_captures = ts_query_cursor__prepare_to_capture(self, ©, state_index); + if (!new_captures) + return NULL; + const CaptureList *old_captures = capture_list_pool_get(&self->capture_list_pool, state->capture_list_id); + array_push_all(new_captures, old_captures); + } + + array_insert(&self->states, state_index + 1, copy); + *state_ref = &self->states.contents[state_index]; + return &self->states.contents[state_index + 1]; +} + +static inline bool ts_query_cursor__should_descend(TSQueryCursor *self, bool node_intersects_range) +{ + + if (node_intersects_range && self->depth < self->max_start_depth) + { + return true; + } + + // If there are in-progress matches whose remaining steps occur + // deeper in the tree, then descend. + for (unsigned i = 0; i < self->states.size; i++) + { + QueryState *state = &self->states.contents[i]; + ; + QueryStep *next_step = &self->query->steps.contents[state->step_index]; + if (next_step->depth != PATTERN_DONE_MARKER && state->start_depth + next_step->depth > self->depth) + { + return true; + } + } + + if (self->depth >= self->max_start_depth) + { + return false; + } + + // If the current node is hidden, then a non-rooted pattern might match + // one if its roots inside of this node, and match another of its roots + // as part of a sibling node, so we may need to descend. + if (!self->on_visible_node) + { + // Descending into a repetition node outside of the range can be + // expensive, because these nodes can have many visible children. + // Avoid descending into repetition nodes unless we have already + // determined that this query can match rootless patterns inside + // of this type of repetition node. + Subtree subtree = ts_tree_cursor_current_subtree(&self->cursor); + if (ts_subtree_is_repetition(subtree)) + { + bool exists; + uint32_t index; + array_search_sorted_by(&self->query->repeat_symbols_with_rootless_patterns, , ts_subtree_symbol(subtree), &index, &exists); + return exists; + } + + return true; + } + + return false; +} + +// Walk the tree, processing patterns until at least one pattern finishes, +// If one or more patterns finish, return `true` and store their states in the +// `finished_states` array. Multiple patterns can finish on the same node. If +// there are no more matches, return `false`. +static inline bool ts_query_cursor__advance(TSQueryCursor *self, bool stop_on_definite_step) +{ + bool did_match = false; + for (;;) + { + if (self->halted) + { + while (self->states.size > 0) + { + QueryState state = array_pop(&self->states); + capture_list_pool_release(&self->capture_list_pool, state.capture_list_id); + } + } + + if (did_match || self->halted) + return did_match; + + // Exit the current node. + if (self->ascending) + { + if (self->on_visible_node) + { + LOG("leave node. depth:%u, type:%s\n", self->depth, ts_node_type(ts_tree_cursor_current_node(&self->cursor))); + + // After leaving a node, remove any states that cannot make further progress. + uint32_t deleted_count = 0; + for (unsigned i = 0, n = self->states.size; i < n; i++) + { + QueryState *state = &self->states.contents[i]; + QueryStep *step = &self->query->steps.contents[state->step_index]; + + // If a state completed its pattern inside of this node, but was deferred from finishing + // in order to search for longer matches, mark it as finished. + if (step->depth == PATTERN_DONE_MARKER && (state->start_depth > self->depth || self->depth == 0)) + { + LOG(" finish pattern %u\n", state->pattern_index); + array_push(&self->finished_states, *state); + did_match = true; + deleted_count++; + } + + // If a state needed to match something within this node, then remove that state + // as it has failed to match. + else if (step->depth != PATTERN_DONE_MARKER && (uint32_t)state->start_depth + (uint32_t)step->depth > self->depth) + { + LOG(" failed to match. pattern:%u, step:%u\n", state->pattern_index, state->step_index); + capture_list_pool_release(&self->capture_list_pool, state->capture_list_id); + deleted_count++; + } + + else if (deleted_count > 0) + { + self->states.contents[i - deleted_count] = *state; + } + } + self->states.size -= deleted_count; + } + + // Leave this node by stepping to its next sibling or to its parent. + switch (ts_tree_cursor_goto_next_sibling_internal(&self->cursor)) + { + case TreeCursorStepVisible: + if (!self->on_visible_node) + { + self->depth++; + self->on_visible_node = true; + } + self->ascending = false; + break; + case TreeCursorStepHidden: + if (self->on_visible_node) + { + self->depth--; + self->on_visible_node = false; + } + self->ascending = false; + break; + default: + if (ts_tree_cursor_goto_parent(&self->cursor)) + { + self->depth--; + } + else + { + LOG("halt at root\n"); + self->halted = true; + } + } + } + + // Enter a new node. + else + { + // Get the properties of the current node. + TSNode node = ts_tree_cursor_current_node(&self->cursor); + TSNode parent_node = ts_tree_cursor_parent_node(&self->cursor); + bool parent_precedes_range = !ts_node_is_null(parent_node) && (ts_node_end_byte(parent_node) <= self->start_byte || + point_lte(ts_node_end_point(parent_node), self->start_point)); + bool parent_follows_range = !ts_node_is_null(parent_node) && (ts_node_start_byte(parent_node) >= self->end_byte || + point_gte(ts_node_start_point(parent_node), self->end_point)); + bool node_precedes_range = parent_precedes_range || (ts_node_end_byte(node) <= self->start_byte || + point_lte(ts_node_end_point(node), self->start_point)); + bool node_follows_range = parent_follows_range || + (ts_node_start_byte(node) >= self->end_byte || point_gte(ts_node_start_point(node), self->end_point)); + bool parent_intersects_range = !parent_precedes_range && !parent_follows_range; + bool node_intersects_range = !node_precedes_range && !node_follows_range; + + if (self->on_visible_node) + { + TSSymbol symbol = ts_node_symbol(node); + bool is_named = ts_node_is_named(node); + bool has_later_siblings; + bool has_later_named_siblings; + bool can_have_later_siblings_with_this_field; + TSFieldId field_id = 0; + TSSymbol supertypes[8] = {0}; + unsigned supertype_count = 8; + ts_tree_cursor_current_status(&self->cursor, &field_id, &has_later_siblings, &has_later_named_siblings, + &can_have_later_siblings_with_this_field, supertypes, &supertype_count); + LOG("enter node. depth:%u, type:%s, field:%s, row:%u state_count:%u, finished_state_count:%u\n", self->depth, + ts_node_type(node), ts_language_field_name_for_id(self->query->language, field_id), ts_node_start_point(node).row, + self->states.size, self->finished_states.size); + + bool node_is_error = symbol == ts_builtin_sym_error; + bool parent_is_error = !ts_node_is_null(parent_node) && ts_node_symbol(parent_node) == ts_builtin_sym_error; + + // Add new states for any patterns whose root node is a wildcard. + if (!node_is_error) + { + for (unsigned i = 0; i < self->query->wildcard_root_pattern_count; i++) + { + PatternEntry *pattern = &self->query->pattern_map.contents[i]; + + // If this node matches the first step of the pattern, then add a new + // state at the start of this pattern. + QueryStep *step = &self->query->steps.contents[pattern->step_index]; + uint32_t start_depth = self->depth - step->depth; + if ((pattern->is_rooted ? node_intersects_range : (parent_intersects_range && !parent_is_error)) && + (!step->field || field_id == step->field) && (!step->supertype_symbol || supertype_count > 0) && + (start_depth <= self->max_start_depth)) + { + ts_query_cursor__add_state(self, pattern); + } + } + } + + // Add new states for any patterns whose root node matches this node. + unsigned i; + if (ts_query__pattern_map_search(self->query, symbol, &i)) + { + PatternEntry *pattern = &self->query->pattern_map.contents[i]; + + QueryStep *step = &self->query->steps.contents[pattern->step_index]; + uint32_t start_depth = self->depth - step->depth; + do + { + // If this node matches the first step of the pattern, then add a new + // state at the start of this pattern. + if ((pattern->is_rooted ? node_intersects_range : (parent_intersects_range && !parent_is_error)) && + (!step->field || field_id == step->field) && (start_depth <= self->max_start_depth)) + { + ts_query_cursor__add_state(self, pattern); + } + + // Advance to the next pattern whose root node matches this node. + i++; + if (i == self->query->pattern_map.size) + break; + pattern = &self->query->pattern_map.contents[i]; + step = &self->query->steps.contents[pattern->step_index]; + } while (step->symbol == symbol); + } + + // Update all of the in-progress states with current node. + for (unsigned j = 0, copy_count = 0; j < self->states.size; j += 1 + copy_count) + { + QueryState *state = &self->states.contents[j]; + QueryStep *step = &self->query->steps.contents[state->step_index]; + state->has_in_progress_alternatives = false; + copy_count = 0; + + // Check that the node matches all of the criteria for the next + // step of the pattern. + if ((uint32_t)state->start_depth + (uint32_t)step->depth != self->depth) + continue; + + // Determine if this node matches this step of the pattern, and also + // if this node can have later siblings that match this step of the + // pattern. + bool node_does_match = false; + if (step->symbol == WILDCARD_SYMBOL) + { + node_does_match = !node_is_error && (is_named || !step->is_named); + } + else + { + node_does_match = symbol == step->symbol; + } + bool later_sibling_can_match = has_later_siblings; + if ((step->is_immediate && is_named) || state->seeking_immediate_match) + { + later_sibling_can_match = false; + } + if (step->is_last_child && has_later_named_siblings) + { + node_does_match = false; + } + if (step->supertype_symbol) + { + bool has_supertype = false; + for (unsigned k = 0; k < supertype_count; k++) + { + if (supertypes[k] == step->supertype_symbol) + { + has_supertype = true; + break; + } + } + if (!has_supertype) + node_does_match = false; + } + if (step->field) + { + if (step->field == field_id) + { + if (!can_have_later_siblings_with_this_field) + { + later_sibling_can_match = false; + } + } + else + { + node_does_match = false; + } + } + + if (step->negated_field_list_id) + { + TSFieldId *negated_field_ids = &self->query->negated_fields.contents[step->negated_field_list_id]; + for (;;) + { + TSFieldId negated_field_id = *negated_field_ids; + if (negated_field_id) + { + negated_field_ids++; + if (ts_node_child_by_field_id(node, negated_field_id).id) + { + node_does_match = false; + break; + } + } + else + { + break; + } + } + } + + // Remove states immediately if it is ever clear that they cannot match. + if (!node_does_match) + { + if (!later_sibling_can_match) + { + LOG(" discard state. pattern:%u, step:%u\n", state->pattern_index, state->step_index); + capture_list_pool_release(&self->capture_list_pool, state->capture_list_id); + array_erase(&self->states, j); + j--; + } + continue; + } + + // Some patterns can match their root node in multiple ways, capturing different + // children. If this pattern step could match later children within the same + // parent, then this query state cannot simply be updated in place. It must be + // split into two states: one that matches this node, and one which skips over + // this node, to preserve the possibility of matching later siblings. + if (later_sibling_can_match && (step->contains_captures || ts_query__step_is_fallible(self->query, state->step_index))) + { + if (ts_query_cursor__copy_state(self, &state)) + { + LOG(" split state for capture. pattern:%u, step:%u\n", state->pattern_index, state->step_index); + copy_count++; + } + } + + // If this pattern started with a wildcard, such that the pattern map + // actually points to the *second* step of the pattern, then check + // that the node has a parent, and capture the parent node if necessary. + if (state->needs_parent) + { + TSNode parent = ts_tree_cursor_parent_node(&self->cursor); + if (ts_node_is_null(parent)) + { + LOG(" missing parent node\n"); + state->dead = true; + } + else + { + state->needs_parent = false; + QueryStep *skipped_wildcard_step = step; + do + { + skipped_wildcard_step--; + } while (skipped_wildcard_step->is_dead_end || skipped_wildcard_step->is_pass_through || + skipped_wildcard_step->depth > 0); + if (skipped_wildcard_step->capture_ids[0] != NONE) + { + LOG(" capture wildcard parent\n"); + ts_query_cursor__capture(self, state, skipped_wildcard_step, parent); + } + } + } + + // If the current node is captured in this pattern, add it to the capture list. + if (step->capture_ids[0] != NONE) + { + ts_query_cursor__capture(self, state, step, node); + } + + if (state->dead) + { + array_erase(&self->states, j); + j--; + continue; + } + + // Advance this state to the next step of its pattern. + state->step_index++; + state->seeking_immediate_match = false; + LOG(" advance state. pattern:%u, step:%u\n", state->pattern_index, state->step_index); + + QueryStep *next_step = &self->query->steps.contents[state->step_index]; + if (stop_on_definite_step && next_step->root_pattern_guaranteed) + did_match = true; + + // If this state's next step has an alternative step, then copy the state in order + // to pursue both alternatives. The alternative step itself may have an alternative, + // so this is an interactive process. + unsigned end_index = j + 1; + for (unsigned k = j; k < end_index; k++) + { + QueryState *child_state = &self->states.contents[k]; + QueryStep *child_step = &self->query->steps.contents[child_state->step_index]; + if (child_step->alternative_index != NONE) + { + // A "dead-end" step exists only to add a non-sequential jump into the step sequence, + // via its alternative index. When a state reaches a dead-end step, it jumps straight + // to the step's alternative. + if (child_step->is_dead_end) + { + child_state->step_index = child_step->alternative_index; + k--; + continue; + } + + // A "pass-through" step exists only to add a branch into the step sequence, + // via its alternative_index. When a state reaches a pass-through step, it splits + // in order to process the alternative step, and then it advances to the next step. + if (child_step->is_pass_through) + { + child_state->step_index++; + k--; + } + + QueryState *copy = ts_query_cursor__copy_state(self, &child_state); + if (copy) + { + LOG(" split state for branch. pattern:%u, from_step:%u, to_step:%u, immediate:%d, capture_count: %u\n", + copy->pattern_index, copy->step_index, next_step->alternative_index, + next_step->alternative_is_immediate, + capture_list_pool_get(&self->capture_list_pool, copy->capture_list_id)->size); + end_index++; + copy_count++; + copy->step_index = child_step->alternative_index; + if (child_step->alternative_is_immediate) + { + copy->seeking_immediate_match = true; + } + } + } + } + } + + for (unsigned j = 0; j < self->states.size; j++) + { + QueryState *state = &self->states.contents[j]; + if (state->dead) + { + array_erase(&self->states, j); + j--; + continue; + } + + // Enforce the longest-match criteria. When a query pattern contains optional or + // repeated nodes, this is necessary to avoid multiple redundant states, where + // one state has a strict subset of another state's captures. + bool did_remove = false; + for (unsigned k = j + 1; k < self->states.size; k++) + { + QueryState *other_state = &self->states.contents[k]; + + // Query states are kept in ascending order of start_depth and pattern_index. + // Since the longest-match criteria is only used for deduping matches of the same + // pattern and root node, we only need to perform pairwise comparisons within a + // small slice of the states array. + if (other_state->start_depth != state->start_depth || other_state->pattern_index != state->pattern_index) + break; + + bool left_contains_right, right_contains_left; + ts_query_cursor__compare_captures(self, state, other_state, &left_contains_right, &right_contains_left); + if (left_contains_right) + { + if (state->step_index == other_state->step_index) + { + LOG(" drop shorter state. pattern: %u, step_index: %u\n", state->pattern_index, state->step_index); + capture_list_pool_release(&self->capture_list_pool, other_state->capture_list_id); + array_erase(&self->states, k); + k--; + continue; + } + other_state->has_in_progress_alternatives = true; + } + if (right_contains_left) + { + if (state->step_index == other_state->step_index) + { + LOG(" drop shorter state. pattern: %u, step_index: %u\n", state->pattern_index, state->step_index); + capture_list_pool_release(&self->capture_list_pool, state->capture_list_id); + array_erase(&self->states, j); + j--; + did_remove = true; + break; + } + state->has_in_progress_alternatives = true; + } + } + + // If the state is at the end of its pattern, remove it from the list + // of in-progress states and add it to the list of finished states. + if (!did_remove) + { + LOG(" keep state. pattern: %u, start_depth: %u, step_index: %u, capture_count: %u\n", state->pattern_index, + state->start_depth, state->step_index, + capture_list_pool_get(&self->capture_list_pool, state->capture_list_id)->size); + QueryStep *next_step = &self->query->steps.contents[state->step_index]; + if (next_step->depth == PATTERN_DONE_MARKER) + { + if (state->has_in_progress_alternatives) + { + LOG(" defer finishing pattern %u\n", state->pattern_index); + } + else + { + LOG(" finish pattern %u\n", state->pattern_index); + array_push(&self->finished_states, *state); + array_erase(&self->states, (uint32_t)(state - self->states.contents)); + did_match = true; + j--; + } + } + } + } + } + + if (ts_query_cursor__should_descend(self, node_intersects_range)) + { + switch (ts_tree_cursor_goto_first_child_internal(&self->cursor)) + { + case TreeCursorStepVisible: + self->depth++; + self->on_visible_node = true; + continue; + case TreeCursorStepHidden: + self->on_visible_node = false; + continue; + default: + break; + } + } + + self->ascending = true; + } + } +} + +bool ts_query_cursor_next_match(TSQueryCursor *self, TSQueryMatch *match) +{ + if (self->finished_states.size == 0) + { + if (!ts_query_cursor__advance(self, false)) + { + return false; + } + } + + QueryState *state = &self->finished_states.contents[0]; + if (state->id == UINT32_MAX) + state->id = self->next_state_id++; + match->id = state->id; + match->pattern_index = state->pattern_index; + const CaptureList *captures = capture_list_pool_get(&self->capture_list_pool, state->capture_list_id); + match->captures = captures->contents; + match->capture_count = captures->size; + capture_list_pool_release(&self->capture_list_pool, state->capture_list_id); + array_erase(&self->finished_states, 0); + return true; +} + +void ts_query_cursor_remove_match(TSQueryCursor *self, uint32_t match_id) +{ + for (unsigned i = 0; i < self->finished_states.size; i++) + { + const QueryState *state = &self->finished_states.contents[i]; + if (state->id == match_id) + { + capture_list_pool_release(&self->capture_list_pool, state->capture_list_id); + array_erase(&self->finished_states, i); + return; + } + } + + // Remove unfinished query states as well to prevent future + // captures for a match being removed. + for (unsigned i = 0; i < self->states.size; i++) + { + const QueryState *state = &self->states.contents[i]; + if (state->id == match_id) + { + capture_list_pool_release(&self->capture_list_pool, state->capture_list_id); + array_erase(&self->states, i); + return; + } + } +} + +bool ts_query_cursor_next_capture(TSQueryCursor *self, TSQueryMatch *match, uint32_t *capture_index) +{ + // The goal here is to return captures in order, even though they may not + // be discovered in order, because patterns can overlap. Search for matches + // until there is a finished capture that is before any unfinished capture. + for (;;) + { + // First, find the earliest capture in an unfinished match. + uint32_t first_unfinished_capture_byte; + uint32_t first_unfinished_pattern_index; + uint32_t first_unfinished_state_index; + bool first_unfinished_state_is_definite = false; + ts_query_cursor__first_in_progress_capture(self, &first_unfinished_state_index, &first_unfinished_capture_byte, + &first_unfinished_pattern_index, &first_unfinished_state_is_definite); + + // Then find the earliest capture in a finished match. It must occur + // before the first capture in an *unfinished* match. + QueryState *first_finished_state = NULL; + uint32_t first_finished_capture_byte = first_unfinished_capture_byte; + uint32_t first_finished_pattern_index = first_unfinished_pattern_index; + for (unsigned i = 0; i < self->finished_states.size;) + { + QueryState *state = &self->finished_states.contents[i]; + const CaptureList *captures = capture_list_pool_get(&self->capture_list_pool, state->capture_list_id); + + // Remove states whose captures are all consumed. + if (state->consumed_capture_count >= captures->size) + { + capture_list_pool_release(&self->capture_list_pool, state->capture_list_id); + array_erase(&self->finished_states, i); + continue; + } + + TSNode node = captures->contents[state->consumed_capture_count].node; + + bool node_precedes_range = + (ts_node_end_byte(node) <= self->start_byte || point_lte(ts_node_end_point(node), self->start_point)); + bool node_follows_range = (ts_node_start_byte(node) >= self->end_byte || point_gte(ts_node_start_point(node), self->end_point)); + bool node_outside_of_range = node_precedes_range || node_follows_range; + + // Skip captures that are outside of the cursor's range. + if (node_outside_of_range) + { + state->consumed_capture_count++; + continue; + } + + uint32_t node_start_byte = ts_node_start_byte(node); + if (node_start_byte < first_finished_capture_byte || + (node_start_byte == first_finished_capture_byte && state->pattern_index < first_finished_pattern_index)) + { + first_finished_state = state; + first_finished_capture_byte = node_start_byte; + first_finished_pattern_index = state->pattern_index; + } + i++; + } + + // If there is finished capture that is clearly before any unfinished + // capture, then return its match, and its capture index. Internally + // record the fact that the capture has been 'consumed'. + QueryState *state; + if (first_finished_state) + { + state = first_finished_state; + } + else if (first_unfinished_state_is_definite) + { + state = &self->states.contents[first_unfinished_state_index]; + } + else + { + state = NULL; + } + + if (state) + { + if (state->id == UINT32_MAX) + state->id = self->next_state_id++; + match->id = state->id; + match->pattern_index = state->pattern_index; + const CaptureList *captures = capture_list_pool_get(&self->capture_list_pool, state->capture_list_id); + match->captures = captures->contents; + match->capture_count = captures->size; + *capture_index = state->consumed_capture_count; + state->consumed_capture_count++; + return true; + } + + if (capture_list_pool_is_empty(&self->capture_list_pool)) + { + LOG(" abandon state. index:%u, pattern:%u, offset:%u.\n", first_unfinished_state_index, first_unfinished_pattern_index, + first_unfinished_capture_byte); + capture_list_pool_release(&self->capture_list_pool, self->states.contents[first_unfinished_state_index].capture_list_id); + array_erase(&self->states, first_unfinished_state_index); + } + + // If there are no finished matches that are ready to be returned, then + // continue finding more matches. + if (!ts_query_cursor__advance(self, true) && self->finished_states.size == 0) + return false; + } +} + +void ts_query_cursor_set_max_start_depth(TSQueryCursor *self, uint32_t max_start_depth) +{ + self->max_start_depth = max_start_depth; +} + +#undef LOG diff --git a/parser/nsrc/reduce_action.h b/parser/nsrc/reduce_action.h new file mode 100644 index 00000000..ebeeb5fd --- /dev/null +++ b/parser/nsrc/reduce_action.h @@ -0,0 +1,37 @@ +#ifndef TREE_SITTER_REDUCE_ACTION_H_ +#define TREE_SITTER_REDUCE_ACTION_H_ + +#ifdef __cplusplus +extern "C" +{ +#endif + +#include "./api.h" +#include "./array.h" + + typedef struct ReduceAction + { + uint32_t count; + TSSymbol symbol; + int dynamic_precedence; + unsigned short production_id; + } ReduceAction; + + typedef Array(ReduceAction) ReduceActionSet; + + static inline void ts_reduce_action_set_add(ReduceActionSet *self, ReduceAction new_action) + { + for (uint32_t i = 0; i < self->size; i++) + { + ReduceAction action = self->contents[i]; + if (action.symbol == new_action.symbol && action.count == new_action.count) + return; + } + array_push(self, new_action); + } + +#ifdef __cplusplus +} +#endif + +#endif // TREE_SITTER_REDUCE_ACTION_H_ diff --git a/parser/nsrc/reusable_node.h b/parser/nsrc/reusable_node.h new file mode 100644 index 00000000..339edc59 --- /dev/null +++ b/parser/nsrc/reusable_node.h @@ -0,0 +1,111 @@ +#include "./subtree.h" + +typedef struct StackEntry +{ + Subtree tree; + uint32_t child_index; + uint32_t byte_offset; +} StackEntry; + +typedef struct ReusableNode +{ + Array(StackEntry) stack; + Subtree last_external_token; +} ReusableNode; + +static inline ReusableNode reusable_node_new(void) +{ + return (ReusableNode){array_new(), NULL_SUBTREE}; +} + +static inline void reusable_node_clear(ReusableNode *self) +{ + array_clear(&self->stack); + self->last_external_token = NULL_SUBTREE; +} + +static inline Subtree reusable_node_tree(ReusableNode *self) +{ + return self->stack.size > 0 ? self->stack.contents[self->stack.size - 1].tree : NULL_SUBTREE; +} + +static inline uint32_t reusable_node_byte_offset(ReusableNode *self) +{ + return self->stack.size > 0 ? self->stack.contents[self->stack.size - 1].byte_offset : UINT32_MAX; +} + +static inline void reusable_node_delete(ReusableNode *self) +{ + array_delete(&self->stack); +} + +static inline void reusable_node_advance(ReusableNode *self) +{ + StackEntry last_entry = *array_back(&self->stack); + uint32_t byte_offset = last_entry.byte_offset + ts_subtree_total_bytes(last_entry.tree); + if (ts_subtree_has_external_tokens(last_entry.tree)) + { + self->last_external_token = ts_subtree_last_external_token(last_entry.tree); + } + + Subtree tree; + uint32_t next_index; + do + { + StackEntry popped_entry = array_pop(&self->stack); + next_index = popped_entry.child_index + 1; + if (self->stack.size == 0) + return; + tree = array_back(&self->stack)->tree; + } while (ts_subtree_child_count(tree) <= next_index); + + array_push(&self->stack, ((StackEntry){ + .tree = ts_subtree_children(tree)[next_index], + .child_index = next_index, + .byte_offset = byte_offset, + })); +} + +static inline bool reusable_node_descend(ReusableNode *self) +{ + StackEntry last_entry = *array_back(&self->stack); + if (ts_subtree_child_count(last_entry.tree) > 0) + { + array_push(&self->stack, ((StackEntry){ + .tree = ts_subtree_children(last_entry.tree)[0], + .child_index = 0, + .byte_offset = last_entry.byte_offset, + })); + return true; + } + else + { + return false; + } +} + +static inline void reusable_node_advance_past_leaf(ReusableNode *self) +{ + while (reusable_node_descend(self)) + { + } + reusable_node_advance(self); +} + +static inline void reusable_node_reset(ReusableNode *self, Subtree tree) +{ + reusable_node_clear(self); + array_push(&self->stack, ((StackEntry){ + .tree = tree, + .child_index = 0, + .byte_offset = 0, + })); + + // Never reuse the root node, because it has a non-standard internal structure + // due to transformations that are applied when it is accepted: adding the EOF + // child and any extra children. + if (!reusable_node_descend(self)) + { + reusable_node_clear(self); + } +} diff --git a/parser/nsrc/stack.c b/parser/nsrc/stack.c new file mode 100644 index 00000000..043ccee0 --- /dev/null +++ b/parser/nsrc/stack.c @@ -0,0 +1,992 @@ +#include "./stack.h" +#include "./alloc.h" +#include "./array.h" +#include "./language.h" +#include "./length.h" +#include "./subtree.h" +#include +#include +#include + +#define MAX_LINK_COUNT 8 +#define MAX_NODE_POOL_SIZE 50 +#define MAX_ITERATOR_COUNT 64 + +#if defined _WIN32 && !defined __GNUC__ +# define forceinline __forceinline +#else +# define forceinline static inline __attribute__((always_inline)) +#endif + +typedef struct StackNode StackNode; + +typedef struct StackLink +{ + StackNode *node; + Subtree subtree; + bool is_pending; +} StackLink; + +struct StackNode +{ + TSStateId state; + Length position; + StackLink links[MAX_LINK_COUNT]; + short unsigned int link_count; + uint32_t ref_count; + unsigned error_cost; + unsigned node_count; + int dynamic_precedence; +}; + +typedef struct StackIterator +{ + StackNode *node; + SubtreeArray subtrees; + uint32_t subtree_count; + bool is_pending; +} StackIterator; + +typedef Array(StackNode *) StackNodeArray; + +typedef enum StackStatus +{ + StackStatusActive, + StackStatusPaused, + StackStatusHalted, +} StackStatus; + +typedef struct StackHead +{ + StackNode *node; + StackSummary *summary; + unsigned node_count_at_last_error; + Subtree last_external_token; + Subtree lookahead_when_paused; + StackStatus status; +} StackHead; + +struct Stack +{ + Array(StackHead) heads; + StackSliceArray slices; + Array(StackIterator) iterators; + StackNodeArray node_pool; + StackNode *base_node; + SubtreePool *subtree_pool; +}; + +typedef unsigned StackAction; +enum StackAction +{ + StackActionNone, + StackActionStop = 1, + StackActionPop = 2, +}; + +typedef StackAction (*StackCallback)(void *, const StackIterator *); + +static void stack_node_retain(StackNode *self) +{ + if (!self) + return; + assert(self->ref_count > 0); + self->ref_count++; + assert(self->ref_count != 0); +} + +static void stack_node_release(StackNode *self, StackNodeArray *pool, SubtreePool *subtree_pool) +{ +recur: + assert(self->ref_count != 0); + self->ref_count--; + if (self->ref_count > 0) + return; + + StackNode *first_predecessor = NULL; + if (self->link_count > 0) + { + for (unsigned i = self->link_count - 1; i > 0; i--) + { + StackLink link = self->links[i]; + if (link.subtree.ptr) + ts_subtree_release(subtree_pool, link.subtree); + stack_node_release(link.node, pool, subtree_pool); + } + StackLink link = self->links[0]; + if (link.subtree.ptr) + ts_subtree_release(subtree_pool, link.subtree); + first_predecessor = self->links[0].node; + } + + if (pool->size < MAX_NODE_POOL_SIZE) + { + array_push(pool, self); + } + else + { + ts_free(self); + } + + if (first_predecessor) + { + self = first_predecessor; + goto recur; + } +} + +/// Get the number of nodes in the subtree, for the purpose of measuring +/// how much progress has been made by a given version of the stack. +static uint32_t stack__subtree_node_count(Subtree subtree) +{ + uint32_t count = ts_subtree_visible_descendant_count(subtree); + if (ts_subtree_visible(subtree)) + count++; + + // Count intermediate error nodes even though they are not visible, + // because a stack version's node count is used to check whether it + // has made any progress since the last time it encountered an error. + if (ts_subtree_symbol(subtree) == ts_builtin_sym_error_repeat) + count++; + + return count; +} + +static StackNode *stack_node_new(StackNode *previous_node, Subtree subtree, bool is_pending, TSStateId state, StackNodeArray *pool) +{ + StackNode *node = pool->size > 0 ? array_pop(pool) : ts_malloc(sizeof(StackNode)); + *node = (StackNode){.ref_count = 1, .link_count = 0, .state = state}; + + if (previous_node) + { + node->link_count = 1; + node->links[0] = (StackLink){ + .node = previous_node, + .subtree = subtree, + .is_pending = is_pending, + }; + + node->position = previous_node->position; + node->error_cost = previous_node->error_cost; + node->dynamic_precedence = previous_node->dynamic_precedence; + node->node_count = previous_node->node_count; + + if (subtree.ptr) + { + node->error_cost += ts_subtree_error_cost(subtree); + node->position = length_add(node->position, ts_subtree_total_size(subtree)); + node->node_count += stack__subtree_node_count(subtree); + node->dynamic_precedence += ts_subtree_dynamic_precedence(subtree); + } + } + else + { + node->position = length_zero(); + node->error_cost = 0; + } + + return node; +} + +static bool stack__subtree_is_equivalent(Subtree left, Subtree right) +{ + if (left.ptr == right.ptr) + return true; + if (!left.ptr || !right.ptr) + return false; + + // Symbols must match + if (ts_subtree_symbol(left) != ts_subtree_symbol(right)) + return false; + + // If both have errors, don't bother keeping both. + if (ts_subtree_error_cost(left) > 0 && ts_subtree_error_cost(right) > 0) + return true; + + return (ts_subtree_padding(left).bytes == ts_subtree_padding(right).bytes && + ts_subtree_size(left).bytes == ts_subtree_size(right).bytes && ts_subtree_child_count(left) == ts_subtree_child_count(right) && + ts_subtree_extra(left) == ts_subtree_extra(right) && ts_subtree_external_scanner_state_eq(left, right)); +} + +static void stack_node_add_link(StackNode *self, StackLink link, SubtreePool *subtree_pool) +{ + if (link.node == self) + return; + + for (int i = 0; i < self->link_count; i++) + { + StackLink *existing_link = &self->links[i]; + if (stack__subtree_is_equivalent(existing_link->subtree, link.subtree)) + { + // In general, we preserve ambiguities until they are removed from the stack + // during a pop operation where multiple paths lead to the same node. But in + // the special case where two links directly connect the same pair of nodes, + // we can safely remove the ambiguity ahead of time without changing behavior. + if (existing_link->node == link.node) + { + if (ts_subtree_dynamic_precedence(link.subtree) > ts_subtree_dynamic_precedence(existing_link->subtree)) + { + ts_subtree_retain(link.subtree); + ts_subtree_release(subtree_pool, existing_link->subtree); + existing_link->subtree = link.subtree; + self->dynamic_precedence = link.node->dynamic_precedence + ts_subtree_dynamic_precedence(link.subtree); + } + return; + } + + // If the previous nodes are mergeable, merge them recursively. + if (existing_link->node->state == link.node->state && existing_link->node->position.bytes == link.node->position.bytes && + existing_link->node->error_cost == link.node->error_cost) + { + for (int j = 0; j < link.node->link_count; j++) + { + stack_node_add_link(existing_link->node, link.node->links[j], subtree_pool); + } + int32_t dynamic_precedence = link.node->dynamic_precedence; + if (link.subtree.ptr) + { + dynamic_precedence += ts_subtree_dynamic_precedence(link.subtree); + } + if (dynamic_precedence > self->dynamic_precedence) + { + self->dynamic_precedence = dynamic_precedence; + } + return; + } + } + } + + if (self->link_count == MAX_LINK_COUNT) + return; + + stack_node_retain(link.node); + unsigned node_count = link.node->node_count; + int dynamic_precedence = link.node->dynamic_precedence; + self->links[self->link_count++] = link; + + if (link.subtree.ptr) + { + ts_subtree_retain(link.subtree); + node_count += stack__subtree_node_count(link.subtree); + dynamic_precedence += ts_subtree_dynamic_precedence(link.subtree); + } + + if (node_count > self->node_count) + self->node_count = node_count; + if (dynamic_precedence > self->dynamic_precedence) + self->dynamic_precedence = dynamic_precedence; +} + +static void stack_head_delete(StackHead *self, StackNodeArray *pool, SubtreePool *subtree_pool) +{ + if (self->node) + { + if (self->last_external_token.ptr) + { + ts_subtree_release(subtree_pool, self->last_external_token); + } + if (self->lookahead_when_paused.ptr) + { + ts_subtree_release(subtree_pool, self->lookahead_when_paused); + } + if (self->summary) + { + array_delete(self->summary); + ts_free(self->summary); + } + stack_node_release(self->node, pool, subtree_pool); + } +} + +static StackVersion ts_stack__add_version(Stack *self, StackVersion original_version, StackNode *node) +{ + StackHead head = { + .node = node, + .node_count_at_last_error = self->heads.contents[original_version].node_count_at_last_error, + .last_external_token = self->heads.contents[original_version].last_external_token, + .status = StackStatusActive, + .lookahead_when_paused = NULL_SUBTREE, + }; + array_push(&self->heads, head); + stack_node_retain(node); + if (head.last_external_token.ptr) + ts_subtree_retain(head.last_external_token); + return (StackVersion)(self->heads.size - 1); +} + +static void ts_stack__add_slice(Stack *self, StackVersion original_version, StackNode *node, SubtreeArray *subtrees) +{ + for (uint32_t i = self->slices.size - 1; i + 1 > 0; i--) + { + StackVersion version = self->slices.contents[i].version; + if (self->heads.contents[version].node == node) + { + StackSlice slice = {*subtrees, version}; + array_insert(&self->slices, i + 1, slice); + return; + } + } + + StackVersion version = ts_stack__add_version(self, original_version, node); + StackSlice slice = {*subtrees, version}; + array_push(&self->slices, slice); +} + +static StackSliceArray stack__iter(Stack *self, StackVersion version, StackCallback callback, void *payload, int goal_subtree_count) +{ + array_clear(&self->slices); + array_clear(&self->iterators); + + StackHead *head = array_get(&self->heads, version); + StackIterator new_iterator = { + .node = head->node, + .subtrees = array_new(), + .subtree_count = 0, + .is_pending = true, + }; + + bool include_subtrees = false; + if (goal_subtree_count >= 0) + { + include_subtrees = true; + array_reserve(&new_iterator.subtrees, (uint32_t)ts_subtree_alloc_size(goal_subtree_count) / sizeof(Subtree)); + } + + array_push(&self->iterators, new_iterator); + + while (self->iterators.size > 0) + { + for (uint32_t i = 0, size = self->iterators.size; i < size; i++) + { + StackIterator *iterator = &self->iterators.contents[i]; + StackNode *node = iterator->node; + + StackAction action = callback(payload, iterator); + bool should_pop = action & StackActionPop; + bool should_stop = action & StackActionStop || node->link_count == 0; + + if (should_pop) + { + SubtreeArray subtrees = iterator->subtrees; + if (!should_stop) + { + ts_subtree_array_copy(subtrees, &subtrees); + } + ts_subtree_array_reverse(&subtrees); + ts_stack__add_slice(self, version, node, &subtrees); + } + + if (should_stop) + { + if (!should_pop) + { + ts_subtree_array_delete(self->subtree_pool, &iterator->subtrees); + } + array_erase(&self->iterators, i); + i--, size--; + continue; + } + + for (uint32_t j = 1; j <= node->link_count; j++) + { + StackIterator *next_iterator; + StackLink link; + if (j == node->link_count) + { + link = node->links[0]; + next_iterator = &self->iterators.contents[i]; + } + else + { + if (self->iterators.size >= MAX_ITERATOR_COUNT) + continue; + link = node->links[j]; + StackIterator current_iterator = self->iterators.contents[i]; + array_push(&self->iterators, current_iterator); + next_iterator = array_back(&self->iterators); + ts_subtree_array_copy(next_iterator->subtrees, &next_iterator->subtrees); + } + + next_iterator->node = link.node; + if (link.subtree.ptr) + { + if (include_subtrees) + { + array_push(&next_iterator->subtrees, link.subtree); + ts_subtree_retain(link.subtree); + } + + if (!ts_subtree_extra(link.subtree)) + { + next_iterator->subtree_count++; + if (!link.is_pending) + { + next_iterator->is_pending = false; + } + } + } + else + { + next_iterator->subtree_count++; + next_iterator->is_pending = false; + } + } + } + } + + return self->slices; +} + +Stack *ts_stack_new(SubtreePool *subtree_pool) +{ + Stack *self = ts_calloc(1, sizeof(Stack)); + + array_init(&self->heads); + array_init(&self->slices); + array_init(&self->iterators); + array_init(&self->node_pool); + array_reserve(&self->heads, 4); + array_reserve(&self->slices, 4); + array_reserve(&self->iterators, 4); + array_reserve(&self->node_pool, MAX_NODE_POOL_SIZE); + + self->subtree_pool = subtree_pool; + self->base_node = stack_node_new(NULL, NULL_SUBTREE, false, 1, &self->node_pool); + ts_stack_clear(self); + + return self; +} + +void ts_stack_delete(Stack *self) +{ + if (self->slices.contents) + array_delete(&self->slices); + if (self->iterators.contents) + array_delete(&self->iterators); + stack_node_release(self->base_node, &self->node_pool, self->subtree_pool); + for (uint32_t i = 0; i < self->heads.size; i++) + { + stack_head_delete(&self->heads.contents[i], &self->node_pool, self->subtree_pool); + } + array_clear(&self->heads); + if (self->node_pool.contents) + { + for (uint32_t i = 0; i < self->node_pool.size; i++) + ts_free(self->node_pool.contents[i]); + array_delete(&self->node_pool); + } + array_delete(&self->heads); + ts_free(self); +} + +uint32_t ts_stack_version_count(const Stack *self) +{ + return self->heads.size; +} + +TSStateId ts_stack_state(const Stack *self, StackVersion version) +{ + return array_get(&self->heads, version)->node->state; +} + +Length ts_stack_position(const Stack *self, StackVersion version) +{ + return array_get(&self->heads, version)->node->position; +} + +Subtree ts_stack_last_external_token(const Stack *self, StackVersion version) +{ + return array_get(&self->heads, version)->last_external_token; +} + +void ts_stack_set_last_external_token(Stack *self, StackVersion version, Subtree token) +{ + StackHead *head = array_get(&self->heads, version); + if (token.ptr) + ts_subtree_retain(token); + if (head->last_external_token.ptr) + ts_subtree_release(self->subtree_pool, head->last_external_token); + head->last_external_token = token; +} + +unsigned ts_stack_error_cost(const Stack *self, StackVersion version) +{ + StackHead *head = array_get(&self->heads, version); + unsigned result = head->node->error_cost; + if (head->status == StackStatusPaused || (head->node->state == ERROR_STATE && !head->node->links[0].subtree.ptr)) + { + result += ERROR_COST_PER_RECOVERY; + } + return result; +} + +unsigned ts_stack_node_count_since_error(const Stack *self, StackVersion version) +{ + StackHead *head = array_get(&self->heads, version); + if (head->node->node_count < head->node_count_at_last_error) + { + head->node_count_at_last_error = head->node->node_count; + } + return head->node->node_count - head->node_count_at_last_error; +} + +void ts_stack_push(Stack *self, StackVersion version, Subtree subtree, bool pending, TSStateId state) +{ + StackHead *head = array_get(&self->heads, version); + StackNode *new_node = stack_node_new(head->node, subtree, pending, state, &self->node_pool); + if (!subtree.ptr) + head->node_count_at_last_error = new_node->node_count; + head->node = new_node; +} + +forceinline StackAction pop_count_callback(void *payload, const StackIterator *iterator) +{ + unsigned *goal_subtree_count = payload; + if (iterator->subtree_count == *goal_subtree_count) + { + return StackActionPop | StackActionStop; + } + else + { + return StackActionNone; + } +} + +StackSliceArray ts_stack_pop_count(Stack *self, StackVersion version, uint32_t count) +{ + return stack__iter(self, version, pop_count_callback, &count, (int)count); +} + +forceinline StackAction pop_pending_callback(void *payload, const StackIterator *iterator) +{ + (void)payload; + if (iterator->subtree_count >= 1) + { + if (iterator->is_pending) + { + return StackActionPop | StackActionStop; + } + else + { + return StackActionStop; + } + } + else + { + return StackActionNone; + } +} + +StackSliceArray ts_stack_pop_pending(Stack *self, StackVersion version) +{ + StackSliceArray pop = stack__iter(self, version, pop_pending_callback, NULL, 0); + if (pop.size > 0) + { + ts_stack_renumber_version(self, pop.contents[0].version, version); + pop.contents[0].version = version; + } + return pop; +} + +forceinline StackAction pop_error_callback(void *payload, const StackIterator *iterator) +{ + if (iterator->subtrees.size > 0) + { + bool *found_error = payload; + if (!*found_error && ts_subtree_is_error(iterator->subtrees.contents[0])) + { + *found_error = true; + return StackActionPop | StackActionStop; + } + else + { + return StackActionStop; + } + } + else + { + return StackActionNone; + } +} + +SubtreeArray ts_stack_pop_error(Stack *self, StackVersion version) +{ + StackNode *node = array_get(&self->heads, version)->node; + for (unsigned i = 0; i < node->link_count; i++) + { + if (node->links[i].subtree.ptr && ts_subtree_is_error(node->links[i].subtree)) + { + bool found_error = false; + StackSliceArray pop = stack__iter(self, version, pop_error_callback, &found_error, 1); + if (pop.size > 0) + { + assert(pop.size == 1); + ts_stack_renumber_version(self, pop.contents[0].version, version); + return pop.contents[0].subtrees; + } + break; + } + } + return (SubtreeArray){.size = 0}; +} + +forceinline StackAction pop_all_callback(void *payload, const StackIterator *iterator) +{ + (void)payload; + return iterator->node->link_count == 0 ? StackActionPop : StackActionNone; +} + +StackSliceArray ts_stack_pop_all(Stack *self, StackVersion version) +{ + return stack__iter(self, version, pop_all_callback, NULL, 0); +} + +typedef struct SummarizeStackSession +{ + StackSummary *summary; + unsigned max_depth; +} SummarizeStackSession; + +forceinline StackAction summarize_stack_callback(void *payload, const StackIterator *iterator) +{ + SummarizeStackSession *session = payload; + TSStateId state = iterator->node->state; + unsigned depth = iterator->subtree_count; + if (depth > session->max_depth) + return StackActionStop; + for (unsigned i = session->summary->size - 1; i + 1 > 0; i--) + { + StackSummaryEntry entry = session->summary->contents[i]; + if (entry.depth < depth) + break; + if (entry.depth == depth && entry.state == state) + return StackActionNone; + } + array_push(session->summary, ((StackSummaryEntry){ + .position = iterator->node->position, + .depth = depth, + .state = state, + })); + return StackActionNone; +} + +void ts_stack_record_summary(Stack *self, StackVersion version, unsigned max_depth) +{ + SummarizeStackSession session = {.summary = ts_malloc(sizeof(StackSummary)), .max_depth = max_depth}; + array_init(session.summary); + stack__iter(self, version, summarize_stack_callback, &session, -1); + StackHead *head = &self->heads.contents[version]; + if (head->summary) + { + array_delete(head->summary); + ts_free(head->summary); + } + head->summary = session.summary; +} + +StackSummary *ts_stack_get_summary(Stack *self, StackVersion version) +{ + return array_get(&self->heads, version)->summary; +} + +int ts_stack_dynamic_precedence(Stack *self, StackVersion version) +{ + return array_get(&self->heads, version)->node->dynamic_precedence; +} + +bool ts_stack_has_advanced_since_error(const Stack *self, StackVersion version) +{ + const StackHead *head = array_get(&self->heads, version); + const StackNode *node = head->node; + if (node->error_cost == 0) + return true; + while (node) + { + if (node->link_count > 0) + { + Subtree subtree = node->links[0].subtree; + if (subtree.ptr) + { + if (ts_subtree_total_bytes(subtree) > 0) + { + return true; + } + else if (node->node_count > head->node_count_at_last_error && ts_subtree_error_cost(subtree) == 0) + { + node = node->links[0].node; + continue; + } + } + } + break; + } + return false; +} + +void ts_stack_remove_version(Stack *self, StackVersion version) +{ + stack_head_delete(array_get(&self->heads, version), &self->node_pool, self->subtree_pool); + array_erase(&self->heads, version); +} + +void ts_stack_renumber_version(Stack *self, StackVersion v1, StackVersion v2) +{ + if (v1 == v2) + return; + assert(v2 < v1); + assert((uint32_t)v1 < self->heads.size); + StackHead *source_head = &self->heads.contents[v1]; + StackHead *target_head = &self->heads.contents[v2]; + if (target_head->summary && !source_head->summary) + { + source_head->summary = target_head->summary; + target_head->summary = NULL; + } + stack_head_delete(target_head, &self->node_pool, self->subtree_pool); + *target_head = *source_head; + array_erase(&self->heads, v1); +} + +void ts_stack_swap_versions(Stack *self, StackVersion v1, StackVersion v2) +{ + StackHead temporary_head = self->heads.contents[v1]; + self->heads.contents[v1] = self->heads.contents[v2]; + self->heads.contents[v2] = temporary_head; +} + +StackVersion ts_stack_copy_version(Stack *self, StackVersion version) +{ + assert(version < self->heads.size); + array_push(&self->heads, self->heads.contents[version]); + StackHead *head = array_back(&self->heads); + stack_node_retain(head->node); + if (head->last_external_token.ptr) + ts_subtree_retain(head->last_external_token); + head->summary = NULL; + return self->heads.size - 1; +} + +bool ts_stack_merge(Stack *self, StackVersion version1, StackVersion version2) +{ + if (!ts_stack_can_merge(self, version1, version2)) + return false; + StackHead *head1 = &self->heads.contents[version1]; + StackHead *head2 = &self->heads.contents[version2]; + for (uint32_t i = 0; i < head2->node->link_count; i++) + { + stack_node_add_link(head1->node, head2->node->links[i], self->subtree_pool); + } + if (head1->node->state == ERROR_STATE) + { + head1->node_count_at_last_error = head1->node->node_count; + } + ts_stack_remove_version(self, version2); + return true; +} + +bool ts_stack_can_merge(Stack *self, StackVersion version1, StackVersion version2) +{ + StackHead *head1 = &self->heads.contents[version1]; + StackHead *head2 = &self->heads.contents[version2]; + return head1->status == StackStatusActive && head2->status == StackStatusActive && head1->node->state == head2->node->state && + head1->node->position.bytes == head2->node->position.bytes && head1->node->error_cost == head2->node->error_cost && + ts_subtree_external_scanner_state_eq(head1->last_external_token, head2->last_external_token); +} + +void ts_stack_halt(Stack *self, StackVersion version) +{ + array_get(&self->heads, version)->status = StackStatusHalted; +} + +void ts_stack_pause(Stack *self, StackVersion version, Subtree lookahead) +{ + StackHead *head = array_get(&self->heads, version); + head->status = StackStatusPaused; + head->lookahead_when_paused = lookahead; + head->node_count_at_last_error = head->node->node_count; +} + +bool ts_stack_is_active(const Stack *self, StackVersion version) +{ + return array_get(&self->heads, version)->status == StackStatusActive; +} + +bool ts_stack_is_halted(const Stack *self, StackVersion version) +{ + return array_get(&self->heads, version)->status == StackStatusHalted; +} + +bool ts_stack_is_paused(const Stack *self, StackVersion version) +{ + return array_get(&self->heads, version)->status == StackStatusPaused; +} + +Subtree ts_stack_resume(Stack *self, StackVersion version) +{ + StackHead *head = array_get(&self->heads, version); + assert(head->status == StackStatusPaused); + Subtree result = head->lookahead_when_paused; + head->status = StackStatusActive; + head->lookahead_when_paused = NULL_SUBTREE; + return result; +} + +void ts_stack_clear(Stack *self) +{ + stack_node_retain(self->base_node); + for (uint32_t i = 0; i < self->heads.size; i++) + { + stack_head_delete(&self->heads.contents[i], &self->node_pool, self->subtree_pool); + } + array_clear(&self->heads); + array_push(&self->heads, ((StackHead){ + .node = self->base_node, + .status = StackStatusActive, + .last_external_token = NULL_SUBTREE, + .lookahead_when_paused = NULL_SUBTREE, + })); +} + +bool ts_stack_print_dot_graph(Stack *self, const TSLanguage *language, FILE *f) +{ + array_reserve(&self->iterators, 32); + if (!f) + f = stderr; + + fprintf(f, "digraph stack {\n"); + fprintf(f, "rankdir=\"RL\";\n"); + fprintf(f, "edge [arrowhead=none]\n"); + + Array(StackNode *) visited_nodes = array_new(); + + array_clear(&self->iterators); + for (uint32_t i = 0; i < self->heads.size; i++) + { + StackHead *head = &self->heads.contents[i]; + if (head->status == StackStatusHalted) + continue; + + fprintf(f, "node_head_%u [shape=none, label=\"\"]\n", i); + fprintf(f, "node_head_%u -> node_%p [", i, (void *)head->node); + + if (head->status == StackStatusPaused) + { + fprintf(f, "color=red "); + } + fprintf(f, "label=%u, fontcolor=blue, weight=10000, labeltooltip=\"node_count: %u\nerror_cost: %u", i, + ts_stack_node_count_since_error(self, i), ts_stack_error_cost(self, i)); + + if (head->summary) + { + fprintf(f, "\nsummary:"); + for (uint32_t j = 0; j < head->summary->size; j++) + fprintf(f, " %u", head->summary->contents[j].state); + } + + if (head->last_external_token.ptr) + { + const ExternalScannerState *state = &head->last_external_token.ptr->inner.external_scanner_state; + const char *data = ts_external_scanner_state_data(state); + fprintf(f, "\nexternal_scanner_state:"); + for (uint32_t j = 0; j < state->length; j++) + fprintf(f, " %2X", data[j]); + } + + fprintf(f, "\"]\n"); + array_push(&self->iterators, ((StackIterator){.node = head->node})); + } + + bool all_iterators_done = false; + while (!all_iterators_done) + { + all_iterators_done = true; + + for (uint32_t i = 0; i < self->iterators.size; i++) + { + StackIterator iterator = self->iterators.contents[i]; + StackNode *node = iterator.node; + + for (uint32_t j = 0; j < visited_nodes.size; j++) + { + if (visited_nodes.contents[j] == node) + { + node = NULL; + break; + } + } + + if (!node) + continue; + all_iterators_done = false; + + fprintf(f, "node_%p [", (void *)node); + if (node->state == ERROR_STATE) + { + fprintf(f, "label=\"?