started to work again on the parser

This commit is contained in:
Maieul BOYER 2024-05-30 15:38:35 +02:00
parent ffc7a2d0fc
commit f5e048d02e
No known key found for this signature in database
5 changed files with 1293 additions and 1192 deletions

View file

@ -1,6 +1,7 @@
#ifndef TREE_SITTER_ARRAY_H_
#define TREE_SITTER_ARRAY_H_
#include "me/char/char.h"
#include "me/mem/mem.h"
#include <assert.h>
#include <limits.h>
@ -8,7 +9,9 @@
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "me/char/char.h"
#include "./api_structs.h"
#include "./array.h"
#define ts_builtin_sym_error_repeat (ts_builtin_sym_error - 1)
#define LANGUAGE_VERSION_WITH_PRIMARY_STATES 14
@ -29,14 +32,14 @@
#define MAX_ITERATOR_COUNT 64
#define TS_MAX_INLINE_TREE_LENGTH UINT8_MAX
#define TS_MAX_TREE_POOL_SIZE 32
#define ts_builtin_sym_error ((t_symbol)-1)
#define ts_builtin_sym_error ((t_symbol) - 1)
#define ts_builtin_sym_end 0
#define TREE_SITTER_SERIALIZATION_BUFFER_SIZE 1024
#define POINT_ZERO ((t_point){0, 0})
#define POINT_MAX ((t_point){UINT32_MAX, UINT32_MAX})
#define TS_TREE_STATE_NONE USHRT_MAX
#define NULL_SUBTREE ((t_subtree){.ptr = NULL})
#define STACK_VERSION_NONE ((t_stack_version)-1)
#define STACK_VERSION_NONE ((t_stack_version) - 1)
#define TS_DECODE_ERROR (-1)
#if true
@ -51,152 +54,6 @@
# define free(p) mem_free((p))
#endif
#define Array(T) \
struct \
{ \
T *contents; \
uint32_t size; \
uint32_t capacity; \
}
#ifndef inline
# define inline __inline__
#endif
/// Initialize an array.
#define array_init(self) \
((self)->size = 0, (self)->capacity = 0, (self)->contents = NULL)
/// Create an empty array.
#define array_new() \
{ \
NULL, 0, 0 \
}
/// Get a pointer to the element at a given `index` in the array.
#define array_get(self, _index) \
(assert((uint32_t)(_index) < (self)->size), &(self)->contents[_index])
/// Get a pointer to the first element in the array.
#define array_front(self) array_get(self, 0)
/// Get a pointer to the last element in the array.
#define array_back(self) array_get(self, (self)->size - 1)
/// Clear the array, setting its size to zero. Note that this does not free any
/// memory allocated for the array's contents.
#define array_clear(self) ((self)->size = 0)
/// Reserve `new_capacity` elements of space in the array. If `new_capacity` is
/// less than the array's current capacity, this function has no effect.
#define array_reserve(self, new_capacity) \
_array__reserve((Array *)(self), array_elem_size(self), new_capacity)
/// Free any memory allocated for this array. Note that this does not free any
/// memory allocated for the array's contents.
#define array_delete(self) _array__delete((Array *)(self))
/// Push a new `element` onto the end of the array.
#define array_push(self, element) \
(_array__grow((Array *)(self), 1, array_elem_size(self)), \
(self)->contents[(self)->size++] = (element))
/// Increase the array's size by `count` elements.
/// New elements are zero-initialized.
#define array_grow_by(self, count) \
do \
{ \
if ((count) == 0) \
break; \
_array__grow((Array *)(self), count, array_elem_size(self)); \
memset((self)->contents + (self)->size, 0, \
(count) * array_elem_size(self)); \
(self)->size += (count); \
} while (0)
/// Append all elements from one array to the end of another.
#define array_push_all(self, other) \
array_extend((self), (other)->size, (other)->contents)
/// Append `count` elements to the end of the array, reading their values from
/// the `contents` pointer.
#define array_extend(self, count, contents) \
_array__splice((Array *)(self), array_elem_size(self), (self)->size, 0, \
count, contents)
/// Remove `old_count` elements from the array starting at the given `index`. At
/// the same index, insert `new_count` new elements, reading their values from
/// the `new_contents` pointer.
#define array_splice(self, _index, old_count, new_count, new_contents) \
_array__splice((Array *)(self), array_elem_size(self), _index, old_count, \
new_count, new_contents)
/// Insert one `element` into the array at the given `index`.
#define array_insert(self, _index, element) \
_array__splice((Array *)(self), array_elem_size(self), _index, 0, 1, \
&(element))
/// Remove one element from the array at the given `index`.
#define array_erase(self, _index) \
_array__erase((Array *)(self), array_elem_size(self), _index)
/// Pop the last element off the array, returning the element by value.
#define array_pop(self) ((self)->contents[--(self)->size])
/// Assign the contents of one array to another, reallocating if necessary.
#define array_assign(self, other) \
_array__assign((Array *)(self), (const Array *)(other), \
array_elem_size(self))
/// Swap one array with another
#define array_swap(self, other) _array__swap((Array *)(self), (Array *)(other))
/// Get the size of the array contents
#define array_elem_size(self) (sizeof *(self)->contents)
/// Search a sorted array for a given `needle` value, using the given `compare`
/// callback to determine the order.
///
/// If an existing element is found to be equal to `needle`, then the `index`
/// out-parameter is set to the existing value's index, and the `exists`
/// out-parameter is set to true. Otherwise, `index` is set to an index where
/// `needle` should be inserted in order to preserve the sorting, and `exists`
/// is set to false.
#define array_search_sorted_with(self, compare, needle, _index, _exists) \
_array__search_sorted(self, 0, compare, , needle, _index, _exists)
/// Search a sorted array for a given `needle` value, using integer comparisons
/// of a given struct field (specified with a leading dot) to determine the
/// order.
///
/// See also `array_search_sorted_with`.
#define array_search_sorted_by(self, field, needle, _index, _exists) \
_array__search_sorted(self, 0, _compare_int, field, needle, _index, _exists)
/// Insert a given `value` into a sorted array, using the given `compare`
/// callback to determine the order.
#define array_insert_sorted_with(self, compare, value) \
do \
{ \
unsigned _index, _exists; \
array_search_sorted_with(self, compare, &(value), &_index, &_exists); \
if (!_exists) \
array_insert(self, _index, value); \
} while (0)
/// Insert a given `value` into a sorted array, using integer comparisons of
/// a given struct field (specified with a leading dot) to determine the order.
///
/// See also `array_search_sorted_by`.
#define array_insert_sorted_by(self, field, value) \
do \
{ \
unsigned _index, _exists; \
array_search_sorted_by(self, field, (value)field, &_index, &_exists); \
if (!_exists) \
array_insert(self, _index, value); \
} while (0)
// Get a subtree's children, which are allocated immediately before the
// tree's own heap data.
#define ts_subtree_children(self) \
@ -204,153 +61,6 @@
? NULL \
: (t_subtree *)((self).ptr) - (self).ptr->child_count)
typedef uint16_t t_state_id;
typedef uint16_t t_symbol;
typedef uint16_t t_field_id;
typedef struct s_language t_language;
typedef struct s_first_parser t_first_parser;
typedef struct s_first_tree t_first_tree;
typedef struct s_parse_query t_parse_query;
typedef struct s_query_cursor t_query_cursor;
typedef struct s_lookahead_iterator t_lookahead_iterator;
typedef struct s_point
{
uint32_t row;
uint32_t column;
} t_point;
typedef struct s_length
{
uint32_t bytes;
t_point extent;
} t_length;
typedef enum e_input_encoding
{
TSInputEncodingUTF8,
TSInputEncodingUTF16,
} t_input_encoding;
typedef enum e_symbol_type
{
TSSymbolTypeRegular,
TSSymbolTypeAnonymous,
TSSymbolTypeAuxiliary,
} t_symbol_type;
typedef struct s_parse_range
{
t_point start_point;
t_point end_point;
uint32_t start_byte;
uint32_t end_byte;
} t_parse_range;
typedef struct s_parse_input
{
void *payload;
const char *(*read)(void *payload, uint32_t byte_index, t_point position,
uint32_t *bytes_read);
t_input_encoding encoding;
} t_parse_input;
typedef enum e_log_type
{
TSLogTypeParse,
TSLogTypeLex,
} t_log_type;
typedef struct s_parse_logger
{
void *payload;
void (*log)(void *payload, t_log_type log_type, const char *buffer);
} t_parse_logger;
typedef struct s_input_edit
{
uint32_t start_byte;
uint32_t old_end_byte;
uint32_t new_end_byte;
t_point start_point;
t_point old_end_point;
t_point new_end_point;
} t_input_edit;
typedef struct s_parse_node
{
uint32_t context[4];
const void *id;
const t_first_tree *tree;
} t_parse_node;
typedef struct s_tree_cursor_entry
{
const union u_subtree *subtree;
t_length position;
uint32_t child_index;
uint32_t structural_child_index;
uint32_t descendant_index;
} t_tree_cursor_entry;
typedef struct s_tree_cursor
{
const t_first_tree *tree;
Array(t_tree_cursor_entry) stack;
t_symbol root_alias_symbol;
} t_tree_cursor;
typedef struct s_query_capture
{
t_parse_node node;
uint32_t index;
} t_query_capture;
typedef enum e_quantifier
{
TSQuantifierZero = 0, // must match the array initialization value
TSQuantifierZeroOrOne,
TSQuantifierZeroOrMore,
TSQuantifierOne,
TSQuantifierOneOrMore,
} t_quantifier;
typedef struct s_query_match
{
uint32_t id;
uint16_t pattern_index;
uint16_t capture_count;
const t_query_capture *captures;
} t_query_match;
typedef enum e_query_predicate_step_type
{
TSQueryPredicateStepTypeDone,
TSQueryPredicateStepTypeCapture,
TSQueryPredicateStepTypeString,
} t_query_predicate_step_type;
typedef struct s_query_predicate_step
{
t_query_predicate_step_type type;
uint32_t value_id;
} t_query_predicate_step;
typedef enum e_query_error
{
TSQueryErrorNone = 0,
TSQueryErrorSyntax,
TSQueryErrorNodeType,
TSQueryErrorField,
TSQueryErrorCapture,
TSQueryErrorStructure,
TSQueryErrorLanguage,
} t_query_error;
// Private
typedef Array(void) Array;
/// This is not what you're looking for, see `array_delete`.