\""); + } + else if (node->link_count == 1 && node->links[0].subtree.ptr && ts_subtree_extra(node->links[0].subtree)) + { + fprintf(f, "shape=point margin=0 label=\"\""); + } + else + { + fprintf(f, "label=\"%d\"", node->state); + } + + fprintf(f, " tooltip=\"position: %u,%u\nnode_count:%u\nerror_cost: %u\ndynamic_precedence: %d\"];\n", + node->position.extent.row + 1, node->position.extent.column, node->node_count, node->error_cost, + node->dynamic_precedence); + + for (int j = 0; j < node->link_count; j++) + { + StackLink link = node->links[j]; + fprintf(f, "node_%p -> node_%p [", (void *)node, (void *)link.node); + if (link.is_pending) + fprintf(f, "style=dashed "); + if (link.subtree.ptr && ts_subtree_extra(link.subtree)) + fprintf(f, "fontcolor=gray "); + + if (!link.subtree.ptr) + { + fprintf(f, "color=red"); + } + else + { + fprintf(f, "label=\""); + bool quoted = ts_subtree_visible(link.subtree) && !ts_subtree_named(link.subtree); + if (quoted) + fprintf(f, "'"); + ts_language_write_symbol_as_dot_string(language, f, ts_subtree_symbol(link.subtree)); + if (quoted) + fprintf(f, "'"); + fprintf(f, "\""); + fprintf(f, "labeltooltip=\"error_cost: %u\ndynamic_precedence: %" PRId32 "\"", ts_subtree_error_cost(link.subtree), + ts_subtree_dynamic_precedence(link.subtree)); + } + + fprintf(f, "];\n"); + + StackIterator *next_iterator; + if (j == 0) + { + next_iterator = &self->iterators.contents[i]; + } + else + { + array_push(&self->iterators, iterator); + next_iterator = array_back(&self->iterators); + } + next_iterator->node = link.node; + } + + array_push(&visited_nodes, node); + } + } + + fprintf(f, "}\n"); + + array_delete(&visited_nodes); + return true; +} + +#undef forceinline diff --git a/parser/nsrc/stack.h b/parser/nsrc/stack.h new file mode 100644 index 00000000..a801536a --- /dev/null +++ b/parser/nsrc/stack.h @@ -0,0 +1,136 @@ +#ifndef TREE_SITTER_PARSE_STACK_H_ +#define TREE_SITTER_PARSE_STACK_H_ + +#ifdef __cplusplus +extern "C" +{ +#endif + +#include "./array.h" +#include "./error_costs.h" +#include "./subtree.h" +#include + + typedef struct Stack Stack; + + typedef unsigned StackVersion; +#define STACK_VERSION_NONE ((StackVersion)-1) + + typedef struct StackSlice + { + SubtreeArray subtrees; + StackVersion version; + } StackSlice; + typedef Array(StackSlice) StackSliceArray; + + typedef struct StackSummaryEntry + { + Length position; + unsigned depth; + TSStateId state; + } StackSummaryEntry; + typedef Array(StackSummaryEntry) StackSummary; + + // Create a stack. + Stack *ts_stack_new(SubtreePool *); + + // Release the memory reserved for a given stack. + void ts_stack_delete(Stack *); + + // Get the stack's current number of versions. + uint32_t ts_stack_version_count(const Stack *); + + // Get the state at the top of the given version of the stack. If the stack is + // empty, this returns the initial state, 0. + TSStateId ts_stack_state(const Stack *, StackVersion); + + // Get the last external token associated with a given version of the stack. + Subtree ts_stack_last_external_token(const Stack *, StackVersion); + + // Set the last external token associated with a given version of the stack. + void ts_stack_set_last_external_token(Stack *, StackVersion, Subtree); + + // Get the position of the given version of the stack within the document. + Length ts_stack_position(const Stack *, StackVersion); + + // Push a tree and state onto the given version of the stack. + // + // This transfers ownership of the tree to the Stack. Callers that + // need to retain ownership of the tree for their own purposes should + // first retain the tree. + void ts_stack_push(Stack *, StackVersion, Subtree, bool, TSStateId); + + // Pop the given number of entries from the given version of the stack. This + // operation can increase the number of stack versions by revealing multiple + // versions which had previously been merged. It returns an array that + // specifies the index of each revealed version and the trees that were + // removed from that version. + StackSliceArray ts_stack_pop_count(Stack *, StackVersion, uint32_t count); + + // Remove an error at the top of the given version of the stack. + SubtreeArray ts_stack_pop_error(Stack *, StackVersion); + + // Remove any pending trees from the top of the given version of the stack. + StackSliceArray ts_stack_pop_pending(Stack *, StackVersion); + + // Remove any all trees from the given version of the stack. + StackSliceArray ts_stack_pop_all(Stack *, StackVersion); + + // Get the maximum number of tree nodes reachable from this version of the stack + // since the last error was detected. + unsigned ts_stack_node_count_since_error(const Stack *, StackVersion); + + int ts_stack_dynamic_precedence(Stack *, StackVersion); + + bool ts_stack_has_advanced_since_error(const Stack *, StackVersion); + + // Compute a summary of all the parse states near the top of the given + // version of the stack and store the summary for later retrieval. + void ts_stack_record_summary(Stack *, StackVersion, unsigned max_depth); + + // Retrieve a summary of all the parse states near the top of the + // given version of the stack. + StackSummary *ts_stack_get_summary(Stack *, StackVersion); + + // Get the total cost of all errors on the given version of the stack. + unsigned ts_stack_error_cost(const Stack *, StackVersion version); + + // Merge the given two stack versions if possible, returning true + // if they were successfully merged and false otherwise. + bool ts_stack_merge(Stack *, StackVersion, StackVersion); + + // Determine whether the given two stack versions can be merged. + bool ts_stack_can_merge(Stack *, StackVersion, StackVersion); + + Subtree ts_stack_resume(Stack *, StackVersion); + + void ts_stack_pause(Stack *, StackVersion, Subtree); + + void ts_stack_halt(Stack *, StackVersion); + + bool ts_stack_is_active(const Stack *, StackVersion); + + bool ts_stack_is_paused(const Stack *, StackVersion); + + bool ts_stack_is_halted(const Stack *, StackVersion); + + void ts_stack_renumber_version(Stack *, StackVersion, StackVersion); + + void ts_stack_swap_versions(Stack *, StackVersion, StackVersion); + + StackVersion ts_stack_copy_version(Stack *, StackVersion); + + // Remove the given version from the stack. + void ts_stack_remove_version(Stack *, StackVersion); + + void ts_stack_clear(Stack *); + + bool ts_stack_print_dot_graph(Stack *, const TSLanguage *, FILE *); + + typedef void (*StackIterateCallback)(void *, TSStateId, uint32_t); + +#ifdef __cplusplus +} +#endif + +#endif // TREE_SITTER_PARSE_STACK_H_ diff --git a/parser/nsrc/subtree.c b/parser/nsrc/subtree.c new file mode 100644 index 00000000..c8a23f64 --- /dev/null +++ b/parser/nsrc/subtree.c @@ -0,0 +1,1108 @@ +#include "./subtree.h" +#include "./alloc.h" +#include "./array.h" +#include "./atomic.h" +#include "./error_costs.h" +#include "./language.h" +#include "./length.h" +#include +#include +#include +#include +#include +#include +#include + +typedef struct Edit +{ + Length start; + Length old_end; + Length new_end; +} Edit; + +#define TS_MAX_INLINE_TREE_LENGTH UINT8_MAX +#define TS_MAX_TREE_POOL_SIZE 32 + +// ExternalScannerState + +void ts_external_scanner_state_init(ExternalScannerState *self, const char *data, unsigned length) +{ + self->length = length; + if (length > sizeof(self->data.short_data)) + { + self->data.long_data = ts_malloc(length); + memcpy(self->data.long_data, data, length); + } + else + { + memcpy(self->data.short_data, data, length); + } +} + +ExternalScannerState ts_external_scanner_state_copy(const ExternalScannerState *self) +{ + ExternalScannerState result = *self; + if (self->length > sizeof(self->data.short_data)) + { + result.data.long_data = ts_malloc(self->length); + memcpy(result.data.long_data, self->data.long_data, self->length); + } + return result; +} + +void ts_external_scanner_state_delete(ExternalScannerState *self) +{ + if (self->length > sizeof(self->data.short_data)) + { + ts_free(self->data.long_data); + } +} + +const char *ts_external_scanner_state_data(const ExternalScannerState *self) +{ + if (self->length > sizeof(self->data.short_data)) + { + return self->data.long_data; + } + else + { + return self->data.short_data; + } +} + +bool ts_external_scanner_state_eq(const ExternalScannerState *self, const char *buffer, unsigned length) +{ + return self->length == length && memcmp(ts_external_scanner_state_data(self), buffer, length) == 0; +} + +// SubtreeArray + +void ts_subtree_array_copy(SubtreeArray self, SubtreeArray *dest) +{ + dest->size = self.size; + dest->capacity = self.capacity; + dest->contents = self.contents; + if (self.capacity > 0) + { + dest->contents = ts_calloc(self.capacity, sizeof(Subtree)); + memcpy(dest->contents, self.contents, self.size * sizeof(Subtree)); + for (uint32_t i = 0; i < self.size; i++) + { + ts_subtree_retain(dest->contents[i]); + } + } +} + +void ts_subtree_array_clear(SubtreePool *pool, SubtreeArray *self) +{ + for (uint32_t i = 0; i < self->size; i++) + { + ts_subtree_release(pool, self->contents[i]); + } + array_clear(self); +} + +void ts_subtree_array_delete(SubtreePool *pool, SubtreeArray *self) +{ + ts_subtree_array_clear(pool, self); + array_delete(self); +} + +void ts_subtree_array_remove_trailing_extras(SubtreeArray *self, SubtreeArray *destination) +{ + array_clear(destination); + while (self->size > 0) + { + Subtree last = self->contents[self->size - 1]; + if (ts_subtree_extra(last)) + { + self->size--; + array_push(destination, last); + } + else + { + break; + } + } + ts_subtree_array_reverse(destination); +} + +void ts_subtree_array_reverse(SubtreeArray *self) +{ + for (uint32_t i = 0, limit = self->size / 2; i < limit; i++) + { + size_t reverse_index = self->size - 1 - i; + Subtree swap = self->contents[i]; + self->contents[i] = self->contents[reverse_index]; + self->contents[reverse_index] = swap; + } +} + +// SubtreePool + +SubtreePool ts_subtree_pool_new(uint32_t capacity) +{ + SubtreePool self = {array_new(), array_new()}; + array_reserve(&self.free_trees, capacity); + return self; +} + +void ts_subtree_pool_delete(SubtreePool *self) +{ + if (self->free_trees.contents) + { + for (unsigned i = 0; i < self->free_trees.size; i++) + { + ts_free(self->free_trees.contents[i].ptr); + } + array_delete(&self->free_trees); + } + if (self->tree_stack.contents) + array_delete(&self->tree_stack); +} + +static SubtreeHeapData *ts_subtree_pool_allocate(SubtreePool *self) +{ + if (self->free_trees.size > 0) + { + return array_pop(&self->free_trees).ptr; + } + else + { + return ts_malloc(sizeof(SubtreeHeapData)); + } +} + +static void ts_subtree_pool_free(SubtreePool *self, SubtreeHeapData *tree) +{ + if (self->free_trees.capacity > 0 && self->free_trees.size + 1 <= TS_MAX_TREE_POOL_SIZE) + { + array_push(&self->free_trees, (MutableSubtree){.ptr = tree}); + } + else + { + ts_free(tree); + } +} + +// Subtree + +static inline bool ts_subtree_can_inline(Length padding, Length size, uint32_t lookahead_bytes) +{ + return padding.bytes < TS_MAX_INLINE_TREE_LENGTH && padding.extent.row < 16 && padding.extent.column < TS_MAX_INLINE_TREE_LENGTH && + size.extent.row == 0 && size.extent.column < TS_MAX_INLINE_TREE_LENGTH && lookahead_bytes < 16; +} + +Subtree ts_subtree_new_leaf(SubtreePool *pool, TSSymbol symbol, Length padding, Length size, uint32_t lookahead_bytes, + TSStateId parse_state, bool has_external_tokens, bool depends_on_column, bool is_keyword, + const TSLanguage *language) +{ + TSSymbolMetadata metadata = ts_language_symbol_metadata(language, symbol); + bool extra = symbol == ts_builtin_sym_end; + + bool is_inline = (symbol <= UINT8_MAX && !has_external_tokens && ts_subtree_can_inline(padding, size, lookahead_bytes)); + + if (is_inline) + { + return (Subtree){{ + .parse_state = parse_state, + .symbol = symbol, + .padding_bytes = padding.bytes, + .padding_rows = padding.extent.row, + .padding_columns = padding.extent.column, + .size_bytes = size.bytes, + .lookahead_bytes = lookahead_bytes, + .visible = metadata.visible, + .named = metadata.named, + .extra = extra, + .has_changes = false, + .is_missing = false, + .is_keyword = is_keyword, + .is_inline = true, + }}; + } + else + { + SubtreeHeapData *data = ts_subtree_pool_allocate(pool); + *data = (SubtreeHeapData){.ref_count = 1, + .padding = padding, + .size = size, + .lookahead_bytes = lookahead_bytes, + .error_cost = 0, + .child_count = 0, + .symbol = symbol, + .parse_state = parse_state, + .visible = metadata.visible, + .named = metadata.named, + .extra = extra, + .fragile_left = false, + .fragile_right = false, + .has_changes = false, + .has_external_tokens = has_external_tokens, + .has_external_scanner_state_change = false, + .depends_on_column = depends_on_column, + .is_missing = false, + .is_keyword = is_keyword, + {{.first_leaf = {.symbol = 0, .parse_state = 0}}}}; + return (Subtree){.ptr = data}; + } +} + +void ts_subtree_set_symbol(MutableSubtree *self, TSSymbol symbol, const TSLanguage *language) +{ + TSSymbolMetadata metadata = ts_language_symbol_metadata(language, symbol); + if (self->data.is_inline) + { + assert(symbol < UINT8_MAX); + self->data.symbol = symbol; + self->data.named = metadata.named; + self->data.visible = metadata.visible; + } + else + { + self->ptr->symbol = symbol; + self->ptr->named = metadata.named; + self->ptr->visible = metadata.visible; + } +} + +Subtree ts_subtree_new_error(SubtreePool *pool, int32_t lookahead_char, Length padding, Length size, uint32_t bytes_scanned, + TSStateId parse_state, const TSLanguage *language) +{ + Subtree result = + ts_subtree_new_leaf(pool, ts_builtin_sym_error, padding, size, bytes_scanned, parse_state, false, false, false, language); + SubtreeHeapData *data = (SubtreeHeapData *)result.ptr; + data->fragile_left = true; + data->fragile_right = true; + data->inner.lookahead_char = lookahead_char; + return result; +} + +// Clone a subtree. +MutableSubtree ts_subtree_clone(Subtree self) +{ + size_t alloc_size = ts_subtree_alloc_size(self.ptr->child_count); + Subtree *new_children = ts_malloc(alloc_size); + Subtree *old_children = ts_subtree_children(self); + memcpy(new_children, old_children, alloc_size); + SubtreeHeapData *result = (SubtreeHeapData *)&new_children[self.ptr->child_count]; + if (self.ptr->child_count > 0) + { + for (uint32_t i = 0; i < self.ptr->child_count; i++) + { + ts_subtree_retain(new_children[i]); + } + } + else if (self.ptr->has_external_tokens) + { + result->inner.external_scanner_state = ts_external_scanner_state_copy(&self.ptr->inner.external_scanner_state); + } + result->ref_count = 1; + return (MutableSubtree){.ptr = result}; +} + +// Get mutable version of a subtree. +// +// This takes ownership of the subtree. If the subtree has only one owner, +// this will directly convert it into a mutable version. Otherwise, it will +// perform a copy. +MutableSubtree ts_subtree_make_mut(SubtreePool *pool, Subtree self) +{ + if (self.data.is_inline) + return (MutableSubtree){self.data}; + if (self.ptr->ref_count == 1) + return ts_subtree_to_mut_unsafe(self); + MutableSubtree result = ts_subtree_clone(self); + ts_subtree_release(pool, self); + return result; +} + +static void ts_subtree__compress(MutableSubtree self, unsigned count, const TSLanguage *language, MutableSubtreeArray *stack) +{ + unsigned initial_stack_size = stack->size; + + MutableSubtree tree = self; + TSSymbol symbol = tree.ptr->symbol; + for (unsigned i = 0; i < count; i++) + { + if (tree.ptr->ref_count > 1 || tree.ptr->child_count < 2) + break; + + MutableSubtree child = ts_subtree_to_mut_unsafe(ts_subtree_children(tree)[0]); + if (child.data.is_inline || child.ptr->child_count < 2 || child.ptr->ref_count > 1 || child.ptr->symbol != symbol) + break; + + MutableSubtree grandchild = ts_subtree_to_mut_unsafe(ts_subtree_children(child)[0]); + if (grandchild.data.is_inline || grandchild.ptr->child_count < 2 || grandchild.ptr->ref_count > 1 || + grandchild.ptr->symbol != symbol) + break; + + ts_subtree_children(tree)[0] = ts_subtree_from_mut(grandchild); + ts_subtree_children(child)[0] = ts_subtree_children(grandchild)[grandchild.ptr->child_count - 1]; + ts_subtree_children(grandchild)[grandchild.ptr->child_count - 1] = ts_subtree_from_mut(child); + array_push(stack, tree); + tree = grandchild; + } + + while (stack->size > initial_stack_size) + { + tree = array_pop(stack); + MutableSubtree child = ts_subtree_to_mut_unsafe(ts_subtree_children(tree)[0]); + MutableSubtree grandchild = ts_subtree_to_mut_unsafe(ts_subtree_children(child)[child.ptr->child_count - 1]); + ts_subtree_summarize_children(grandchild, language); + ts_subtree_summarize_children(child, language); + ts_subtree_summarize_children(tree, language); + } +} + +void ts_subtree_balance(Subtree self, SubtreePool *pool, const TSLanguage *language) +{ + array_clear(&pool->tree_stack); + + if (ts_subtree_child_count(self) > 0 && self.ptr->ref_count == 1) + { + array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(self)); + } + + while (pool->tree_stack.size > 0) + { + MutableSubtree tree = array_pop(&pool->tree_stack); + + if (tree.ptr->inner.non_terminal.repeat_depth > 0) + { + Subtree child1 = ts_subtree_children(tree)[0]; + Subtree child2 = ts_subtree_children(tree)[tree.ptr->child_count - 1]; + long repeat_delta = (long)ts_subtree_repeat_depth(child1) - (long)ts_subtree_repeat_depth(child2); + if (repeat_delta > 0) + { + unsigned n = (unsigned)repeat_delta; + for (unsigned i = n / 2; i > 0; i /= 2) + { + ts_subtree__compress(tree, i, language, &pool->tree_stack); + n -= i; + } + } + } + + for (uint32_t i = 0; i < tree.ptr->child_count; i++) + { + Subtree child = ts_subtree_children(tree)[i]; + if (ts_subtree_child_count(child) > 0 && child.ptr->ref_count == 1) + { + array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(child)); + } + } + } +} + +// Assign all of the node's properties that depend on its children. +void ts_subtree_summarize_children(MutableSubtree self, const TSLanguage *language) +{ + assert(!self.data.is_inline); + + self.ptr->inner.non_terminal.named_child_count = 0; + self.ptr->inner.non_terminal.visible_child_count = 0; + self.ptr->error_cost = 0; + self.ptr->inner.non_terminal.repeat_depth = 0; + self.ptr->inner.non_terminal.visible_descendant_count = 0; + self.ptr->has_external_tokens = false; + self.ptr->depends_on_column = false; + self.ptr->has_external_scanner_state_change = false; + self.ptr->inner.non_terminal.dynamic_precedence = 0; + + uint32_t structural_index = 0; + const TSSymbol *alias_sequence = ts_language_alias_sequence(language, self.ptr->inner.non_terminal.production_id); + uint32_t lookahead_end_byte = 0; + + const Subtree *children = ts_subtree_children(self); + for (uint32_t i = 0; i < self.ptr->child_count; i++) + { + Subtree child = children[i]; + + if (self.ptr->size.extent.row == 0 && ts_subtree_depends_on_column(child)) + { + self.ptr->depends_on_column = true; + } + + if (ts_subtree_has_external_scanner_state_change(child)) + { + self.ptr->has_external_scanner_state_change = true; + } + + if (i == 0) + { + self.ptr->padding = ts_subtree_padding(child); + self.ptr->size = ts_subtree_size(child); + } + else + { + self.ptr->size = length_add(self.ptr->size, ts_subtree_total_size(child)); + } + + uint32_t child_lookahead_end_byte = self.ptr->padding.bytes + self.ptr->size.bytes + ts_subtree_lookahead_bytes(child); + if (child_lookahead_end_byte > lookahead_end_byte) + { + lookahead_end_byte = child_lookahead_end_byte; + } + + if (ts_subtree_symbol(child) != ts_builtin_sym_error_repeat) + { + self.ptr->error_cost += ts_subtree_error_cost(child); + } + + uint32_t grandchild_count = ts_subtree_child_count(child); + if (self.ptr->symbol == ts_builtin_sym_error || self.ptr->symbol == ts_builtin_sym_error_repeat) + { + if (!ts_subtree_extra(child) && !(ts_subtree_is_error(child) && grandchild_count == 0)) + { + if (ts_subtree_visible(child)) + { + self.ptr->error_cost += ERROR_COST_PER_SKIPPED_TREE; + } + else if (grandchild_count > 0) + { + self.ptr->error_cost += ERROR_COST_PER_SKIPPED_TREE * child.ptr->inner.non_terminal.visible_child_count; + } + } + } + + self.ptr->inner.non_terminal.dynamic_precedence += ts_subtree_dynamic_precedence(child); + self.ptr->inner.non_terminal.visible_descendant_count += ts_subtree_visible_descendant_count(child); + + if (alias_sequence && alias_sequence[structural_index] != 0 && !ts_subtree_extra(child)) + { + self.ptr->inner.non_terminal.visible_descendant_count++; + self.ptr->inner.non_terminal.visible_child_count++; + if (ts_language_symbol_metadata(language, alias_sequence[structural_index]).named) + { + self.ptr->inner.non_terminal.named_child_count++; + } + } + else if (ts_subtree_visible(child)) + { + self.ptr->inner.non_terminal.visible_descendant_count++; + self.ptr->inner.non_terminal.visible_child_count++; + if (ts_subtree_named(child)) + self.ptr->inner.non_terminal.named_child_count++; + } + else if (grandchild_count > 0) + { + self.ptr->inner.non_terminal.visible_child_count += child.ptr->inner.non_terminal.visible_child_count; + self.ptr->inner.non_terminal.named_child_count += child.ptr->inner.non_terminal.named_child_count; + } + + if (ts_subtree_has_external_tokens(child)) + self.ptr->has_external_tokens = true; + + if (ts_subtree_is_error(child)) + { + self.ptr->fragile_left = self.ptr->fragile_right = true; + self.ptr->parse_state = TS_TREE_STATE_NONE; + } + + if (!ts_subtree_extra(child)) + structural_index++; + } + + self.ptr->lookahead_bytes = lookahead_end_byte - self.ptr->size.bytes - self.ptr->padding.bytes; + + if (self.ptr->symbol == ts_builtin_sym_error || self.ptr->symbol == ts_builtin_sym_error_repeat) + { + self.ptr->error_cost += ERROR_COST_PER_RECOVERY + ERROR_COST_PER_SKIPPED_CHAR * self.ptr->size.bytes + + ERROR_COST_PER_SKIPPED_LINE * self.ptr->size.extent.row; + } + + if (self.ptr->child_count > 0) + { + Subtree first_child = children[0]; + Subtree last_child = children[self.ptr->child_count - 1]; + + self.ptr->inner.non_terminal.first_leaf.symbol = ts_subtree_leaf_symbol(first_child); + self.ptr->inner.non_terminal.first_leaf.parse_state = ts_subtree_leaf_parse_state(first_child); + + if (ts_subtree_fragile_left(first_child)) + self.ptr->fragile_left = true; + if (ts_subtree_fragile_right(last_child)) + self.ptr->fragile_right = true; + + if (self.ptr->child_count >= 2 && !self.ptr->visible && !self.ptr->named && ts_subtree_symbol(first_child) == self.ptr->symbol) + { + if (ts_subtree_repeat_depth(first_child) > ts_subtree_repeat_depth(last_child)) + { + self.ptr->inner.non_terminal.repeat_depth = ts_subtree_repeat_depth(first_child) + 1; + } + else + { + self.ptr->inner.non_terminal.repeat_depth = ts_subtree_repeat_depth(last_child) + 1; + } + } + } +} + +// Create a new parent node with the given children. +// +// This takes ownership of the children array. +MutableSubtree ts_subtree_new_node(TSSymbol symbol, SubtreeArray *children, unsigned production_id, const TSLanguage *language) +{ + TSSymbolMetadata metadata = ts_language_symbol_metadata(language, symbol); + bool fragile = symbol == ts_builtin_sym_error || symbol == ts_builtin_sym_error_repeat; + + // Allocate the node's data at the end of the array of children. + size_t new_byte_size = ts_subtree_alloc_size(children->size); + if (children->capacity * sizeof(Subtree) < new_byte_size) + { + children->contents = ts_realloc(children->contents, new_byte_size); + children->capacity = (uint32_t)(new_byte_size / sizeof(Subtree)); + } + SubtreeHeapData *data = (SubtreeHeapData *)&children->contents[children->size]; + + *data = (SubtreeHeapData){.ref_count = 1, + .symbol = symbol, + .child_count = children->size, + .visible = metadata.visible, + .named = metadata.named, + .has_changes = false, + .has_external_scanner_state_change = false, + .fragile_left = fragile, + .fragile_right = fragile, + .is_keyword = false, + {{ + .visible_descendant_count = 0, + .production_id = production_id, + .first_leaf = {.symbol = 0, .parse_state = 0}, + }}}; + MutableSubtree result = {.ptr = data}; + ts_subtree_summarize_children(result, language); + return result; +} + +// Create a new error node containing the given children. +// +// This node is treated as 'extra'. Its children are prevented from having +// having any effect on the parse state. +Subtree ts_subtree_new_error_node(SubtreeArray *children, bool extra, const TSLanguage *language) +{ + MutableSubtree result = ts_subtree_new_node(ts_builtin_sym_error, children, 0, language); + result.ptr->extra = extra; + return ts_subtree_from_mut(result); +} + +// Create a new 'missing leaf' node. +// +// This node is treated as 'extra'. Its children are prevented from having +// having any effect on the parse state. +Subtree ts_subtree_new_missing_leaf(SubtreePool *pool, TSSymbol symbol, Length padding, uint32_t lookahead_bytes, + const TSLanguage *language) +{ + Subtree result = ts_subtree_new_leaf(pool, symbol, padding, length_zero(), lookahead_bytes, 0, false, false, false, language); + if (result.data.is_inline) + { + result.data.is_missing = true; + } + else + { + ((SubtreeHeapData *)result.ptr)->is_missing = true; + } + return result; +} + +void ts_subtree_retain(Subtree self) +{ + if (self.data.is_inline) + return; + assert(self.ptr->ref_count > 0); + atomic_inc((volatile uint32_t *)&self.ptr->ref_count); + assert(self.ptr->ref_count != 0); +} + +void ts_subtree_release(SubtreePool *pool, Subtree self) +{ + if (self.data.is_inline) + return; + array_clear(&pool->tree_stack); + + assert(self.ptr->ref_count > 0); + if (atomic_dec((volatile uint32_t *)&self.ptr->ref_count) == 0) + { + array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(self)); + } + + while (pool->tree_stack.size > 0) + { + MutableSubtree tree = array_pop(&pool->tree_stack); + if (tree.ptr->child_count > 0) + { + Subtree *children = ts_subtree_children(tree); + for (uint32_t i = 0; i < tree.ptr->child_count; i++) + { + Subtree child = children[i]; + if (child.data.is_inline) + continue; + assert(child.ptr->ref_count > 0); + if (atomic_dec((volatile uint32_t *)&child.ptr->ref_count) == 0) + { + array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(child)); + } + } + ts_free(children); + } + else + { + if (tree.ptr->has_external_tokens) + { + ts_external_scanner_state_delete(&tree.ptr->inner.external_scanner_state); + } + ts_subtree_pool_free(pool, tree.ptr); + } + } +} + +int ts_subtree_compare(Subtree left, Subtree right, SubtreePool *pool) +{ + array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(left)); + array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(right)); + + while (pool->tree_stack.size > 0) + { + right = ts_subtree_from_mut(array_pop(&pool->tree_stack)); + left = ts_subtree_from_mut(array_pop(&pool->tree_stack)); + + int result = 0; + if (ts_subtree_symbol(left) < ts_subtree_symbol(right)) + result = -1; + else if (ts_subtree_symbol(right) < ts_subtree_symbol(left)) + result = 1; + else if (ts_subtree_child_count(left) < ts_subtree_child_count(right)) + result = -1; + else if (ts_subtree_child_count(right) < ts_subtree_child_count(left)) + result = 1; + if (result != 0) + { + array_clear(&pool->tree_stack); + return result; + } + + for (uint32_t i = ts_subtree_child_count(left); i > 0; i--) + { + Subtree left_child = ts_subtree_children(left)[i - 1]; + Subtree right_child = ts_subtree_children(right)[i - 1]; + array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(left_child)); + array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(right_child)); + } + } + + return 0; +} + +static inline void ts_subtree_set_has_changes(MutableSubtree *self) +{ + if (self->data.is_inline) + { + self->data.has_changes = true; + } + else + { + self->ptr->has_changes = true; + } +} +typedef struct EditEntry +{ + Subtree *tree; + Edit edit; +} EditEntry; + +Subtree ts_subtree_edit(Subtree self, const TSInputEdit *input_edit, SubtreePool *pool) +{ + + Array(EditEntry) stack = array_new(); + array_push(&stack, ((EditEntry){ + .tree = &self, + .edit = + (Edit){ + .start = {input_edit->start_byte, input_edit->start_point}, + .old_end = {input_edit->old_end_byte, input_edit->old_end_point}, + .new_end = {input_edit->new_end_byte, input_edit->new_end_point}, + }, + })); + + while (stack.size) + { + EditEntry entry = array_pop(&stack); + Edit edit = entry.edit; + bool is_noop = edit.old_end.bytes == edit.start.bytes && edit.new_end.bytes == edit.start.bytes; + bool is_pure_insertion = edit.old_end.bytes == edit.start.bytes; + bool invalidate_first_row = ts_subtree_depends_on_column(*entry.tree); + + Length size = ts_subtree_size(*entry.tree); + Length padding = ts_subtree_padding(*entry.tree); + Length total_size = length_add(padding, size); + uint32_t lookahead_bytes = ts_subtree_lookahead_bytes(*entry.tree); + uint32_t end_byte = total_size.bytes + lookahead_bytes; + if (edit.start.bytes > end_byte || (is_noop && edit.start.bytes == end_byte)) + continue; + + // If the edit is entirely within the space before this subtree, then shift this + // subtree over according to the edit without changing its size. + if (edit.old_end.bytes <= padding.bytes) + { + padding = length_add(edit.new_end, length_sub(padding, edit.old_end)); + } + + // If the edit starts in the space before this subtree and extends into this subtree, + // shrink the subtree's content to compensate for the change in the space before it. + else if (edit.start.bytes < padding.bytes) + { + size = length_saturating_sub(size, length_sub(edit.old_end, padding)); + padding = edit.new_end; + } + + // If the edit is a pure insertion right at the start of the subtree, + // shift the subtree over according to the insertion. + else if (edit.start.bytes == padding.bytes && is_pure_insertion) + { + padding = edit.new_end; + } + + // If the edit is within this subtree, resize the subtree to reflect the edit. + else if (edit.start.bytes < total_size.bytes || (edit.start.bytes == total_size.bytes && is_pure_insertion)) + { + size = length_add(length_sub(edit.new_end, padding), length_saturating_sub(total_size, edit.old_end)); + } + + MutableSubtree result = ts_subtree_make_mut(pool, *entry.tree); + + if (result.data.is_inline) + { + if (ts_subtree_can_inline(padding, size, lookahead_bytes)) + { + result.data.padding_bytes = padding.bytes; + result.data.padding_rows = padding.extent.row; + result.data.padding_columns = padding.extent.column; + result.data.size_bytes = size.bytes; + } + else + { + SubtreeHeapData *data = ts_subtree_pool_allocate(pool); + data->ref_count = 1; + data->padding = padding; + data->size = size; + data->lookahead_bytes = lookahead_bytes; + data->error_cost = 0; + data->child_count = 0; + data->symbol = result.data.symbol; + data->parse_state = result.data.parse_state; + data->visible = result.data.visible; + data->named = result.data.named; + data->extra = result.data.extra; + data->fragile_left = false; + data->fragile_right = false; + data->has_changes = false; + data->has_external_tokens = false; + data->depends_on_column = false; + data->is_missing = result.data.is_missing; + data->is_keyword = result.data.is_keyword; + result.ptr = data; + } + } + else + { + result.ptr->padding = padding; + result.ptr->size = size; + } + + ts_subtree_set_has_changes(&result); + *entry.tree = ts_subtree_from_mut(result); + + Length child_left, child_right = length_zero(); + for (uint32_t i = 0, n = ts_subtree_child_count(*entry.tree); i < n; i++) + { + Subtree *child = &ts_subtree_children(*entry.tree)[i]; + Length child_size = ts_subtree_total_size(*child); + child_left = child_right; + child_right = length_add(child_left, child_size); + + // If this child ends before the edit, it is not affected. + if (child_right.bytes + ts_subtree_lookahead_bytes(*child) < edit.start.bytes) + continue; + + // Keep editing child nodes until a node is reached that starts after the edit. + // Also, if this node's validity depends on its column position, then continue + // invaliditing child nodes until reaching a line break. + if (((child_left.bytes > edit.old_end.bytes) || (child_left.bytes == edit.old_end.bytes && child_size.bytes > 0 && i > 0)) && + (!invalidate_first_row || child_left.extent.row > entry.tree->ptr->padding.extent.row)) + { + break; + } + + // Transform edit into the child's coordinate space. + Edit child_edit = { + .start = length_saturating_sub(edit.start, child_left), + .old_end = length_saturating_sub(edit.old_end, child_left), + .new_end = length_saturating_sub(edit.new_end, child_left), + }; + + // Interpret all inserted text as applying to the *first* child that touches the edit. + // Subsequent children are only never have any text inserted into them; they