static inline void _array__delete(Array *self)
{
@ -497,10 +207,6 @@ static inline void _array__splice(Array *self, size_t element_size,
/// function above.
#define _compare_int(a, b) ((int)*(a) - (int)(b))
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
static inline size_t atomic_load(const volatile size_t *p)
{
#ifdef __ATOMIC_RELAXED
@ -528,25 +234,6 @@ static inline uint32_t atomic_dec(volatile uint32_t *p)
#endif
}
// The serialized state of an external scanner.
//
// Every time an external token subtree is created after a call to an
// external scanner, the scanner's `serialize` function is called to
// retrieve a serialized copy of its state. The bytes are then copied
// onto the subtree itself so that the scanner's state can later be
// restored using its `deserialize` function.
//
// Small byte arrays are stored inline, and long ones are allocated
// separately on the heap.
typedef struct
{
union {
char *long_data;
char short_data[24];
};
uint32_t length;
} t_external_scanner_state;
// A compact representation of a subtree.
//
// This representation is used for small leaf nodes that are not
@ -558,161 +245,12 @@ typedef struct
// Because of alignment, for any valid pointer this will be 0, giving
// us the opportunity to make use of this bit to signify whether to use
// the pointer or the inline struct.
typedef struct s_subtree_inline_data t_subtree_inline_data;
#define SUBTREE_BITS \
bool visible : 1; \
bool named : 1; \
bool extra : 1; \
bool has_changes : 1; \
bool is_missing : 1; \
bool is_keyword : 1;
#define SUBTREE_SIZE \
uint8_t padding_columns; \
uint8_t padding_rows : 4; \
uint8_t lookahead_bytes : 4; \
uint8_t padding_bytes; \
uint8_t size_bytes;
#if TS_BIG_ENDIAN
# if TS_PTR_SIZE == 32
struct s_subtree_inline_data
{
uint16_t parse_state;
uint8_t symbol;
SUBTREE_BITS
bool unused : 1;
bool is_inline : 1;
SUBTREE_SIZE
};
# else
struct s_subtree_inline_data
{
SUBTREE_SIZE
uint16_t parse_state;
uint8_t symbol;
SUBTREE_BITS
bool unused : 1;
bool is_inline : 1;
};
# endif
#else
struct s_subtree_inline_data
{
bool is_inline : 1;
SUBTREE_BITS
uint8_t symbol;
uint16_t parse_state;
SUBTREE_SIZE
};
#endif
#undef SUBTREE_BITS
#undef SUBTREE_SIZE
// A heap-allocated representation of a subtree.
//
// This representation is used for parent nodes, external tokens,
// errors, and other leaf nodes whose data is too large to fit into
// the inline representation.
typedef struct s_subtree_heap_data
{
volatile uint32_t ref_count;
t_length padding;
t_length size;
uint32_t lookahead_bytes;
uint32_t error_cost;
uint32_t child_count;
t_symbol symbol;
t_state_id parse_state;
bool visible : 1;
bool named : 1;
bool extra : 1;
bool fragile_left : 1;
bool fragile_right : 1;
bool has_changes : 1;
bool has_external_tokens : 1;
bool has_external_scanner_state_change : 1;
bool depends_on_column : 1;
bool is_missing : 1;
bool is_keyword : 1;
union {
// Non-terminal subtrees (`child_count > 0`)
struct
{
uint32_t visible_child_count;
uint32_t named_child_count;
uint32_t visible_descendant_count;
int32_t dynamic_precedence;
uint16_t repeat_depth;
uint16_t production_id;
struct
{
t_symbol symbol;
t_state_id parse_state;
} first_leaf;
};
// External terminal subtrees (`child_count == 0 &&
// has_external_tokens`)
t_external_scanner_state external_scanner_state;
// Error terminal subtrees (`child_count == 0 && symbol ==
// ts_builtin_sym_error`)
int32_t lookahead_char;
};
} t_subtree_heap_data;
// The fundamental building block of a syntax tree.
typedef union u_subtree {
t_subtree_inline_data data;
const t_subtree_heap_data *ptr;
} t_subtree;
// Like t_subtree, but mutable.
typedef union u_mutable_subtree {
t_subtree_inline_data data;
t_subtree_heap_data *ptr;
} t_mutable_subtree;
typedef Array(t_subtree) t_subtree_array;
typedef Array(t_mutable_subtree) t_mutable_subtree_array;
typedef struct
{
t_mutable_subtree_array free_trees;
t_mutable_subtree_array tree_stack;
} t_subtree_pool;
typedef Array(t_parse_range) t_range_array;
typedef union u_parse_action {
struct
{
uint8_t type;
t_state_id state;
bool extra;
bool repetition;
} shift;
struct
{
uint8_t type;
uint8_t child_count;
t_symbol symbol;
int16_t dynamic_precedence;
uint16_t production_id;
} reduce;
uint8_t type;
} t_parse_action;
void ts_range_array_get_changed_ranges(const t_parse_range *old_ranges,
unsigned old_range_count,
@ -728,133 +266,6 @@ unsigned ts_subtree_get_changed_ranges(
t_tree_cursor *cursor1, t_tree_cursor *cursor2, const t_language *language,
const t_range_array *included_range_differences, t_parse_range **ranges);
typedef struct s_table_entry
{
const t_parse_action *actions;
uint32_t action_count;
bool is_reusable;
} t_table_entry;
typedef struct s_lookahead_iterator
{
const t_language *language;
const uint16_t *data;
const uint16_t *group_end;
t_state_id state;
uint16_t table_value;
uint16_t section_index;
uint16_t group_count;
bool is_small_state;
const t_parse_action *actions;
t_symbol symbol;
t_state_id next_state;
uint16_t action_count;
} t_lookahead_iterator;
typedef struct s_symbol_metadata
{
bool visible;
bool named;
bool supertype;
} t_symbol_metadata;
typedef enum e_parse_action_type
{
TSParseActionTypeShift,
TSParseActionTypeReduce,
TSParseActionTypeAccept,
TSParseActionTypeRecover,
} t_parse_action_type;
typedef union u_parse_action_entry {
t_parse_action action;
struct
{
uint8_t count;
bool reusable;
} entry;
} t_parse_action_entry;
typedef struct s_field_map_entry
{
t_field_id field_id;
uint8_t child_index;
bool inherited;
} t_field_map_entry;
typedef struct s_field_map_slice
{
uint16_t index;
uint16_t length;
} t_field_map_slice;
typedef struct s_lexer_data t_lexer_data;
struct s_lexer_data
{
int32_t lookahead;
t_symbol result_symbol;
void (*advance)(t_lexer_data *, bool);
void (*mark_end)(t_lexer_data *);
uint32_t (*get_column)(t_lexer_data *);
bool (*is_at_included_range_start)(const t_lexer_data *);
bool (*eof)(const t_lexer_data *);
};
typedef struct s_lex_mode
{
uint16_t lex_state;
uint16_t external_lex_state;
} t_lex_mode;
typedef struct s_char_range
{
int32_t start;
int32_t end;
} t_char_range;
struct s_language
{
uint32_t version;
uint32_t symbol_count;
uint32_t alias_count;
uint32_t token_count;
uint32_t external_token_count;
uint32_t state_count;
uint32_t large_state_count;
uint32_t production_id_count;
uint32_t field_count;
uint16_t max_alias_sequence_length;
const uint16_t *parse_table;
const uint16_t *small_parse_table;
const uint32_t *small_parse_table_map;
const t_parse_action_entry *parse_actions;
const char *const *symbol_names;
const char *const *field_names;
const t_field_map_slice *field_map_slices;
const t_field_map_entry *field_map_entries;
const t_symbol_metadata *symbol_metadata;
const t_symbol *public_symbol_map;
const uint16_t *alias_map;
const t_symbol *alias_sequences;
const t_lex_mode *lex_modes;
bool (*lex_fn)(t_lexer_data *, t_state_id);
bool (*keyword_lex_fn)(t_lexer_data *, t_state_id);
t_symbol keyword_capture_token;
struct
{
const bool *states;
const t_symbol *symbol_map;
void *(*create)(void);
void (*destroy)(void *);
bool (*scan)(void *, t_lexer_data *, const bool *symbol_whitelist);
unsigned (*serialize)(void *, char *);
void (*deserialize)(void *, const char *, unsigned);
} external_scanner;
const t_state_id *primary_state_ids;
};
void ts_language_table_entry(const t_language *, t_state_id, t_symbol,
t_table_entry *);
@ -1167,28 +578,6 @@ static inline t_length length_saturating_sub(t_length len1, t_length len2)
}
}
typedef struct s_lexer
{
t_lexer_data data;
t_length current_position;
t_length token_start_position;
t_length token_end_position;
t_parse_range *included_ranges;
const char *chunk;
t_parse_input input;
t_parse_logger logger;
uint32_t included_range_count;
uint32_t current_included_range_index;
uint32_t chunk_start;
uint32_t chunk_size;
uint32_t lookahead_size;
bool did_get_column;
char debug_buffer[TREE_SITTER_SERIALIZATION_BUFFER_SIZE];
} t_lexer;
void ts_lexer_init(t_lexer *);
void ts_lexer_delete(t_lexer *);
void ts_lexer_set_input(t_lexer *, t_parse_input);
@ -1288,16 +677,6 @@ static inline t_point point_max(t_point a, t_point b)
return b;
}
typedef struct s_reduce_action
{
uint32_t count;
t_symbol symbol;
int dynamic_precedence;
unsigned short production_id;
} t_reduce_action;
typedef Array(t_reduce_action) t_reduce_action_set;
static inline void ts_reduce_action_set_add(t_reduce_action_set *self,
t_reduce_action new_action)
{
@ -1311,19 +690,6 @@ static inline void ts_reduce_action_set_add(t_reduce_action_set *self,
array_push(self, new_action);
}
typedef struct s_stack_entry
{
t_subtree tree;
uint32_t child_index;
uint32_t byte_offset;
} t_stack_entry;
typedef struct s_reusable_node
{
Array(t_stack_entry) stack;
t_subtree last_external_token;
} t_reusable_node;
static inline t_reusable_node reusable_node_new(void)
{
return (t_reusable_node){array_new(), NULL_SUBTREE};
@ -1433,25 +799,6 @@ static inline void reusable_node_reset(t_reusable_node *self, t_subtree tree)
}
}
typedef struct s_stack t_stack;
typedef unsigned t_stack_version;
typedef struct s_stack_slice
{
t_subtree_array subtrees;
t_stack_version version;
} t_stack_slice;
typedef Array(t_stack_slice) t_stack_slice_array;
typedef struct s_stack_summary_entry
{
t_length position;
unsigned depth;
t_state_id state;
} t_stack_summary_entry;
typedef Array(t_stack_summary_entry) t_stack_summary;
// Create a stack.
t_stack *ts_stack_new(t_subtree_pool *);
@ -1547,8 +894,6 @@ void ts_stack_remove_version(t_stack *, t_stack_version);
void ts_stack_clear(t_stack *);
typedef void (*StackIterateCallback)(void *, t_state_id, uint32_t);
void ts_external_scanner_state_init(t_external_scanner_state *, const char *,
unsigned);
const char *ts_external_scanner_state_data(const t_external_scanner_state *);
@ -1835,13 +1180,6 @@ static inline t_mutable_subtree ts_subtree_to_mut_unsafe(t_subtree self)
return result;
}
typedef enum e_tree_cursor_step
{
TreeCursorStepNone,
TreeCursorStepHidden,
TreeCursorStepVisible,
} t_tree_cursor_step;
void ts_tree_cursor_init(t_tree_cursor *, t_parse_node);
void ts_tree_cursor_current_status(const t_tree_cursor *, t_field_id *, bool *,
bool *, bool *, t_symbol *, unsigned *);
@ -1859,28 +1197,9 @@ static inline t_subtree ts_tree_cursor_current_subtree(
t_parse_node ts_tree_cursor_parent_node(const t_tree_cursor *);
typedef struct s_parent_cache_entry
{
const t_subtree *child;
const t_subtree *parent;
t_length position;
t_symbol alias_symbol;
} t_parent_cache_entry;
struct s_first_tree
{
t_subtree root;
const t_language *language;
t_parse_range *included_ranges;
unsigned included_range_count;
};
t_first_tree *ts_tree_new(t_subtree root, const t_language *language,
const t_parse_range *, unsigned);
t_parse_node ts_node_new(const t_first_tree *, const t_subtree *, t_length,
t_symbol);
typedef uint64_t t_parser_clock;
typedef uint64_t t_parser_duration;
#endif // TREE_SITTER_TREE_H_

590
parser/src/api_structs.h Normal file
View file

@ -0,0 +1,590 @@
#ifndef API_STRUCTS_H
#define API_STRUCTS_H
#define TREE_SITTER_SERIALIZATION_BUFFER_SIZE 1024
#include "./array.h"
#include "me/types.h"
#include <stdint.h>
typedef uint16_t t_state_id;
typedef uint16_t t_symbol;
typedef uint16_t t_field_id;
typedef unsigned t_stack_version;
typedef uint64_t t_parser_clock;
typedef uint64_t t_parser_duration;
typedef union u_parse_action_entry t_parse_action_entry;
typedef union u_subtree t_subtree;
typedef union u_mutable_subtree t_mutable_subtree;
typedef union u_parse_action t_parse_action;
typedef struct s_language t_language;
typedef struct s_first_parser t_first_parser;
typedef struct s_first_tree t_first_tree;
typedef struct s_parse_query t_parse_query;
typedef struct s_query_cursor t_query_cursor;
typedef struct s_lookahead_iterator t_lookahead_iterator;
typedef struct s_point t_point;
typedef struct s_length t_length;
typedef struct s_parse_range t_parse_range;
typedef struct s_parse_input t_parse_input;
typedef struct s_parse_logger t_parse_logger;
typedef struct s_input_edit t_input_edit;
typedef struct s_parse_node t_parse_node;
typedef struct s_tree_cursor t_tree_cursor;
typedef struct s_query_capture t_query_capture;
typedef struct s_query_match t_query_match;
typedef struct s_query_predicate_step t_query_predicate_step;
typedef struct s_subtree_inline_data t_subtree_inline_data;
typedef struct s_subtree_heap_data t_subtree_heap_data;
typedef struct s_subtree_pool t_subtree_pool;
typedef struct s_table_entry t_table_entry;
typedef struct s_symbol_metadata t_symbol_metadata;
typedef struct s_field_map_entry t_field_map_entry;
typedef struct s_field_map_slice t_field_map_slice;
typedef struct s_lexer_data t_lexer_data;
typedef struct s_lex_mode t_lex_mode;
typedef struct s_char_range t_char_range;
typedef struct s_tree_cursor_entry t_tree_cursor_entry;
typedef struct s_external_scanner_state t_external_scanner_state;
typedef struct s_parse_query_cursor t_parse_query_cursor;
typedef struct s_parse_query_error t_parse_query_error;
typedef struct s_parse_query_error_cost t_parse_query_error_cost;