are only + // shrunk to compensate for the edit. + if (child_right.bytes > edit.start.bytes || (child_right.bytes == edit.start.bytes && is_pure_insertion)) + { + edit.new_end = edit.start; + } + + // Children that occur before the edit are not reshaped by the edit. + else + { + child_edit.old_end = child_edit.start; + child_edit.new_end = child_edit.start; + } + + // Queue processing of this child's subtree. + array_push(&stack, ((EditEntry){ + .tree = child, + .edit = child_edit, + })); + } + } + + array_delete(&stack); + return self; +} + +Subtree ts_subtree_last_external_token(Subtree tree) +{ + if (!ts_subtree_has_external_tokens(tree)) + return NULL_SUBTREE; + while (tree.ptr->child_count > 0) + { + for (uint32_t i = tree.ptr->child_count - 1; i + 1 > 0; i--) + { + Subtree child = ts_subtree_children(tree)[i]; + if (ts_subtree_has_external_tokens(child)) + { + tree = child; + break; + } + } + } + return tree; +} + +static size_t ts_subtree__write_char_to_string(char *str, size_t n, int32_t chr) +{ + if (chr == -1) + return snprintf(str, n, "INVALID"); + else if (chr == '\0') + return snprintf(str, n, "'\\0'"); + else if (chr == '\n') + return snprintf(str, n, "'\\n'"); + else if (chr == '\t') + return snprintf(str, n, "'\\t'"); + else if (chr == '\r') + return snprintf(str, n, "'\\r'"); + else if (0 < chr && chr < 128 && isprint(chr)) + return snprintf(str, n, "'%c'", chr); + else + return snprintf(str, n, "%d", chr); +} + +static const char *const ROOT_FIELD = "__ROOT__"; + +static size_t ts_subtree__write_to_string(Subtree self, char *string, size_t limit, const TSLanguage *language, bool include_all, + TSSymbol alias_symbol, bool alias_is_named, const char *field_name) +{ + if (!self.ptr) + return snprintf(string, limit, "(NULL)"); + + char *cursor = string; + char **writer = (limit > 1) ? &cursor : &string; + bool is_root = field_name == ROOT_FIELD; + bool is_visible = + include_all || ts_subtree_missing(self) || (alias_symbol ? alias_is_named : ts_subtree_visible(self) && ts_subtree_named(self)); + + if (is_visible) + { + if (!is_root) + { + cursor += snprintf(*writer, limit, " "); + if (field_name) + { + cursor += snprintf(*writer, limit, "%s: ", field_name); + } + } + + if (ts_subtree_is_error(self) && ts_subtree_child_count(self) == 0 && self.ptr->size.bytes > 0) + { + cursor += snprintf(*writer, limit, "(UNEXPECTED "); + cursor += ts_subtree__write_char_to_string(*writer, limit, self.ptr->inner.lookahead_char); + } + else + { + TSSymbol symbol = alias_symbol ? alias_symbol : ts_subtree_symbol(self); + const char *symbol_name = ts_language_symbol_name(language, symbol); + if (ts_subtree_missing(self)) + { + cursor += snprintf(*writer, limit, "(MISSING "); + if (alias_is_named || ts_subtree_named(self)) + { + cursor += snprintf(*writer, limit, "%s", symbol_name); + } + else + { + cursor += snprintf(*writer, limit, "\"%s\"", symbol_name); + } + } + else + { + cursor += snprintf(*writer, limit, "(%s", symbol_name); + } + } + } + else if (is_root) + { + TSSymbol symbol = alias_symbol ? alias_symbol : ts_subtree_symbol(self); + const char *symbol_name = ts_language_symbol_name(language, symbol); + if (ts_subtree_child_count(self) > 0) + { + cursor += snprintf(*writer, limit, "(%s", symbol_name); + } + else if (ts_subtree_named(self)) + { + cursor += snprintf(*writer, limit, "(%s)", symbol_name); + } + else + { + cursor += snprintf(*writer, limit, "(\"%s\")", symbol_name); + } + } + + if (ts_subtree_child_count(self)) + { + const TSSymbol *alias_sequence = ts_language_alias_sequence(language, self.ptr->inner.non_terminal.production_id); + const TSFieldMapEntry *field_map, *field_map_end; + ts_language_field_map(language, self.ptr->inner.non_terminal.production_id, &field_map, &field_map_end); + + uint32_t structural_child_index = 0; + for (uint32_t i = 0; i < self.ptr->child_count; i++) + { + Subtree child = ts_subtree_children(self)[i]; + if (ts_subtree_extra(child)) + { + cursor += ts_subtree__write_to_string(child, *writer, limit, language, include_all, 0, false, NULL); + } + else + { + TSSymbol subtree_alias_symbol = alias_sequence ? alias_sequence[structural_child_index] : 0; + bool subtree_alias_is_named = + subtree_alias_symbol ? ts_language_symbol_metadata(language, subtree_alias_symbol).named : false; + + const char *child_field_name = is_visible ? NULL : field_name; + for (const TSFieldMapEntry *map = field_map; map < field_map_end; map++) + { + if (!map->inherited && map->child_index == structural_child_index) + { + child_field_name = language->field_names[map->field_id]; + break; + } + } + + cursor += ts_subtree__write_to_string(child, *writer, limit, language, include_all, subtree_alias_symbol, + subtree_alias_is_named, child_field_name); + structural_child_index++; + } + } + } + + if (is_visible) + cursor += snprintf(*writer, limit, ")"); + + return cursor - string; +} + +char *ts_subtree_string(Subtree self, TSSymbol alias_symbol, bool alias_is_named, const TSLanguage *language, bool include_all) +{ + char scratch_string[1]; + size_t size = ts_subtree__write_to_string(self, scratch_string, 1, language, include_all, alias_symbol, alias_is_named, ROOT_FIELD) + 1; + char *result = ts_malloc(size * sizeof(char)); + ts_subtree__write_to_string(self, result, size, language, include_all, alias_symbol, alias_is_named, ROOT_FIELD); + return result; +} + +void ts_subtree__print_dot_graph(const Subtree *self, uint32_t start_offset, const TSLanguage *language, TSSymbol alias_symbol, FILE *f) +{ + TSSymbol subtree_symbol = ts_subtree_symbol(*self); + TSSymbol symbol = alias_symbol ? alias_symbol : subtree_symbol; + uint32_t end_offset = start_offset + ts_subtree_total_bytes(*self); + fprintf(f, "tree_%p [label=\"", (void *)self); + ts_language_write_symbol_as_dot_string(language, f, symbol); + fprintf(f, "\""); + + if (ts_subtree_child_count(*self) == 0) + fprintf(f, ", shape=plaintext"); + if (ts_subtree_extra(*self)) + fprintf(f, ", fontcolor=gray"); + + fprintf(f, + ", tooltip=\"" + "range: %u - %u\n" + "state: %d\n" + "error-cost: %u\n" + "has-changes: %u\n" + "depends-on-column: %u\n" + "descendant-count: %u\n" + "repeat-depth: %u\n" + "lookahead-bytes: %u", + start_offset, end_offset, ts_subtree_parse_state(*self), ts_subtree_error_cost(*self), ts_subtree_has_changes(*self), + ts_subtree_depends_on_column(*self), ts_subtree_visible_descendant_count(*self), ts_subtree_repeat_depth(*self), + ts_subtree_lookahead_bytes(*self)); + + if (ts_subtree_is_error(*self) && ts_subtree_child_count(*self) == 0 && self->ptr->inner.lookahead_char != 0) + { + fprintf(f, "\ncharacter: '%c'", self->ptr->inner.lookahead_char); + } + + fprintf(f, "\"]\n"); + + uint32_t child_start_offset = start_offset; + uint32_t child_info_offset = language->max_alias_sequence_length * ts_subtree_production_id(*self); + for (uint32_t i = 0, n = ts_subtree_child_count(*self); i < n; i++) + { + const Subtree *child = &ts_subtree_children(*self)[i]; + TSSymbol subtree_alias_symbol = 0; + if (!ts_subtree_extra(*child) && child_info_offset) + { + subtree_alias_symbol = language->alias_sequences[child_info_offset]; + child_info_offset++; + } + ts_subtree__print_dot_graph(child, child_start_offset, language, subtree_alias_symbol, f); + fprintf(f, "tree_%p -> tree_%p [tooltip=%u]\n", (void *)self, (void *)child, i); + child_start_offset += ts_subtree_total_bytes(*child); + } +} + +void ts_subtree_print_dot_graph(Subtree self, const TSLanguage *language, FILE *f) +{ + fprintf(f, "digraph tree {\n"); + fprintf(f, "edge [arrowhead=none]\n"); + ts_subtree__print_dot_graph(&self, 0, language, 0, f); + fprintf(f, "}\n"); +} + +const ExternalScannerState *ts_subtree_external_scanner_state(Subtree self) +{ + static const ExternalScannerState empty_state = {{.short_data = {0}}, .length = 0}; + if (self.ptr && !self.data.is_inline && self.ptr->has_external_tokens && self.ptr->child_count == 0) + { + return &self.ptr->inner.external_scanner_state; + } + else + { + return &empty_state; + } +} + +bool ts_subtree_external_scanner_state_eq(Subtree self, Subtree other) +{ + const ExternalScannerState *state_self = ts_subtree_external_scanner_state(self); + const ExternalScannerState *state_other = ts_subtree_external_scanner_state(other); + return ts_external_scanner_state_eq(state_self, ts_external_scanner_state_data(state_other), state_other->length); +} diff --git a/parser/nsrc/subtree.h b/parser/nsrc/subtree.h new file mode 100644 index 00000000..b3432beb --- /dev/null +++ b/parser/nsrc/subtree.h @@ -0,0 +1,456 @@ +#ifndef TREE_SITTER_SUBTREE_H_ +#define TREE_SITTER_SUBTREE_H_ + +#ifdef __cplusplus +extern "C" +{ +#endif + +#include "./api.h" +#include "./array.h" +#include "./error_costs.h" +#include "./host.h" +#include "./length.h" +#include "./parser.h" +#include +#include +#include + +#define TS_TREE_STATE_NONE USHRT_MAX +#define NULL_SUBTREE ((Subtree){.ptr = NULL}) + + // The serialized state of an external scanner. + // + // Every time an external token subtree is created after a call to an + // external scanner, the scanner's `serialize` function is called to + // retrieve a serialized copy of its state. The bytes are then copied + // onto the subtree itself so that the scanner's state can later be + // restored using its `deserialize` function. + // + // Small byte arrays are stored inline, and long ones are allocated + // separately on the heap. + typedef struct ExternalScannerState + { + union ExternalScannerStateData { + char *long_data; + char short_data[24]; + } data; + uint32_t length; + } ExternalScannerState; + + // A compact representation of a subtree. + // + // This representation is used for small leaf nodes that are not + // errors, and were not created by an external scanner. + // + // The idea behind the layout of this struct is that the `is_inline` + // bit will fall exactly into the same location as the least significant + // bit of the pointer in `Subtree` or `MutableSubtree`, respectively. + // Because of alignment, for any valid pointer this will be 0, giving + // us the opportunity to make use of this bit to signify whether to use + // the pointer or the inline struct. + typedef struct SubtreeInlineData SubtreeInlineData; + +#define SUBTREE_BITS \ + bool visible : 1; \ + bool named : 1; \ + bool extra : 1; \ + bool has_changes : 1; \ + bool is_missing : 1; \ + bool is_keyword : 1; + +#define SUBTREE_SIZE \ + uint8_t padding_columns; \ + uint8_t padding_rows : 4; \ + uint8_t lookahead_bytes : 4; \ + uint8_t padding_bytes; \ + uint8_t size_bytes; + +#if TS_BIG_ENDIAN +# if TS_PTR_SIZE == 32 + + struct SubtreeInlineData + { + uint16_t parse_state; + uint8_t symbol; + SUBTREE_BITS + bool unused : 1; + bool is_inline : 1; + SUBTREE_SIZE + }; + +# else + + struct SubtreeInlineData + { + SUBTREE_SIZE + uint16_t parse_state; + uint8_t symbol; + SUBTREE_BITS + bool unused : 1; + bool is_inline : 1; + }; + +# endif +#else + +struct SubtreeInlineData +{ + bool is_inline : 1; + SUBTREE_BITS + uint8_t symbol; + uint16_t parse_state; + SUBTREE_SIZE +}; + +#endif + +#undef SUBTREE_BITS +#undef SUBTREE_SIZE + + // A heap-allocated representation of a subtree. + // + // This representation is used for parent nodes, external tokens, + // errors, and other leaf nodes whose data is too large to fit into + // the inline representation. + typedef struct SubtreeHeapData + { + volatile uint32_t ref_count; + Length padding; + Length size; + uint32_t lookahead_bytes; + uint32_t error_cost; + uint32_t child_count; + TSSymbol symbol; + TSStateId parse_state; + + bool visible : 1; + bool named : 1; + bool extra : 1; + bool fragile_left : 1; + bool fragile_right : 1; + bool has_changes : 1; + bool has_external_tokens : 1; + bool has_external_scanner_state_change : 1; + bool depends_on_column : 1; + bool is_missing : 1; + bool is_keyword : 1; + + union SubtreeHeapDataInner { + // Non-terminal subtrees (`child_count > 0`) + struct SubtreeHeapDataInnerNonTerminal + { + uint32_t visible_child_count; + uint32_t named_child_count; + uint32_t visible_descendant_count; + int32_t dynamic_precedence; + uint16_t repeat_depth; + uint16_t production_id; + struct SubtreeHeapDataInnerNonTerminalFirstLeaf + { + TSSymbol symbol; + TSStateId parse_state; + } first_leaf; + } non_terminal; + + // External terminal subtrees (`child_count == 0 && has_external_tokens`) + ExternalScannerState external_scanner_state; + + // Error terminal subtrees (`child_count == 0 && symbol == ts_builtin_sym_error`) + int32_t lookahead_char; + } inner; + } SubtreeHeapData; + + // The fundamental building block of a syntax tree. + typedef union Subtree { + SubtreeInlineData data; + const SubtreeHeapData *ptr; + } Subtree; + + // Like Subtree, but mutable. + typedef union MutableSubtree { + SubtreeInlineData data; + SubtreeHeapData *ptr; + } MutableSubtree; + + typedef Array(Subtree) SubtreeArray; + typedef Array(MutableSubtree) MutableSubtreeArray; + + typedef struct SubtreePool + { + MutableSubtreeArray free_trees; + MutableSubtreeArray tree_stack; + } SubtreePool; + + void ts_external_scanner_state_init(ExternalScannerState *, const char *, unsigned); + const char *ts_external_scanner_state_data(const ExternalScannerState *); + bool ts_external_scanner_state_eq(const ExternalScannerState *self, const char *, unsigned); + void ts_external_scanner_state_delete(ExternalScannerState *self); + + void ts_subtree_array_copy(SubtreeArray, SubtreeArray *); + void ts_subtree_array_clear(SubtreePool *, SubtreeArray *); + void ts_subtree_array_delete(SubtreePool *, SubtreeArray *); + void ts_subtree_array_remove_trailing_extras(SubtreeArray *, SubtreeArray *); + void ts_subtree_array_reverse(SubtreeArray *); + + SubtreePool ts_subtree_pool_new(uint32_t capacity); + void ts_subtree_pool_delete(SubtreePool *); + + Subtree ts_subtree_new_leaf(SubtreePool *, TSSymbol, Length, Length, uint32_t, TSStateId, bool, bool, bool, const TSLanguage *); + Subtree ts_subtree_new_error(SubtreePool *, int32_t, Length, Length, uint32_t, TSStateId, const TSLanguage *); + MutableSubtree ts_subtree_new_node(TSSymbol, SubtreeArray *, unsigned, const TSLanguage *); + Subtree ts_subtree_new_error_node(SubtreeArray *, bool, const TSLanguage *); + Subtree ts_subtree_new_missing_leaf(SubtreePool *, TSSymbol, Length, uint32_t, const TSLanguage *); + MutableSubtree ts_subtree_make_mut(SubtreePool *, Subtree); + void ts_subtree_retain(Subtree); + void ts_subtree_release(SubtreePool *, Subtree); + int ts_subtree_compare(Subtree, Subtree, SubtreePool *); + void ts_subtree_set_symbol(MutableSubtree *, TSSymbol, const TSLanguage *); + void ts_subtree_summarize(MutableSubtree, const Subtree *, uint32_t, const TSLanguage *); + void ts_subtree_summarize_children(MutableSubtree, const TSLanguage *); + void ts_subtree_balance(Subtree, SubtreePool *, const TSLanguage *); + Subtree ts_subtree_edit(Subtree, const TSInputEdit *edit, SubtreePool *); + char *ts_subtree_string(Subtree, TSSymbol, bool, const TSLanguage *, bool include_all); + void ts_subtree_print_dot_graph(Subtree, const TSLanguage *, FILE *); + Subtree ts_subtree_last_external_token(Subtree); + const ExternalScannerState *ts_subtree_external_scanner_state(Subtree self); + bool ts_subtree_external_scanner_state_eq(Subtree, Subtree); + +#define SUBTREE_GET(self, name) ((self).data.is_inline ? (self).data.name : (self).ptr->name) + + static inline TSSymbol ts_subtree_symbol(Subtree self) + { + return SUBTREE_GET(self, symbol); + } + static inline bool ts_subtree_visible(Subtree self) + { + return SUBTREE_GET(self, visible); + } + static inline bool ts_subtree_named(Subtree self) + { + return SUBTREE_GET(self, named); + } + static inline bool ts_subtree_extra(Subtree self) + { + return SUBTREE_GET(self, extra); + } + static inline bool ts_subtree_has_changes(Subtree self) + { + return SUBTREE_GET(self, has_changes); + } + static inline bool ts_subtree_missing(Subtree self) + { + return SUBTREE_GET(self, is_missing); + } + static inline bool ts_subtree_is_keyword(Subtree self) + { + return SUBTREE_GET(self, is_keyword); + } + static inline TSStateId ts_subtree_parse_state(Subtree self) + { + return SUBTREE_GET(self, parse_state); + } + static inline uint32_t ts_subtree_lookahead_bytes(Subtree self) + { + return SUBTREE_GET(self, lookahead_bytes); + } + +#undef SUBTREE_GET + + // Get the size needed to store a heap-allocated subtree with the given + // number of children. + static inline size_t ts_subtree_alloc_size(uint32_t child_count) + { + return child_count * sizeof(Subtree) + sizeof(SubtreeHeapData); + } + +// Get a subtree's children, which are allocated immediately before the +// tree's own heap data. +#define ts_subtree_children(self) ((self).data.is_inline ? NULL : (Subtree *)((self).ptr) - (self).ptr->child_count) + + static inline void ts_subtree_set_extra(MutableSubtree *self, bool is_extra) + { + if (self->data.is_inline) + { + self->data.extra = is_extra; + } + else + { + self->ptr->extra = is_extra; + } + } + + static inline TSSymbol ts_subtree_leaf_symbol(Subtree self) + { + if (self.data.is_inline) + return self.data.symbol; + if (self.ptr->child_count == 0) + return self.ptr->symbol; + return self.ptr->inner.non_terminal.first_leaf.symbol; + } + + static inline TSStateId ts_subtree_leaf_parse_state(Subtree self) + { + if (self.data.is_inline) + return self.data.parse_state; + if (self.ptr->child_count == 0) + return self.ptr->parse_state; + return self.ptr->inner.non_terminal.first_leaf.parse_state; + } + + static inline Length ts_subtree_padding(Subtree self) + { + if (self.data.is_inline) + { + Length result = {self.data.padding_bytes, {self.data.padding_rows, self.data.padding_columns}}; + return result; + } + else + { + return self.ptr->padding; + } + } + + static inline Length ts_subtree_size(Subtree self) + { + if (self.data.is_inline) + { + Length result = {self.data.size_bytes, {0, self.data.size_bytes}}; + return result; + } + else + { + return self.ptr->size; + } + } + + static inline Length ts_subtree_total_size(Subtree self) + { + return length_add(ts_subtree_padding(self), ts_subtree_size(self)); + } + + static inline uint32_t ts_subtree_total_bytes(Subtree self) + { + return ts_subtree_total_size(self).bytes; + } + + static inline uint32_t ts_subtree_child_count(Subtree self) + { + return self.data.is_inline ? 