typedef struct s_lexer_data t_lexer_data;
typedef struct s_subtree_inline_data t_subtree_inline_data;
typedef struct s_subtree_heap_data t_subtree_heap_data;
typedef struct s_subtree_pool t_subtree_pool;
typedef struct s_table_entry t_table_entry;
typedef struct s_symbol_metadata t_symbol_metadata;
typedef struct s_field_map_entry t_field_map_entry;
typedef struct s_field_map_slice t_field_map_slice;
typedef struct s_lexer_data t_lexer_data;
typedef struct s_lex_mode t_lex_mode;
typedef struct s_lexer t_lexer;
typedef struct s_parse_state t_parse_state;
typedef struct s_reduce_action t_reduce_action;
typedef struct s_stack_entry t_stack_entry;
typedef struct s_reusable_node t_reusable_node;
typedef struct s_stack_summary_entry t_stack_summary_entry;
typedef struct s_stack t_stack;
typedef struct s_stack_slice t_stack_slice;
typedef enum e_input_encoding t_input_encoding;
typedef enum e_symbol_type t_symbol_type;
typedef enum e_log_type t_log_type;
typedef enum e_quantifier t_quantifier;
typedef enum e_query_error t_query_error;
typedef enum e_query_predicate_step_type t_query_predicate_step_type;
typedef enum e_parse_action_type t_parse_action_type;
typedef Array(t_parse_range) t_range_array;
typedef Array(t_subtree) t_subtree_array;
typedef Array(t_mutable_subtree) t_mutable_subtree_array;
typedef Array(t_reduce_action) t_reduce_action_set;
typedef Array(void) Array;
typedef Array(t_stack_slice) t_stack_slice_array;
typedef Array(t_stack_summary_entry) t_stack_summary;
typedef void (*StackIterateCallback)(void *, t_state_id, uint32_t);
struct s_point
{
uint32_t row;
uint32_t column;
};
struct s_length
{
uint32_t bytes;
t_point extent;
};
struct s_stack_slice
{
t_subtree_array subtrees;
t_stack_version version;
};
struct s_stack_summary_entry
{
t_length position;
unsigned depth;
t_state_id state;
};
enum e_input_encoding
{
TSInputEncodingUTF8,
TSInputEncodingUTF16,
};
enum e_symbol_type
{
TSSymbolTypeRegular,
TSSymbolTypeAnonymous,
TSSymbolTypeAuxiliary,
};
struct s_parse_range
{
t_point start_point;
t_point end_point;
uint32_t start_byte;
uint32_t end_byte;
};
struct s_parse_input
{
void *payload;
const char *(*read)(void *payload, uint32_t byte_index, t_point position,
uint32_t *bytes_read);
t_input_encoding encoding;
};
enum e_log_type
{
TSLogTypeParse,
TSLogTypeLex,
};
struct s_parse_logger
{
void *payload;
void (*log)(void *payload, t_log_type log_type, const char *buffer);
};
struct s_input_edit
{
uint32_t start_byte;
uint32_t old_end_byte;
uint32_t new_end_byte;
t_point start_point;
t_point old_end_point;
t_point new_end_point;
};
struct s_parse_node
{
uint32_t context[4];
const void *id;
const t_first_tree *tree;
};
struct s_tree_cursor_entry
{
const t_subtree *subtree;
t_length position;
uint32_t child_index;
uint32_t structural_child_index;
uint32_t descendant_index;
};
struct s_tree_cursor
{
const t_first_tree *tree;
Array(t_tree_cursor_entry) stack;
t_symbol root_alias_symbol;
};
struct s_query_capture
{
t_parse_node node;
uint32_t index;
};
enum e_quantifier
{
TSQuantifierZero = 0, // must match the array initialization value
TSQuantifierZeroOrOne,
TSQuantifierZeroOrMore,
TSQuantifierOne,
TSQuantifierOneOrMore,
};
struct s_query_match
{
uint32_t id;
uint16_t pattern_index;
uint16_t capture_count;
const t_query_capture *captures;
};
enum e_query_predicate_step_type
{
TSQueryPredicateStepTypeDone,
TSQueryPredicateStepTypeCapture,
TSQueryPredicateStepTypeString,
};
struct s_query_predicate_step
{
t_query_predicate_step_type type;
uint32_t value_id;
};
enum e_query_error
{
TSQueryErrorNone = 0,
TSQueryErrorSyntax,
TSQueryErrorNodeType,
TSQueryErrorField,
TSQueryErrorCapture,
TSQueryErrorStructure,
TSQueryErrorLanguage,
};
struct s_parent_cache_entry
{
const t_subtree *child;
const t_subtree *parent;
t_length position;
t_symbol alias_symbol;
};
typedef enum e_tree_cursor_step
{
TreeCursorStepNone,
TreeCursorStepHidden,
TreeCursorStepVisible,
} t_tree_cursor_step;
// The serialized state of an external scanner.
//
// Every time an external token subtree is created after a call to an
// external scanner, the scanner's `serialize` function is called to
// retrieve a serialized copy of its state. The bytes are then copied
// onto the subtree itself so that the scanner's state can later be
// restored using its `deserialize` function.
//
// Small byte arrays are stored inline, and long ones are allocated
// separately on the heap.
struct s_external_scanner_state
{
union {
char *long_data;
char short_data[24];
};
uint32_t length;
};
#define SUBTREE_BITS \
bool visible : 1; \
bool named : 1; \
bool extra : 1; \
bool has_changes : 1; \
bool is_missing : 1; \
bool is_keyword : 1;
#define SUBTREE_SIZE \
uint8_t padding_columns; \
uint8_t padding_rows : 4; \
uint8_t lookahead_bytes : 4; \
uint8_t padding_bytes; \
uint8_t size_bytes;
#if TS_BIG_ENDIAN
# if TS_PTR_SIZE == 32
struct s_subtree_inline_data
{
uint16_t parse_state;
uint8_t symbol;
SUBTREE_BITS
bool unused : 1;
bool is_inline : 1;
SUBTREE_SIZE
};
# else
struct s_subtree_inline_data
{
SUBTREE_SIZE
uint16_t parse_state;
uint8_t symbol;
SUBTREE_BITS
bool unused : 1;
bool is_inline : 1;
};
# endif
#else
struct s_subtree_inline_data
{
bool is_inline : 1;
SUBTREE_BITS
uint8_t symbol;
uint16_t parse_state;
SUBTREE_SIZE
};
#endif
#undef SUBTREE_BITS
#undef SUBTREE_SIZE
struct s_subtree_heap_data
{
volatile uint32_t ref_count;
t_length padding;
t_length size;
uint32_t lookahead_bytes;
uint32_t error_cost;
uint32_t child_count;
t_symbol symbol;
t_state_id parse_state;
bool visible : 1;
bool named : 1;
bool extra : 1;
bool fragile_left : 1;
bool fragile_right : 1;
bool has_changes : 1;
bool has_external_tokens : 1;
bool has_external_scanner_state_change : 1;
bool depends_on_column : 1;
bool is_missing : 1;
bool is_keyword : 1;
union {
// Non-terminal subtrees (`child_count > 0`)
struct
{
uint32_t visible_child_count;
uint32_t named_child_count;
uint32_t visible_descendant_count;
int32_t dynamic_precedence;
uint16_t repeat_depth;
uint16_t production_id;
struct
{
t_symbol symbol;
t_state_id parse_state;
} first_leaf;
};
// External terminal subtrees (`child_count == 0 &&
// has_external_tokens`)
t_external_scanner_state external_scanner_state;
// Error terminal subtrees (`child_count == 0 && symbol ==
// ts_builtin_sym_error`)
int32_t lookahead_char;
};
};
// The fundamental building block of a syntax tree.
union u_subtree {
t_subtree_inline_data data;
const t_subtree_heap_data *ptr;
};
// Like t_subtree, but mutable.
union u_mutable_subtree {
t_subtree_inline_data data;
t_subtree_heap_data *ptr;
};
struct s_subtree_pool
{
t_mutable_subtree_array free_trees;
t_mutable_subtree_array tree_stack;
};
union u_parse_action {
struct
{
uint8_t type;
t_state_id state;
bool extra;
bool repetition;
} shift;
struct
{
uint8_t type;
uint8_t child_count;
t_symbol symbol;
int16_t dynamic_precedence;
uint16_t production_id;
} reduce;
uint8_t type;
};
struct s_table_entry
{
const t_parse_action *actions;
uint32_t action_count;
bool is_reusable;
};
struct s_lookahead_iterator
{
const t_language *language;
const uint16_t *data;
const uint16_t *group_end;
t_state_id state;
uint16_t table_value;
uint16_t section_index;
uint16_t group_count;
bool is_small_state;
const t_parse_action *actions;
t_symbol symbol;
t_state_id next_state;
uint16_t action_count;
};
struct s_symbol_metadata
{
bool visible;
bool named;
bool supertype;
};
enum e_parse_action_type
{
TSParseActionTypeShift,
TSParseActionTypeReduce,
TSParseActionTypeAccept,
TSParseActionTypeRecover,
};
union u_parse_action_entry {
t_parse_action action;
struct
{
uint8_t count;
bool reusable;
} entry;
};
struct s_field_map_entry
{
t_field_id field_id;
uint8_t child_index;
bool inherited;
};
struct s_field_map_slice
{
uint16_t index;
uint16_t length;
};
struct s_lexer_data
{
int32_t lookahead;
t_symbol result_symbol;
void (*advance)(t_lexer_data *, bool);
void (*mark_end)(t_lexer_data *);
uint32_t (*get_column)(t_lexer_data *);
bool (*is_at_included_range_start)(const t_lexer_data *);
bool (*eof)(const t_lexer_data *);
};
struct s_lex_mode
{
uint16_t lex_state;
uint16_t external_lex_state;
};
struct s_char_range
{
int32_t start;
int32_t end;
};
struct s_language
{
uint32_t version;
uint32_t symbol_count;
uint32_t alias_count;
uint32_t token_count;
uint32_t external_token_count;
uint32_t state_count;
uint32_t large_state_count;
uint32_t production_id_count;
uint32_t field_count;
uint16_t max_alias_sequence_length;
const uint16_t *parse_table;
const uint16_t *small_parse_table;
const uint32_t *small_parse_table_map;
const t_parse_action_entry *parse_actions;
const char *const *symbol_names;
const char *const *field_names;
const t_field_map_slice *field_map_slices;
const t_field_map_entry *field_map_entries;
const t_symbol_metadata *symbol_metadata;
const t_symbol *public_symbol_map;
const uint16_t *alias_map;
const t_symbol *alias_sequences;
const t_lex_mode *lex_modes;
bool (*lex_fn)(t_lexer_data *, t_state_id);
bool (*keyword_lex_fn)(t_lexer_data *, t_state_id);
t_symbol keyword_capture_token;
struct
{
const bool *states;
const t_symbol *symbol_map;
void *(*create)(void);
void (*destroy)(void *);
bool (*scan)(void *, t_lexer_data *, const bool *symbol_whitelist);
unsigned (*serialize)(void *, char *);
void (*deserialize)(void *, const char *, unsigned);
} external_scanner;
const t_state_id *primary_state_ids;
};
struct s_lexer
{
t_lexer_data data;
t_length current_position;
t_length token_start_position;
t_length token_end_position;
t_parse_range *included_ranges;
const char *chunk;
t_parse_input input;
t_parse_logger logger;
uint32_t included_range_count;
uint32_t current_included_range_index;
uint32_t chunk_start;
uint32_t chunk_size;
uint32_t lookahead_size;
bool did_get_column;
char debug_buffer[TREE_SITTER_SERIALIZATION_BUFFER_SIZE];
};
struct s_reduce_action
{
uint32_t count;
t_symbol symbol;
int dynamic_precedence;
unsigned short production_id;
};
struct s_stack_entry
{
t_subtree tree;
uint32_t child_index;
uint32_t byte_offset;
};
struct s_reusable_node
{
Array(t_stack_entry) stack;
t_subtree last_external_token;
};
struct s_first_tree
{
t_subtree root;
const t_language *language;
t_parse_range *included_ranges;
unsigned included_range_count;
};
#endif // API_STRUCTS_H

149
parser/src/array.h Normal file
View file

@ -0,0 +1,149 @@
#ifndef ARRAY_H
#define ARRAY_H
#define Array(T) \
struct \
{ \
T *contents; \
uint32_t size; \
uint32_t capacity; \
}
#ifndef inline
# define inline __inline__
#endif
/// Initialize an array.
#define array_init(self) \
((self)->size = 0, (self)->capacity = 0, (self)->contents = NULL)
/// Create an empty array.
#define array_new() \
{ \
NULL, 0, 0 \
}
/// Get a pointer to the element at a given `index` in the array.
#define array_get(self, _index) \
(assert((uint32_t)(_index) < (self)->size), &(self)->contents[_index])
/// Get a pointer to the first element in the array.
#define array_front(self) array_get(self, 0)
/// Get a pointer to the last element in the array.
#define array_back(self) array_get(self, (self)->size - 1)
/// Clear the array, setting its size to zero. Note that this does not free any
/// memory allocated for the array's contents.
#define array_clear(self) ((self)->size = 0)
/// Reserve `new_capacity` elements of space in the array. If `new_capacity` is
/// less than the array's current capacity, this function has no effect.
#define array_reserve(self, new_capacity) \
_array__reserve((Array *)(self), array_elem_size(self), new_capacity)
/// Free any memory allocated for this array. Note that this does not free any
/// memory allocated for the array's contents.
#define array_delete(self) _array__delete((Array *)(self))
/// Push a new `element` onto the end of the array.
#define array_push(self, element) \
(_array__grow((Array *)(self), 1, array_elem_size(self)), \
(self)->contents[(self)->size++] = (element))
/// Increase the array's size by `count` elements.
/// New elements are zero-initialized.
#define array_grow_by(self, count) \
do \
{ \
if ((count) == 0) \
break; \
_array__grow((Array *)(self), count, array_elem_size(self)); \
memset((self)->contents + (self)->size, 0, \
(count) * array_elem_size(self)); \
(self)->size += (count); \
} while (0)
/// Append all elements from one array to the end of another.
#define array_push_all(self, other) \
array_extend((self), (other)->size, (other)->contents)
/// Append `count` elements to the end of the array, reading their values from
/// the `contents` pointer.
#define array_extend(self, count, contents) \
_array__splice((Array *)(self), array_elem_size(self), (self)->size, 0, \
count, contents)
/// Remove `old_count` elements from the array starting at the given `index`. At
/// the same index, insert `new_count` new elements, reading their values from
/// the `new_contents` pointer.
#define array_splice(self, _index, old_count, new_count, new_contents) \
_array__splice((Array *)(self), array_elem_size(self), _index, old_count, \
new_count, new_contents)
/// Insert one `element` into the array at the given `index`.
#define array_insert(self, _index, element) \
_array__splice((Array *)(self), array_elem_size(self), _index, 0, 1, \
&(element))
/// Remove one element from the array at the given `index`.
#define array_erase(self, _index) \
_array__erase((Array *)(self), array_elem_size(self), _index)
/// Pop the last element off the array, returning the element by value.
#define array_pop(self) ((self)->contents[--(self)->size])
/// Assign the contents of one array to another, reallocating if necessary.
#define array_assign(self, other) \
_array__assign((Array *)(self), (const Array *)(other), \
array_elem_size(self))
/// Swap one array with another
#define array_swap(self, other) _array__swap((Array *)(self), (Array *)(other))
/// Get the size of the array contents
#define array_elem_size(self) (sizeof *(self)->contents)
/// Search a sorted array for a given `needle` value, using the given `compare`
/// callback to determine the order.
///
/// If an existing element is found to be equal to `needle`, then the `index`
/// out-parameter is set to the existing value's index, and the `exists`
/// out-parameter is set to true. Otherwise, `index` is set to an index where
/// `needle` should be inserted in order to preserve the sorting, and `exists`
/// is set to false.
#define array_search_sorted_with(self, compare, needle, _index, _exists) \
_array__search_sorted(self, 0, compare, , needle, _index, _exists)
/// Search a sorted array for a given `needle` value, using integer comparisons
/// of a given struct field (specified with a leading dot) to determine the
/// order.
///
/// See also `array_search_sorted_with`.
#define array_search_sorted_by(self, field, needle, _index, _exists) \
_array__search_sorted(self, 0, _compare_int, field, needle, _index, _exists)
/// Insert a given `value` into a sorted array, using the given `compare`
/// callback to determine the order.
#define array_insert_sorted_with(self, compare, value) \
do \
{ \
unsigned _index, _exists; \
array_search_sorted_with(self, compare, &(value), &_index, &_exists); \
if (!_exists) \
array_insert(self, _index, value); \
} while (0)
/// Insert a given `value` into a sorted array, using integer comparisons of
/// a given struct field (specified with a leading dot) to determine the order.
///
/// See also `array_search_sorted_by`.
#define array_insert_sorted_by(self, field, value) \
do \
{ \
unsigned _index, _exists; \
array_search_sorted_by(self, field, (value)field, &_index, &_exists); \
if (!_exists) \
array_insert(self, _index, value); \
} while (0)
#endif // ARRAY_H

View file

@ -1,4 +1,5 @@
#include "./api.h"
#include "./structs.h"
uint32_t ts_node_end_byte(t_parse_node self);
t_parse_node ts_node_parent(t_parse_node self);
@ -146,14 +147,6 @@ void ts_range_array_get_changed_ranges(const t_parse_range *old_ranges,
}
}
typedef struct s_iterator
{
t_tree_cursor cursor;
const t_language *language;
unsigned visible_depth;
bool in_padding;
} t_iterator;
static t_iterator iterator_new(t_tree_cursor *cursor, const t_subtree *tree,
const t_language *language)
{
@ -387,13 +380,6 @@ static void iterator_advance(t_iterator *self)
}
}
typedef enum e_iterator_comparison
{
IteratorDiffers,
IteratorMayDiffer,
IteratorMatches,
} t_iterator_comparison;
static t_iterator_comparison iterator_compare(const t_iterator *old_iter,
const t_iterator *new_iter)
{
@ -919,9 +905,6 @@ uint32_t ascii_decode(const uint8_t *chunk, uint32_t size, int32_t *codepoint)
return (1);
}
typedef uint32_t (*UnicodeDecodeFunction)(const uint8_t *chunk, uint32_t size,
int32_t *codepoint);
// Decode the next unicode character in the current chunk of source code.
// This assumes that the lexer has already retrieved a chunk of source
// code that spans the current position.