0 : self.ptr->child_count; + } + + static inline uint32_t ts_subtree_repeat_depth(Subtree self) + { + return self.data.is_inline ? 0 : self.ptr->inner.non_terminal.repeat_depth; + } + + static inline uint32_t ts_subtree_is_repetition(Subtree self) + { + return self.data.is_inline ? 0 : !self.ptr->named && !self.ptr->visible && self.ptr->child_count != 0; + } + + static inline uint32_t ts_subtree_visible_descendant_count(Subtree self) + { + return (self.data.is_inline || self.ptr->child_count == 0) ? 0 : self.ptr->inner.non_terminal.visible_descendant_count; + } + + static inline uint32_t ts_subtree_visible_child_count(Subtree self) + { + if (ts_subtree_child_count(self) > 0) + { + return self.ptr->inner.non_terminal.visible_child_count; + } + else + { + return 0; + } + } + + static inline uint32_t ts_subtree_error_cost(Subtree self) + { + if (ts_subtree_missing(self)) + { + return ERROR_COST_PER_MISSING_TREE + ERROR_COST_PER_RECOVERY; + } + else + { + return self.data.is_inline ? 0 : self.ptr->error_cost; + } + } + + static inline int32_t ts_subtree_dynamic_precedence(Subtree self) + { + return (self.data.is_inline || self.ptr->child_count == 0) ? 0 : self.ptr->inner.non_terminal.dynamic_precedence; + } + + static inline uint16_t ts_subtree_production_id(Subtree self) + { + if (ts_subtree_child_count(self) > 0) + { + return self.ptr->inner.non_terminal.production_id; + } + else + { + return 0; + } + } + + static inline bool ts_subtree_fragile_left(Subtree self) + { + return self.data.is_inline ? false : self.ptr->fragile_left; + } + + static inline bool ts_subtree_fragile_right(Subtree self) + { + return self.data.is_inline ? false : self.ptr->fragile_right; + } + + static inline bool ts_subtree_has_external_tokens(Subtree self) + { + return self.data.is_inline ? false : self.ptr->has_external_tokens; + } + + static inline bool ts_subtree_has_external_scanner_state_change(Subtree self) + { + return self.data.is_inline ? false : self.ptr->has_external_scanner_state_change; + } + + static inline bool ts_subtree_depends_on_column(Subtree self) + { + return self.data.is_inline ? false : self.ptr->depends_on_column; + } + + static inline bool ts_subtree_is_fragile(Subtree self) + { + return self.data.is_inline ? false : (self.ptr->fragile_left || self.ptr->fragile_right); + } + + static inline bool ts_subtree_is_error(Subtree self) + { + return ts_subtree_symbol(self) == ts_builtin_sym_error; + } + + static inline bool ts_subtree_is_eof(Subtree self) + { + return ts_subtree_symbol(self) == ts_builtin_sym_end; + } + + static inline Subtree ts_subtree_from_mut(MutableSubtree self) + { + Subtree result; + result.data = self.data; + return result; + } + + static inline MutableSubtree ts_subtree_to_mut_unsafe(Subtree self) + { + MutableSubtree result; + result.data = self.data; + return result; + } + +#ifdef __cplusplus +} +#endif + +#endif // TREE_SITTER_SUBTREE_H_ diff --git a/parser/nsrc/tree.c b/parser/nsrc/tree.c new file mode 100644 index 00000000..328a7984 --- /dev/null +++ b/parser/nsrc/tree.c @@ -0,0 +1,165 @@ +#define _POSIX_C_SOURCE 200112L + +#include "./api.h" +#include "./array.h" +#include "./get_changed_ranges.h" +#include "./length.h" +#include "./subtree.h" +#include "./tree_cursor.h" +#include "./tree.h" + +TSTree *ts_tree_new( + Subtree root, const TSLanguage *language, + const TSRange *included_ranges, unsigned included_range_count +) { + TSTree *result = ts_malloc(sizeof(TSTree)); + result->root = root; + result->language = ts_language_copy(language); + result->included_ranges = ts_calloc(included_range_count, sizeof(TSRange)); + memcpy(result->included_ranges, included_ranges, included_range_count * sizeof(TSRange)); + result->included_range_count = included_range_count; + return result; +} + +TSTree *ts_tree_copy(const TSTree *self) { + ts_subtree_retain(self->root); + return ts_tree_new(self->root, self->language, self->included_ranges, self->included_range_count); +} + +void ts_tree_delete(TSTree *self) { + if (!self) return; + + SubtreePool pool = ts_subtree_pool_new(0); + ts_subtree_release(&pool, self->root); + ts_subtree_pool_delete(&pool); + ts_language_delete(self->language); + ts_free(self->included_ranges); + ts_free(self); +} + +TSNode ts_tree_root_node(const TSTree *self) { + return ts_node_new(self, &self->root, ts_subtree_padding(self->root), 0); +} + +TSNode ts_tree_root_node_with_offset( + const TSTree *self, + uint32_t offset_bytes, + TSPoint offset_extent +) { + Length offset = {offset_bytes, offset_extent}; + return ts_node_new(self, &self->root, length_add(offset, ts_subtree_padding(self->root)), 0); +} + +const TSLanguage *ts_tree_language(const TSTree *self) { + return self->language; +} + +void ts_tree_edit(TSTree *self, const TSInputEdit *edit) { + for (unsigned i = 0; i < self->included_range_count; i++) { + TSRange *range = &self->included_ranges[i]; + if (range->end_byte >= edit->old_end_byte) { + if (range->end_byte != UINT32_MAX) { + range->end_byte = edit->new_end_byte + (range->end_byte - edit->old_end_byte); + range->end_point = point_add( + edit->new_end_point, + point_sub(range->end_point, edit->old_end_point) + ); + if (range->end_byte < edit->new_end_byte) { + range->end_byte = UINT32_MAX; + range->end_point = POINT_MAX; + } + } + } else if (range->end_byte > edit->start_byte) { + range->end_byte = edit->start_byte; + range->end_point = edit->start_point; + } + if (range->start_byte >= edit->old_end_byte) { + range->start_byte = edit->new_end_byte + (range->start_byte - edit->old_end_byte); + range->start_point = point_add( + edit->new_end_point, + point_sub(range->start_point, edit->old_end_point) + ); + if (range->start_byte < edit->new_end_byte) { + range->start_byte = UINT32_MAX; + range->start_point = POINT_MAX; + } + } else if (range->start_byte > edit->start_byte) { + range->start_byte = edit->start_byte; + range->start_point = edit->start_point; + } + } + + SubtreePool pool = ts_subtree_pool_new(0); + self->root = ts_subtree_edit(self->root, edit, &pool); + ts_subtree_pool_delete(&pool); +} + +TSRange *ts_tree_included_ranges(const TSTree *self, uint32_t *length) { + *length = self->included_range_count; + TSRange *ranges = ts_calloc(self->included_range_count, sizeof(TSRange)); + memcpy(ranges, self->included_ranges, self->included_range_count * sizeof(TSRange)); + return ranges; +} + +TSRange *ts_tree_get_changed_ranges(const TSTree *old_tree, const TSTree *new_tree, uint32_t *length) { + TreeCursor cursor1 = {NULL, array_new(), 0}; + TreeCursor cursor2 = {NULL, array_new(), 0}; + ts_tree_cursor_init(&cursor1, ts_tree_root_node(old_tree)); + ts_tree_cursor_init(&cursor2, ts_tree_root_node(new_tree)); + + TSRangeArray included_range_differences = array_new(); + ts_range_array_get_changed_ranges( + old_tree->included_ranges, old_tree->included_range_count, + new_tree->included_ranges, new_tree->included_range_count, + &included_range_differences + ); + + TSRange *result; + *length = ts_subtree_get_changed_ranges( + &old_tree->root, &new_tree->root, &cursor1, &cursor2, + old_tree->language, &included_range_differences, &result + ); + + array_delete(&included_range_differences); + array_delete(&cursor1.stack); + array_delete(&cursor2.stack); + return result; +} + +#ifdef _WIN32 + +#include +#include + +int _ts_dup(HANDLE handle) { + HANDLE dup_handle; + if (!DuplicateHandle( + GetCurrentProcess(), handle, + GetCurrentProcess(), &dup_handle, + 0, FALSE, DUPLICATE_SAME_ACCESS + )) return -1; + + return _open_osfhandle((intptr_t)dup_handle, 0); +} + +void ts_tree_print_dot_graph(const TSTree *self, int fd) { + FILE *file = _fdopen(_ts_dup((HANDLE)_get_osfhandle(fd)), "a"); + ts_subtree_print_dot_graph(self->root, self->language, file); + fclose(file); +} + +#else + +#include + +int _ts_dup(int file_descriptor) { + return dup(file_descriptor); +} + +void ts_tree_print_dot_graph(const TSTree *self, int file_descriptor) { + FILE *file = fdopen(_ts_dup(file_descriptor), "a"); + ts_subtree_print_dot_graph(self->root, self->language, file); + fclose(file); +} + +#endif diff --git a/parser/nsrc/tree.h b/parser/nsrc/tree.h new file mode 100644 index 00000000..4efb3da0 --- /dev/null +++ b/parser/nsrc/tree.h @@ -0,0 +1,34 @@ +#ifndef TREE_SITTER_TREE_H_ +#define TREE_SITTER_TREE_H_ + +#include "./subtree.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + + typedef struct ParentCacheEntry + { + const Subtree *child; + const Subtree *parent; + Length position; + TSSymbol alias_symbol; + } ParentCacheEntry; + + struct TSTree + { + Subtree root; + const TSLanguage *language; + TSRange *included_ranges; + unsigned included_range_count; + }; + + TSTree *ts_tree_new(Subtree root, const TSLanguage *language, const TSRange *, unsigned); + TSNode ts_node_new(const TSTree *, const Subtree *, Length, TSSymbol); + +#ifdef __cplusplus +} +#endif + +#endif // TREE_SITTER_TREE_H_ diff --git a/parser/nsrc/tree_cursor.c b/parser/nsrc/tree_cursor.c new file mode 100644 index 00000000..c420543b --- /dev/null +++ b/parser/nsrc/tree_cursor.c @@ -0,0 +1,714 @@ +#include "./api.h" +#include "./alloc.h" +#include "./tree_cursor.h" +#include "./language.h" +#include "./tree.h" + +typedef struct CursorChildIterator{ + Subtree parent; + const TSTree *tree; + Length position; + uint32_t child_index; + uint32_t structural_child_index; + uint32_t descendant_index; + const TSSymbol *alias_sequence; +} CursorChildIterator; + +// CursorChildIterator + +static inline bool ts_tree_cursor_is_entry_visible(const TreeCursor *self, uint32_t index) { + TreeCursorEntry *entry = &self->stack.contents[index]; + if (index == 0 || ts_subtree_visible(*entry->subtree)) { + return true; + } else if (!ts_subtree_extra(*entry->subtree)) { + TreeCursorEntry *parent_entry = &self->stack.contents[index - 1]; + return ts_language_alias_at( + self->tree->language, + parent_entry->subtree->ptr->inner.non_terminal.production_id, + entry->structural_child_index + ); + } else { + return false; + } +} + +static inline CursorChildIterator ts_tree_cursor_iterate_children(const TreeCursor *self) { + TreeCursorEntry *last_entry = array_back(&self->stack); + if (ts_subtree_child_count(*last_entry->subtree) == 0) { + return (CursorChildIterator) {NULL_SUBTREE, self->tree, length_zero(), 0, 0, 0, NULL}; + } + const TSSymbol *alias_sequence = ts_language_alias_sequence( + self->tree->language, + last_entry->subtree->ptr->inner.non_terminal.production_id + ); + + uint32_t descendant_index = last_entry->descendant_index; + if (ts_tree_cursor_is_entry_visible(self, self->stack.size - 1)) { + descendant_index += 1; + } + + return (CursorChildIterator) { + .tree = self->tree, + .parent = *last_entry->subtree, + .position = last_entry->position, + .child_index = 0, + .structural_child_index = 0, + .descendant_index = descendant_index, + .alias_sequence = alias_sequence, + }; +} + +static inline bool ts_tree_cursor_child_iterator_next( + CursorChildIterator *self, + TreeCursorEntry *result, + bool *visible +) { + if (!self->parent.ptr || self->child_index == self->parent.ptr->child_count) return false; + const Subtree *child = &ts_subtree_children(self->parent)[self->child_index]; + *result = (TreeCursorEntry) { + .subtree = child, + .position = self->position, + .child_index = self->child_index, + .structural_child_index = self->structural_child_index, + .descendant_index = self->descendant_index, + }; + *visible = ts_subtree_visible(*child); + bool extra = ts_subtree_extra(*child); + if (!extra) { + if (self->alias_sequence) { + *visible |= self->alias_sequence[self->structural_child_index]; + } + self->structural_child_index++; + } + + self->descendant_index += ts_subtree_visible_descendant_count(*child); + if (*visible) { + self->descendant_index += 1; + } + + self->position = length_add(self->position, ts_subtree_size(*child)); + self->child_index++; + + if (self->child_index < self->parent.ptr->child_count) { + Subtree next_child = ts_subtree_children(self->parent)[self->child_index]; + self->position = length_add(self->position, ts_subtree_padding(next_child)); + } + + return true; +} + +// Return a position that, when `b` is added to it, yields `a`. This +// can only be computed if `b` has zero rows. Otherwise, this function +// returns `LENGTH_UNDEFINED`, and the caller needs to recompute +// the position some other way. +static inline Length length_backtrack(Length a, Length b) { + if (length_is_undefined(a) || b.extent.row != 0) { + return LENGTH_UNDEFINED; + } + + Length result; + result.bytes = a.bytes - b.bytes; + result.extent.row = a.extent.row; + result.extent.column = a.extent.column - b.extent.column; + return result; +} + +static inline bool ts_tree_cursor_child_iterator_previous( + CursorChildIterator *self, + TreeCursorEntry *result, + bool *visible +) { + // this is mostly a reverse `ts_tree_cursor_child_iterator_next` taking into + // account unsigned underflow + if (!self->parent.ptr || (int8_t)self->child_index == -1) return false; + const Subtree *child = &ts_subtree_children(self->parent)[self->child_index]; + *result = (TreeCursorEntry) { + .subtree = child, + .position = self->position, + .child_index = self->child_index, + .structural_child_index = self->structural_child_index, + }; + *visible = ts_subtree_visible(*child); + bool extra = ts_subtree_extra(*child); + if (!extra && self->alias_sequence) { + *visible |= self->alias_sequence[self->structural_child_index]; + self->structural_child_index--; + } + + self->position = length_backtrack(self->position, ts_subtree_padding(*child)); + self->child_index--; + + // unsigned can underflow so compare it to child_count + if (self->child_index < self->parent.ptr->child_count) { + Subtree previous_child = ts_subtree_children(self->parent)[self->child_index]; + Length size = ts_subtree_size(previous_child); + self->position = length_backtrack(self->position, size); + } + + return true; +} + +// TSTreeCursor - lifecycle + +TSTreeCursor ts_tree_cursor_new(TSNode node) { + TSTreeCursor self = {NULL, NULL, {0, 0, 0}}; + ts_tree_cursor_init((TreeCursor *)&self, node); + return self; +} + +void ts_tree_cursor_reset(TSTreeCursor *_self, TSNode node) { + ts_tree_cursor_init((TreeCursor *)_self, node); +} + +void ts_tree_cursor_init(TreeCursor *self, TSNode node) { + self->tree = node.tree; + self->root_alias_symbol = node.context[3]; + array_clear(&self->stack); + array_push(&self->stack, ((TreeCursorEntry) { + .subtree = (const Subtree *)node.id, + .position = { + ts_node_start_byte(node), + ts_node_start_point(node) + }, + .child_index = 0, + .structural_child_index = 0, + .descendant_index = 0, + })); +} + +void ts_tree_cursor_delete(TSTreeCursor *_self) { + TreeCursor *self = (TreeCursor *)_self; + array_delete(&self->stack); +} + +// TSTreeCursor - walking the tree + +TreeCursorStep ts_tree_cursor_goto_first_child_internal(TSTreeCursor *_self) { + TreeCursor *self = (TreeCursor *)_self; + bool visible; + TreeCursorEntry entry; + CursorChildIterator iterator = ts_tree_cursor_iterate_children(self); + while (ts_tree_cursor_child_iterator_next(&iterator, &entry, &visible)) { + if (visible) { + array_push(&self->stack, entry); + return TreeCursorStepVisible; + } + if (ts_subtree_visible_child_count(*entry.subtree) > 0) { + array_push(&self->stack, entry); + return TreeCursorStepHidden; + } + } + return TreeCursorStepNone; +} + +bool ts_tree_cursor_goto_first_child(TSTreeCursor *self) { + for (;;) { + switch (ts_tree_cursor_goto_first_child_internal(self)) { + case TreeCursorStepHidden: + continue; + case TreeCursorStepVisible: + return true; + default: + return false; + } + } + return false; +} + +TreeCursorStep ts_tree_cursor_goto_last_child_internal(TSTreeCursor *_self) { + TreeCursor *self = (TreeCursor *)_self; + bool visible; + TreeCursorEntry entry; + CursorChildIterator iterator = ts_tree_cursor_iterate_children(self); + if (!iterator.parent.ptr || iterator.parent.ptr->child_count == 0) return