@ -939,7 +922,7 @@ static void ts_lexer__get_lookahead(t_lexer *self)
}
const uint8_t *chunk = (const uint8_t *)self->chunk + position_in_chunk;
UnicodeDecodeFunction decode = ascii_decode;
t_unicode_decode_function decode = ascii_decode;
self->lookahead_size = decode(chunk, size, &self->data.lookahead);
@ -1326,16 +1309,6 @@ t_parse_range *ts_lexer_included_ranges(const t_lexer *self, uint32_t *count)
#undef LOG
typedef struct s_node_child_iterator
{
t_subtree parent;
const t_first_tree *tree;
t_length position;
uint32_t child_index;
uint32_t structural_child_index;
const t_symbol *alias_sequence;
} t_node_child_iterator;
// t_parse_node - constructors
t_parse_node ts_node_new(const t_first_tree *tree, const t_subtree *subtree,
@ -2269,61 +2242,6 @@ static const unsigned MAX_SUMMARY_DEPTH = 16;
static const unsigned MAX_COST_DIFFERENCE = 16 * ERROR_COST_PER_SKIPPED_TREE;
static const unsigned OP_COUNT_PER_TIMEOUT_CHECK = 100;
typedef struct s_token_cache
{
t_subtree token;
t_subtree last_external_token;
uint32_t byte_index;
} t_token_cache;
struct s_first_parser
{
t_lexer lexer;
t_stack *stack;
t_subtree_pool tree_pool;
const t_language *language;
t_reduce_action_set reduce_actions;
t_subtree finished_tree;
t_subtree_array trailing_extras;
t_subtree_array trailing_extras2;
t_subtree_array scratch_trees;
t_token_cache token_cache;
t_reusable_node reusable_node;
void *external_scanner_payload;
t_parser_clock end_clock;
t_parser_duration timeout_duration;
unsigned accept_count;
unsigned operation_count;
const volatile size_t *cancellation_flag;
t_subtree old_tree;
t_range_array included_range_differences;
unsigned included_range_difference_index;
bool has_scanner_error;
};
typedef struct s_error_status
{
unsigned cost;
unsigned node_count;
int dynamic_precedence;
bool is_in_error;
} t_error_status;
typedef enum e_error_comparaison
{
ErrorComparisonTakeLeft,
ErrorComparisonPreferLeft,
ErrorComparisonNone,
ErrorComparisonPreferRight,
ErrorComparisonTakeRight,
} t_error_comparaison;
typedef struct s_string_input
{
const char *string;
uint32_t length;
} t_string_input;
// StringInput
static const char *ts_string_input_read(void *_self, uint32_t byte,
@ -4380,329 +4298,6 @@ t_first_tree *ts_parser_parse_string_encoding(t_first_parser *self,
});
}
/*
* t_stream - A sequence of unicode characters derived from a UTF8 string.
* This struct is used in parsing queries from S-expressions.
*/
typedef struct s_stream
{
const char *input;
const char *start;
const char *end;
int32_t next;
uint8_t next_size;
} t_stream;
/*
* t_query_step - A step in the process of matching a query. Each node within
* a query S-expression corresponds to one of these steps. An entire pattern
* is represented as a sequence of these steps. The basic properties of a
* node are represented by these fields:
* - `symbol` - The grammar symbol to match. A zero value represents the
* wildcard symbol, '_'.
* - `field` - The field name to match. A zero value means that a field name
* was not specified.
* - `capture_ids` - An array of integers representing the names of captures
* associated with this node in the pattern, terminated by a `NONE` value.
* - `depth` - The depth where this node occurs in the pattern. The root node
* of the pattern has depth zero.
* - `negated_field_list_id` - An id representing a set of fields that must
* not be present on a node matching this step.
*
* Steps have some additional fields in order to handle the `.` (or "anchor")
* operator, which forbids additional child nodes:
* - `is_immediate` - Indicates that the node matching this step cannot be
* preceded by other sibling nodes that weren't specified in the pattern.
* - `is_last_child` - Indicates that the node matching this step cannot have
* any subsequent named siblings.
*
* For simple patterns, steps are matched in sequential order. But in order to
* handle alternative/repeated/optional sub-patterns, query steps are not always
* structured as a linear sequence; they sometimes need to split and merge. This
* is done using the following fields:
* - `alternative_index` - The index of a different query step that serves as
* an alternative to this step. A `NONE` value represents no alternative.
* When a query state reaches a step with an alternative index, the state
* is duplicated, with one copy remaining at the original step, and one copy
* moving to the alternative step. The alternative may have its own
* alternative step, so this splitting is an iterative process.
* - `is_dead_end` - Indicates that this state cannot be passed directly, and
* exists only in order to redirect to an alternative index, with no
* splitting.
* - `is_pass_through` - Indicates that state has no matching logic of its own,
* and exists only to split a state. One copy of the state advances
* immediately to the next step, and one moves to the alternative step.
* - `alternative_is_immediate` - Indicates that this step's alternative step
* should be treated as if `is_immediate` is true.
*
* Steps also store some derived state that summarizes how they relate to other
* steps within the same pattern. This is used to optimize the matching process:
* - `contains_captures` - Indicates that this step or one of its child steps
* has a non-empty `capture_ids` list.
* - `parent_pattern_guaranteed` - Indicates that if this step is reached, then
* it and all of its subsequent sibling steps within the same parent pattern
* are guaranteed to match.
* - `root_pattern_guaranteed` - Similar to `parent_pattern_guaranteed`, but
* for the entire top-level pattern. When iterating through a query's
* captures using `ts_query_cursor_next_capture`, this field is used to
* detect that a capture can safely be returned from a match that has not
* even completed yet.
*/
typedef struct s_query_step
{
t_symbol symbol;
t_symbol supertype_symbol;
t_field_id field;
uint16_t capture_ids[MAX_STEP_CAPTURE_COUNT];
uint16_t depth;
uint16_t alternative_index;
uint16_t negated_field_list_id;
bool is_named : 1;
bool is_immediate : 1;
bool is_last_child : 1;
bool is_pass_through : 1;
bool is_dead_end : 1;
bool alternative_is_immediate : 1;
bool contains_captures : 1;
bool root_pattern_guaranteed : 1;
bool parent_pattern_guaranteed : 1;
} t_query_step;
/*
* t_slice - A slice of an external array. Within a query, capture names,
* literal string values, and predicate step information are stored in three
* contiguous arrays. Individual captures, string values, and predicates are
* represented as slices of these three arrays.
*/
typedef struct s_slice
{
uint32_t offset;
uint32_t length;
} t_slice;
/*
* t_symbol_table - a two-way mapping of strings to ids.
*/
typedef struct s_symbol_table
{
Array(char) characters;
Array(t_slice) slices;
} t_symbol_table;
/**
* CaptureQuantififers - a data structure holding the quantifiers of pattern
* captures.
*/
typedef Array(uint8_t) t_capture_quantifiers;
/*
* t_pattern_entry - Information about the starting point for matching a
* particular pattern. These entries are stored in a 'pattern map' - a sorted
* array that makes it possible to efficiently lookup patterns based on the
* symbol for their first step. The entry consists of the following fields:
* - `pattern_index` - the index of the pattern within the query
* - `step_index` - the index of the pattern's first step in the shared `steps`
* array
* - `is_rooted` - whether or not the pattern has a single root node. This
* property affects decisions about whether or not to start the pattern for
* nodes outside of a QueryCursor's range restriction.
*/
typedef struct s_pattern_entry
{
uint16_t step_index;
uint16_t pattern_index;
bool is_rooted;
} t_pattern_entry;
typedef struct s_query_pattern
{
t_slice steps;
t_slice predicate_steps;
uint32_t start_byte;
bool is_non_local;
} t_query_pattern;
typedef struct s_step_offset
{
uint32_t byte_offset;
uint16_t step_index;
} t_step_offset;
/*
* t_query_state - The state of an in-progress match of a particular pattern
* in a query. While executing, a `t_query_cursor` must keep track of a number
* of possible in-progress matches. Each of those possible matches is
* represented as one of these states. Fields:
* - `id` - A numeric id that is exposed to the public API. This allows the
* caller to remove a given match, preventing any more of its captures
* from being returned.
* - `start_depth` - The depth in the tree where the first step of the state's
* pattern was matched.
* - `pattern_index` - The pattern that the state is matching.
* - `consumed_capture_count` - The number of captures from this match that
* have already been returned.
* - `capture_list_id` - A numeric id that can be used to retrieve the state's
* list of captures from the `t_capture_list_pool`.
* - `seeking_immediate_match` - A flag that indicates that the state's next
* step must be matched by the very next sibling. This is used when
* processing repetitions.
* - `has_in_progress_alternatives` - A flag that indicates that there is are
* other states that have the same captures as this state, but are at
* different steps in their pattern. This means that in order to obey the
* 'longest-match' rule, this state should not be returned as a match until
* it is clear that there can be no other alternative match with more
* captures.
*/
typedef struct s_query_state
{
uint32_t id;
uint32_t capture_list_id;
uint16_t start_depth;
uint16_t step_index;
uint16_t pattern_index;
uint16_t consumed_capture_count : 12;
bool seeking_immediate_match : 1;
bool has_in_progress_alternatives : 1;
bool dead : 1;
bool needs_parent : 1;
} t_query_state;
typedef Array(t_query_capture) t_capture_list;
/*
* t_capture_list_pool - A collection of *lists* of captures. Each query state
* needs to maintain its own list of captures. To avoid repeated allocations,
* this struct maintains a fixed set of capture lists, and keeps track of which
* ones are currently in use by a query state.
*/
typedef struct s_capture_list_pool
{
Array(t_capture_list) list;
t_capture_list empty_list;
// The maximum number of capture lists that we are allowed to allocate. We
// never allow `list` to allocate more entries than this, dropping pending
// matches if needed to stay under the limit.
uint32_t max_capture_list_count;
// The number of capture lists allocated in `list` that are not currently in
// use. We reuse those existing-but-unused capture lists before trying to
// allocate any new ones. We use an invalid value (UINT32_MAX) for a capture
// list's length to indicate that it's not in use.
uint32_t free_capture_list_count;
} t_capture_list_pool;
/*
* t_analysis_state - The state needed for walking the parse table when
* analyzing a query pattern, to determine at which steps the pattern might fail
* to match.
*/
typedef struct s_analysis_state_entry
{
t_state_id parse_state;
t_symbol parent_symbol;
uint16_t child_index;
t_field_id field_id : 15;
bool done : 1;
} t_analysis_state_entry;
typedef struct s_analysis_state
{
t_analysis_state_entry stack[MAX_ANALYSIS_STATE_DEPTH];
uint16_t depth;
uint16_t step_index;
t_symbol root_symbol;
} t_analysis_state;
typedef Array(t_analysis_state *) t_analysis_state_set;
typedef struct s_query_analysis
{
t_analysis_state_set states;
t_analysis_state_set next_states;
t_analysis_state_set deeper_states;
t_analysis_state_set state_pool;
Array(uint16_t) final_step_indices;
Array(t_symbol) finished_parent_symbols;
bool did_abort;
} t_query_analysis;
/*
* t_analysis_subgraph - A subset of the states in the parse table that are used
* in constructing nodes with a certain symbol. Each state is accompanied by
* some information about the possible node that could be produced in
* downstream states.
*/
typedef struct s_analysis_subgraph_node
{
t_state_id state;
uint16_t production_id;
uint8_t child_index : 7;
bool done : 1;
} t_analysis_subgraph_node;
typedef struct s_analysis_subgraph
{
t_symbol symbol;
Array(t_state_id) start_states;
Array(t_analysis_subgraph_node) nodes;
} t_analysis_subgraph;
typedef Array(t_analysis_subgraph) t_analysis_subgraph_array;
/*
* t_state_predecessor_map - A map that stores the predecessors of each parse
* state. This is used during query analysis to determine which parse states can
* lead to which reduce actions.
*/
typedef struct s_state_predecessor_map
{
t_state_id *contents;
} t_state_predecessor_map;
/*
* t_parse_query - A tree query, compiled from a string of S-expressions. The
* query itself is immutable. The mutable state used in the process of executing
* the query is stored in a `t_query_cursor`.
*/
struct s_parse_query
{
t_symbol_table captures;
t_symbol_table predicate_values;
Array(t_capture_quantifiers) capture_quantifiers;
Array(t_query_step) steps;
Array(t_pattern_entry) pattern_map;
Array(t_query_predicate_step) predicate_steps;
Array(t_query_pattern) patterns;
Array(t_step_offset) step_offsets;
Array(t_field_id) negated_fields;
Array(char) string_buffer;
Array(t_symbol) repeat_symbols_with_rootless_patterns;
const t_language *language;
uint16_t wildcard_root_pattern_count;
};
/*
* t_query_cursor - A stateful struct used to execute a query on a tree.
*/
struct s_query_cursor
{
const t_parse_query *query;
t_tree_cursor cursor;
Array(t_query_state) states;
Array(t_query_state) finished_states;
t_capture_list_pool capture_list_pool;
uint32_t depth;
uint32_t max_start_depth;
uint32_t start_byte;
uint32_t end_byte;
t_point start_point;
t_point end_point;
uint32_t next_state_id;
bool on_visible_node;
bool ascending;
bool halted;
bool did_exceed_match_limit;
};
static const t_query_error PARENT_DONE = -1;
static const uint16_t PATTERN_DONE_MARKER = UINT16_MAX;
static const uint16_t NONE = UINT16_MAX;
@ -8991,74 +8586,6 @@ void ts_query_cursor_set_max_start_depth(t_query_cursor *self,
#undef LOG
typedef struct s_stack_node t_stack_node;
typedef struct s_stack_link
{
t_stack_node *node;
t_subtree subtree;
bool is_pending;
} t_stack_link;
struct s_stack_node
{
t_state_id state;
t_length position;
t_stack_link links[MAX_LINK_COUNT];
short unsigned int link_count;
uint32_t ref_count;
unsigned error_cost;
unsigned node_count;
int dynamic_precedence;
};
typedef struct s_stack_iterator
{
t_stack_node *node;
t_subtree_array subtrees;
uint32_t subtree_count;
bool is_pending;
} t_stack_iterator;
typedef Array(t_stack_node *) t_stack_node_array;
typedef enum e_stack_status
{
StackStatusActive,
StackStatusPaused,
StackStatusHalted,
} t_stack_status;
typedef struct s_stack_head
{
t_stack_node *node;
t_stack_summary *summary;
unsigned node_count_at_last_error;
t_subtree last_external_token;
t_subtree lookahead_when_paused;
t_stack_status status;
} t_stack_head;
struct s_stack
{
Array(t_stack_head) heads;
t_stack_slice_array slices;
Array(t_stack_iterator) iterators;
t_stack_node_array node_pool;
t_stack_node *base_node;
t_subtree_pool *subtree_pool;
};
typedef unsigned t_stack_action;
enum e_stack_action
{
StackActionNone,
StackActionStop = 1,
StackActionPop = 2,
};
typedef t_stack_action (*t_stack_callback)(void *, const t_stack_iterator *);
static void stack_node_retain(t_stack_node *self)
{
if (!self)
@ -9663,12 +9190,6 @@ t_stack_slice_array ts_stack_pop_all(t_stack *self, t_stack_version version)
return stack__iter(self, version, pop_all_callback, NULL, 0);
}
typedef struct s_summarize_stack_session
{
t_stack_summary *summary;
unsigned max_depth;
} t_summarize_stack_session;
static inline t_stack_action summarize_stack_callback(
void *payload, const t_stack_iterator *iterator)
{
@ -9894,13 +9415,6 @@ bool ts_stack_print_dot_graph(t_stack *self, const t_language *language,
return (false);
}
typedef struct s_edit
{
t_length start;
t_length old_end;
t_length new_end;
} t_edit;
// t_external_scanner_state
void ts_external_scanner_state_init(t_external_scanner_state *self,
@ -10659,11 +10173,6 @@ static inline void ts_subtree_set_has_changes(t_mutable_subtree *self)
t_subtree ts_subtree_edit(t_subtree self, const t_input_edit *input_edit,
t_subtree_pool *pool)
{
typedef struct s_edit_entry
{
t_subtree *tree;
t_edit edit;
} t_edit_entry;
Array(t_edit_entry) stack = array_new();
array_push(
@ -11095,17 +10604,6 @@ void ts_tree_print_dot_graph(const t_first_tree *self, int file_descriptor)
#endif
typedef struct s_cursor_child_iterator
{
t_subtree parent;
const t_first_tree *tree;
t_length position;
uint32_t child_index;
uint32_t structural_child_index;
uint32_t descendant_index;
const t_symbol *alias_sequence;
} t_cursor_child_iterator;
// t_cursor_child_iterator
static inline bool ts_tree_cursor_is_entry_visible(const t_tree_cursor *self,

545
parser/src/structs.h Normal file
View file

@ -0,0 +1,545 @@
#ifndef STRUCTS_H
#define STRUCTS_H
#include "./api.h"
typedef unsigned t_stack_action;
typedef struct s_edit t_edit;
typedef struct s_edit_entry t_edit_entry;
typedef struct s_cursor_child_iterator t_cursor_child_iterator;
typedef struct s_summarize_stack_session t_summarize_stack_session;
typedef struct s_stack_node t_stack_node;
typedef struct s_stack_link t_stack_link;
typedef struct s_stack_head t_stack_head;
typedef struct s_stack_iterator t_stack_iterator;
typedef struct s_stack t_stack;
typedef struct s_stack_head t_stack_head;
typedef struct s_stack_iterator t_stack_iterator;
typedef struct s_query_cursor t_query_cursor;
typedef struct s_parse_query t_parse_query;
typedef struct s_state_predecessor_map t_state_predecessor_map;
typedef struct s_analysis_subgraph t_analysis_subgraph;
typedef struct s_analysis_subgraph_node t_analysis_subgraph_node;
typedef struct s_query_analysis t_query_analysis;
typedef struct s_analysis_state t_analysis_state;
typedef struct s_analysis_state_entry t_analysis_state_entry;
typedef struct s_capture_list_pool t_capture_list_pool;
typedef struct s_query_state t_query_state;
typedef struct s_step_offset t_step_offset;
typedef struct s_query_pattern t_query_pattern;
typedef struct s_pattern_entry t_pattern_entry;