TreeCursorStepNone; + + TreeCursorEntry last_entry = {0}; + TreeCursorStep last_step = TreeCursorStepNone; + while (ts_tree_cursor_child_iterator_next(&iterator, &entry, &visible)) { + if (visible) { + last_entry = entry; + last_step = TreeCursorStepVisible; + } + else if (ts_subtree_visible_child_count(*entry.subtree) > 0) { + last_entry = entry; + last_step = TreeCursorStepHidden; + } + } + if (last_entry.subtree) { + array_push(&self->stack, last_entry); + return last_step; + } + + return TreeCursorStepNone; +} + +bool ts_tree_cursor_goto_last_child(TSTreeCursor *self) { + for (;;) { + switch (ts_tree_cursor_goto_last_child_internal(self)) { + case TreeCursorStepHidden: + continue; + case TreeCursorStepVisible: + return true; + default: + return false; + } + } + return false; +} + +static inline int64_t ts_tree_cursor_goto_first_child_for_byte_and_point( + TSTreeCursor *_self, + uint32_t goal_byte, + TSPoint goal_point +) { + TreeCursor *self = (TreeCursor *)_self; + uint32_t initial_size = self->stack.size; + uint32_t visible_child_index = 0; + + bool did_descend; + do { + did_descend = false; + + bool visible; + TreeCursorEntry entry; + CursorChildIterator iterator = ts_tree_cursor_iterate_children(self); + while (ts_tree_cursor_child_iterator_next(&iterator, &entry, &visible)) { + Length entry_end = length_add(entry.position, ts_subtree_size(*entry.subtree)); + bool at_goal = entry_end.bytes >= goal_byte && point_gte(entry_end.extent, goal_point); + uint32_t visible_child_count = ts_subtree_visible_child_count(*entry.subtree); + if (at_goal) { + if (visible) { + array_push(&self->stack, entry); + return visible_child_index; + } + if (visible_child_count > 0) { + array_push(&self->stack, entry); + did_descend = true; + break; + } + } else if (visible) { + visible_child_index++; + } else { + visible_child_index += visible_child_count; + } + } + } while (did_descend); + + self->stack.size = initial_size; + return -1; +} + +int64_t ts_tree_cursor_goto_first_child_for_byte(TSTreeCursor *self, uint32_t goal_byte) { + return ts_tree_cursor_goto_first_child_for_byte_and_point(self, goal_byte, POINT_ZERO); +} + +int64_t ts_tree_cursor_goto_first_child_for_point(TSTreeCursor *self, TSPoint goal_point) { + return ts_tree_cursor_goto_first_child_for_byte_and_point(self, 0, goal_point); +} + +TreeCursorStep ts_tree_cursor_goto_sibling_internal( + TSTreeCursor *_self, + bool (*advance)(CursorChildIterator *, TreeCursorEntry *, bool *)) { + TreeCursor *self = (TreeCursor *)_self; + uint32_t initial_size = self->stack.size; + + while (self->stack.size > 1) { + TreeCursorEntry entry = array_pop(&self->stack); + CursorChildIterator iterator = ts_tree_cursor_iterate_children(self); + iterator.child_index = entry.child_index; + iterator.structural_child_index = entry.structural_child_index; + iterator.position = entry.position; + iterator.descendant_index = entry.descendant_index; + + bool visible = false; + advance(&iterator, &entry, &visible); + if (visible && self->stack.size + 1 < initial_size) break; + + while (advance(&iterator, &entry, &visible)) { + if (visible) { + array_push(&self->stack, entry); + return TreeCursorStepVisible; + } + + if (ts_subtree_visible_child_count(*entry.subtree)) { + array_push(&self->stack, entry); + return TreeCursorStepHidden; + } + } + } + + self->stack.size = initial_size; + return TreeCursorStepNone; +} + +TreeCursorStep ts_tree_cursor_goto_next_sibling_internal(TSTreeCursor *_self) { + return ts_tree_cursor_goto_sibling_internal(_self, ts_tree_cursor_child_iterator_next); +} + +bool ts_tree_cursor_goto_next_sibling(TSTreeCursor *self) { + switch (ts_tree_cursor_goto_next_sibling_internal(self)) { + case TreeCursorStepHidden: + ts_tree_cursor_goto_first_child(self); + return true; + case TreeCursorStepVisible: + return true; + default: + return false; + } +} + +TreeCursorStep ts_tree_cursor_goto_previous_sibling_internal(TSTreeCursor *_self) { + // since subtracting across row loses column information, we may have to + // restore it + TreeCursor *self = (TreeCursor *)_self; + + // for that, save current position before traversing + TreeCursorStep step = ts_tree_cursor_goto_sibling_internal( + _self, ts_tree_cursor_child_iterator_previous); + if (step == TreeCursorStepNone) + return step; + + // if length is already valid, there's no need to recompute it + if (!length_is_undefined(array_back(&self->stack)->position)) + return step; + + // restore position from the parent node + const TreeCursorEntry *parent = &self->stack.contents[self->stack.size - 2]; + Length position = parent->position; + uint32_t child_index = array_back(&self->stack)->child_index; + const Subtree *children = ts_subtree_children((*(parent->subtree))); + + if (child_index > 0) { + // skip first child padding since its position should match the position of the parent + position = length_add(position, ts_subtree_size(children[0])); + for (uint32_t i = 1; i < child_index; ++i) { + position = length_add(position, ts_subtree_total_size(children[i])); + } + position = length_add(position, ts_subtree_padding(children[child_index])); + } + + array_back(&self->stack)->position = position; + + return step; +} + +bool ts_tree_cursor_goto_previous_sibling(TSTreeCursor *self) { + switch (ts_tree_cursor_goto_previous_sibling_internal(self)) { + case TreeCursorStepHidden: + ts_tree_cursor_goto_last_child(self); + return true; + case TreeCursorStepVisible: + return true; + default: + return false; + } +} + +bool ts_tree_cursor_goto_parent(TSTreeCursor *_self) { + TreeCursor *self = (TreeCursor *)_self; + for (unsigned i = self->stack.size - 2; i + 1 > 0; i--) { + if (ts_tree_cursor_is_entry_visible(self, i)) { + self->stack.size = i + 1; + return true; + } + } + return false; +} + +void ts_tree_cursor_goto_descendant( + TSTreeCursor *_self, + uint32_t goal_descendant_index +) { + TreeCursor *self = (TreeCursor *)_self; + + // Ascend to the lowest ancestor that contains the goal node. + for (;;) { + uint32_t i = self->stack.size - 1; + TreeCursorEntry *entry = &self->stack.contents[i]; + uint32_t next_descendant_index = + entry->descendant_index + + (ts_tree_cursor_is_entry_visible(self, i) ? 1 : 0) + + ts_subtree_visible_descendant_count(*entry->subtree); + if ( + (entry->descendant_index <= goal_descendant_index) && + (next_descendant_index > goal_descendant_index) + ) { + break; + } else if (self->stack.size <= 1) { + return; + } else { + self->stack.size--; + } + } + + // Descend to the goal node. + bool did_descend = true; + do { + did_descend = false; + bool visible; + TreeCursorEntry entry; + CursorChildIterator iterator = ts_tree_cursor_iterate_children(self); + if (iterator.descendant_index > goal_descendant_index) { + return; + } + + while (ts_tree_cursor_child_iterator_next(&iterator, &entry, &visible)) { + if (iterator.descendant_index > goal_descendant_index) { + array_push(&self->stack, entry); + if (visible && entry.descendant_index == goal_descendant_index) { + return; + } else { + did_descend = true; + break; + } + } + } + } while (did_descend); +} + +uint32_t ts_tree_cursor_current_descendant_index(const TSTreeCursor *_self) { + const TreeCursor *self = (const TreeCursor *)_self; + TreeCursorEntry *last_entry = array_back(&self->stack); + return last_entry->descendant_index; +} + +TSNode ts_tree_cursor_current_node(const TSTreeCursor *_self) { + const TreeCursor *self = (const TreeCursor *)_self; + TreeCursorEntry *last_entry = array_back(&self->stack); + TSSymbol alias_symbol = self->root_alias_symbol; + if (self->stack.size > 1 && !ts_subtree_extra(*last_entry->subtree)) { + TreeCursorEntry *parent_entry = &self->stack.contents[self->stack.size - 2]; + alias_symbol = ts_language_alias_at( + self->tree->language, + parent_entry->subtree->ptr->inner.non_terminal.production_id, + last_entry->structural_child_index + ); + } + return ts_node_new( + self->tree, + last_entry->subtree, + last_entry->position, + alias_symbol + ); +} + +// Private - Get various facts about the current node that are needed +// when executing tree queries. +void ts_tree_cursor_current_status( + const TSTreeCursor *_self, + TSFieldId *field_id, + bool *has_later_siblings, + bool *has_later_named_siblings, + bool *can_have_later_siblings_with_this_field, + TSSymbol *supertypes, + unsigned *supertype_count +) { + const TreeCursor *self = (const TreeCursor *)_self; + unsigned max_supertypes = *supertype_count; + *field_id = 0; + *supertype_count = 0; + *has_later_siblings = false; + *has_later_named_siblings = false; + *can_have_later_siblings_with_this_field = false; + + // Walk up the tree, visiting the current node and its invisible ancestors, + // because fields can refer to nodes through invisible *wrapper* nodes, + for (unsigned i = self->stack.size - 1; i > 0; i--) { + TreeCursorEntry *entry = &self->stack.contents[i]; + TreeCursorEntry *parent_entry = &self->stack.contents[i - 1]; + + const TSSymbol *alias_sequence = ts_language_alias_sequence( + self->tree->language, + parent_entry->subtree->ptr->inner.non_terminal.production_id + ); + + #define subtree_symbol(subtree, structural_child_index) \ + (( \ + !ts_subtree_extra(subtree) && \ + alias_sequence && \ + alias_sequence[structural_child_index] \ + ) ? \ + alias_sequence[structural_child_index] : \ + ts_subtree_symbol(subtree)) + + // Stop walking up when a visible ancestor is found. + TSSymbol entry_symbol = subtree_symbol( + *entry->subtree, + entry->structural_child_index + ); + TSSymbolMetadata entry_metadata = ts_language_symbol_metadata( + self->tree->language, + entry_symbol + ); + if (i != self->stack.size - 1 && entry_metadata.visible) break; + + // Record any supertypes + if (entry_metadata.supertype && *supertype_count < max_supertypes) { + supertypes[*supertype_count] = entry_symbol; + (*supertype_count)++; + } + + // Determine if the current node has later siblings. + if (!*has_later_siblings) { + unsigned sibling_count = parent_entry->subtree->ptr->child_count; + unsigned structural_child_index = entry->structural_child_index; + if (!ts_subtree_extra(*entry->subtree)) structural_child_index++; + for (unsigned j = entry->child_index + 1; j < sibling_count; j++) { + Subtree sibling = ts_subtree_children(*parent_entry->subtree)[j]; + TSSymbolMetadata sibling_metadata = ts_language_symbol_metadata( + self->tree->language, + subtree_symbol(sibling, structural_child_index) + ); + if (sibling_metadata.visible) { + *has_later_siblings = true; + if (*has_later_named_siblings) break; + if (sibling_metadata.named) { + *has_later_named_siblings = true; + break; + } + } else if (ts_subtree_visible_child_count(sibling) > 0) { + *has_later_siblings = true; + if (*has_later_named_siblings) break; + if (sibling.ptr->inner.non_terminal.named_child_count > 0) { + *has_later_named_siblings = true; + break; + } + } + if (!ts_subtree_extra(sibling)) structural_child_index++; + } + } + + #undef subtree_symbol + + if (!ts_subtree_extra(*entry->subtree)) { + const TSFieldMapEntry *field_map, *field_map_end; + ts_language_field_map( + self->tree->language, + parent_entry->subtree->ptr->inner.non_terminal.production_id, + &field_map, &field_map_end + ); + + // Look for a field name associated with the current node. + if (!*field_id) { + for (const TSFieldMapEntry *map = field_map; map < field_map_end; map++) { + if (!map->inherited && map->child_index == entry->structural_child_index) { + *field_id = map->field_id; + break; + } + } + } + + // Determine if the current node can have later siblings with the same field name. + if (*field_id) { + for (const TSFieldMapEntry *map = field_map; map < field_map_end; map++) { + if ( + map->field_id == *field_id && + map->child_index > entry->structural_child_index + ) { + *can_have_later_siblings_with_this_field = true; + break; + } + } + } + } + } +} + +uint32_t ts_tree_cursor_current_depth(const TSTreeCursor *_self) { + const TreeCursor *self = (const TreeCursor *)_self; + uint32_t depth = 0; + for (unsigned i = 1; i < self->stack.size; i++) { + if (ts_tree_cursor_is_entry_visible(self, i)) { + depth++; + } + } + return depth; +} + +TSNode ts_tree_cursor_parent_node(const TSTreeCursor *_self) { + const TreeCursor *self = (const TreeCursor *)_self; + for (int i = (int)self->stack.size - 2; i >= 0; i--) { + TreeCursorEntry *entry = &self->stack.contents[i]; + bool is_visible = true; + TSSymbol alias_symbol = 0; + if (i > 0) { + TreeCursorEntry *parent_entry = &self->stack.contents[i - 1]; + alias_symbol = ts_language_alias_at( + self->tree->language, + parent_entry->subtree->ptr->inner.non_terminal.production_id, + entry->structural_child_index + ); + is_visible = (alias_symbol != 0) || ts_subtree_visible(*entry->subtree); + } + if (is_visible) { + return ts_node_new( + self->tree, + entry->subtree, + entry->position, + alias_symbol + ); + } + } + return ts_node_new(NULL, NULL, length_zero(), 0); +} + +TSFieldId ts_tree_cursor_current_field_id(const TSTreeCursor *_self) { + const TreeCursor *self = (const TreeCursor *)_self; + + // Walk up the tree, visiting the current node and its invisible ancestors. + for (unsigned i = self->stack.size - 1; i > 0; i--) { + TreeCursorEntry *entry = &self->stack.contents[i]; + TreeCursorEntry *parent_entry = &self->stack.contents[i - 1]; + + // Stop walking up when another visible node is found. + if ( + i != self->stack.size - 1 && + ts_tree_cursor_is_entry_visible(self, i) + ) break; + + if (ts_subtree_extra(*entry->subtree)) break; + + const TSFieldMapEntry *field_map, *field_map_end; + ts_language_field_map( + self->tree->language, + parent_entry->subtree->ptr->inner.non_terminal.production_id, + &field_map, &field_map_end + ); + for (const TSFieldMapEntry *map = field_map; map < field_map_end; map++) { + if (!map->inherited && map->child_index == entry->structural_child_index) { + return map->field_id; + } + } + } + return 0; +} + +const char *ts_tree_cursor_current_field_name(const TSTreeCursor *_self) { + TSFieldId id = ts_tree_cursor_current_field_id(_self); + if (id) { + const TreeCursor *self = (const TreeCursor *)_self; + return self->tree->language->field_names[id]; + } else { + return NULL; + } +} + +TSTreeCursor ts_tree_cursor_copy(const TSTreeCursor *_cursor) { + const TreeCursor *cursor = (const TreeCursor *)_cursor; + TSTreeCursor res = {NULL, NULL, {0, 0}}; + TreeCursor *copy = (TreeCursor *)&res; + copy->tree = cursor->tree; + copy->root_alias_symbol = cursor->root_alias_symbol; + array_init(©->stack); + array_push_all(©->stack, &cursor->stack); + return res; +} + +void ts_tree_cursor_reset_to(TSTreeCursor *_dst, const TSTreeCursor *_src) { + const TreeCursor *cursor = (const TreeCursor *)_src; + TreeCursor *copy = (TreeCursor *)_dst; + copy->tree = cursor->tree; + copy->root_alias_symbol = cursor->root_alias_symbol; + array_clear(©->stack); + array_push_all(©->stack, &cursor->stack); +} diff --git a/parser/nsrc/tree_cursor.h b/parser/nsrc/tree_cursor.h new file mode 100644 index 00000000..4f9ff110 --- /dev/null +++ b/parser/nsrc/tree_cursor.h @@ -0,0 +1,44 @@ +#ifndef TREE_SITTER_TREE_CURSOR_H_ +#define TREE_SITTER_TREE_CURSOR_H_ + +#include "./subtree.h" + +typedef struct TreeCursorEntry +{ + const Subtree *subtree; + Length position; + uint32_t child_index; + uint32_t structural_child_index; + uint32_t descendant_index; +} TreeCursorEntry; + +typedef struct TreeCursor +{ + const TSTree *tree; + Array(TreeCursorEntry) stack; + TSSymbol root_alias_symbol; +} TreeCursor; + +typedef enum TreeCursorStep +{ + TreeCursorStepNone, + TreeCursorStepHidden, + TreeCursorStepVisible, +} TreeCursorStep; + +void ts_tree_cursor_init(TreeCursor *, TSNode); +void ts_tree_cursor_current_status(const TSTreeCursor *, TSFieldId *, bool *, bool *, bool *, TSSymbol *, unsigned *); + +TreeCursorStep ts_tree_cursor_goto_first_child_internal(TSTreeCursor *); +TreeCursorStep ts_tree_cursor_goto_next_sibling_internal(TSTreeCursor *); + +static inline Subtree ts_tree_cursor_current_subtree(const TSTreeCursor *_self) +{ + const TreeCursor *self = (const TreeCursor *)_self; + TreeCursorEntry *last_entry = array_back(&self->stack); + return *last_entry->subtree; +} + +TSNode ts_tree_cursor_parent_node(const TSTreeCursor *); + +#endif // TREE_SITTER_TREE_CURSOR_H_ diff --git a/parser/nsrc/unicode.h b/parser/nsrc/unicode.h new file mode 100644 index 00000000..cd0d9afe --- /dev/null +++ b/parser/nsrc/unicode.h @@ -0,0 +1,32 @@ +#ifndef TREE_SITTER_UNICODE_H_ +#define TREE_SITTER_UNICODE_H_ + +#ifdef __cplusplus +extern "C" +{ +#endif + +#include +#include + +#define U_EXPORT +#define U_EXPORT2 + + static const int32_t TS_DECODE_ERROR = -1; + + // These functions read one unicode code point from the given string, + // returning the number of bytes consumed. + typedef uint32_t (*UnicodeDecodeFunction)(const uint8_t *string, uint32_t length, int32_t *code_point); + + static inline uint32_t ts_decode_ascii(const uint8_t *string, uint32_t length, int32_t *code_point) + { + if (length >= 1 && string[0] <= 127) + return (*code_point = string[0], 1); + return (0); + } + +#ifdef __cplusplus +} +#endif + +#endif // TREE_SITTER_UNICODE_H_