typedef struct s_symbol_table t_symbol_table;
typedef struct s_slice t_slice;
typedef struct s_query_step t_query_step;
typedef struct s_stream t_stream;
typedef struct s_string_input t_string_input;
typedef struct s_error_status t_error_status;
typedef struct s_first_parser t_first_parser;
typedef struct s_token_cache t_token_cache;
typedef struct s_node_child_iterator t_node_child_iterator;
typedef struct s_iterator t_iterator;
typedef struct s_parse_query t_parse_query;
typedef t_stack_action (*t_stack_callback)(void *, const t_stack_iterator *);
typedef Array(t_stack_node *) t_stack_node_array;
typedef Array(t_analysis_subgraph) t_analysis_subgraph_array;
typedef Array(t_analysis_state *) t_analysis_state_set;
typedef Array(uint8_t) t_capture_quantifiers;
typedef uint32_t (*t_unicode_decode_function)(const uint8_t *chunk,
uint32_t size,
int32_t *codepoint);
typedef Array(t_query_capture) t_capture_list;
typedef enum e_stack_status t_stack_status;
typedef enum e_error_comparaison t_error_comparaison;
typedef enum e_iterator_comparison t_iterator_comparison;
struct s_iterator
{
t_tree_cursor cursor;
const t_language *language;
unsigned visible_depth;
bool in_padding;
};
enum e_iterator_comparison
{
IteratorDiffers,
IteratorMayDiffer,
IteratorMatches,
};
struct s_node_child_iterator
{
t_subtree parent;
const t_first_tree *tree;
t_length position;
uint32_t child_index;
uint32_t structural_child_index;
const t_symbol *alias_sequence;
};
struct s_token_cache
{
t_subtree token;
t_subtree last_external_token;
uint32_t byte_index;
};
struct s_first_parser
{
t_lexer lexer;
t_stack *stack;
t_subtree_pool tree_pool;
const t_language *language;
t_reduce_action_set reduce_actions;
t_subtree finished_tree;
t_subtree_array trailing_extras;
t_subtree_array trailing_extras2;
t_subtree_array scratch_trees;
t_token_cache token_cache;
t_reusable_node reusable_node;
void *external_scanner_payload;
t_parser_clock end_clock;
t_parser_duration timeout_duration;
unsigned accept_count;
unsigned operation_count;
const volatile size_t *cancellation_flag;
t_subtree old_tree;
t_range_array included_range_differences;
unsigned included_range_difference_index;
bool has_scanner_error;
};
struct s_error_status
{
unsigned cost;
unsigned node_count;
int dynamic_precedence;
bool is_in_error;
};
enum e_error_comparaison
{
ErrorComparisonTakeLeft,
ErrorComparisonPreferLeft,
ErrorComparisonNone,
ErrorComparisonPreferRight,
ErrorComparisonTakeRight,
};
struct s_string_input
{
const char *string;
uint32_t length;
};
/*
* t_stream - A sequence of unicode characters derived from a UTF8 string.
* This struct is used in parsing queries from S-expressions.
*/
struct s_stream
{
const char *input;
const char *start;
const char *end;
int32_t next;
uint8_t next_size;
};
/*
* t_query_step - A step in the process of matching a query. Each node within
* a query S-expression corresponds to one of these steps. An entire pattern
* is represented as a sequence of these steps. The basic properties of a
* node are represented by these fields:
* - `symbol` - The grammar symbol to match. A zero value represents the
* wildcard symbol, '_'.
* - `field` - The field name to match. A zero value means that a field name
* was not specified.
* - `capture_ids` - An array of integers representing the names of captures
* associated with this node in the pattern, terminated by a `NONE` value.
* - `depth` - The depth where this node occurs in the pattern. The root node
* of the pattern has depth zero.
* - `negated_field_list_id` - An id representing a set of fields that must
* not be present on a node matching this step.
*
* Steps have some additional fields in order to handle the `.` (or "anchor")
* operator, which forbids additional child nodes:
* - `is_immediate` - Indicates that the node matching this step cannot be
* preceded by other sibling nodes that weren't specified in the pattern.
* - `is_last_child` - Indicates that the node matching this step cannot have
* any subsequent named siblings.
*
* For simple patterns, steps are matched in sequential order. But in order to
* handle alternative/repeated/optional sub-patterns, query steps are not always
* structured as a linear sequence; they sometimes need to split and merge. This
* is done using the following fields:
* - `alternative_index` - The index of a different query step that serves as
* an alternative to this step. A `NONE` value represents no alternative.
* When a query state reaches a step with an alternative index, the state
* is duplicated, with one copy remaining at the original step, and one copy
* moving to the alternative step. The alternative may have its own
* alternative step, so this splitting is an iterative process.
* - `is_dead_end` - Indicates that this state cannot be passed directly, and
* exists only in order to redirect to an alternative index, with no
* splitting.
* - `is_pass_through` - Indicates that state has no matching logic of its own,
* and exists only to split a state. One copy of the state advances
* immediately to the next step, and one moves to the alternative step.
* - `alternative_is_immediate` - Indicates that this step's alternative step
* should be treated as if `is_immediate` is true.
*
* Steps also store some derived state that summarizes how they relate to other
* steps within the same pattern. This is used to optimize the matching process:
* - `contains_captures` - Indicates that this step or one of its child steps
* has a non-empty `capture_ids` list.
* - `parent_pattern_guaranteed` - Indicates that if this step is reached, then
* it and all of its subsequent sibling steps within the same parent pattern
* are guaranteed to match.
* - `root_pattern_guaranteed` - Similar to `parent_pattern_guaranteed`, but
* for the entire top-level pattern. When iterating through a query's
* captures using `ts_query_cursor_next_capture`, this field is used to
* detect that a capture can safely be returned from a match that has not
* even completed yet.
*/
struct s_query_step
{
t_symbol symbol;
t_symbol supertype_symbol;
t_field_id field;
uint16_t capture_ids[MAX_STEP_CAPTURE_COUNT];
uint16_t depth;
uint16_t alternative_index;
uint16_t negated_field_list_id;
bool is_named : 1;
bool is_immediate : 1;
bool is_last_child : 1;
bool is_pass_through : 1;
bool is_dead_end : 1;
bool alternative_is_immediate : 1;
bool contains_captures : 1;
bool root_pattern_guaranteed : 1;
bool parent_pattern_guaranteed : 1;
};
/*
* t_slice - A slice of an external array. Within a query, capture names,
* literal string values, and predicate step information are stored in three
* contiguous arrays. Individual captures, string values, and predicates are
* represented as slices of these three arrays.
*/
struct s_slice
{
uint32_t offset;
uint32_t length;
};
/*
* t_symbol_table - a two-way mapping of strings to ids.
*/
struct s_symbol_table
{
Array(char) characters;
Array(t_slice) slices;
};
/**
* CaptureQuantififers - a data structure holding the quantifiers of pattern
* captures.
*/
/*
* t_pattern_entry - Information about the starting point for matching a
* particular pattern. These entries are stored in a 'pattern map' - a sorted
* array that makes it possible to efficiently lookup patterns based on the
* symbol for their first step. The entry consists of the following fields:
* - `pattern_index` - the index of the pattern within the query
* - `step_index` - the index of the pattern's first step in the shared `steps`
* array
* - `is_rooted` - whether or not the pattern has a single root node. This
* property affects decisions about whether or not to start the pattern for
* nodes outside of a QueryCursor's range restriction.
*/
struct s_pattern_entry
{
uint16_t step_index;
uint16_t pattern_index;
bool is_rooted;
};
struct s_query_pattern
{
t_slice steps;
t_slice predicate_steps;
uint32_t start_byte;
bool is_non_local;
};
struct s_step_offset
{
uint32_t byte_offset;
uint16_t step_index;
};
/*
* t_query_state - The state of an in-progress match of a particular pattern
* in a query. While executing, a `t_query_cursor` must keep track of a number
* of possible in-progress matches. Each of those possible matches is
* represented as one of these states. Fields:
* - `id` - A numeric id that is exposed to the public API. This allows the
* caller to remove a given match, preventing any more of its captures
* from being returned.
* - `start_depth` - The depth in the tree where the first step of the state's
* pattern was matched.
* - `pattern_index` - The pattern that the state is matching.
* - `consumed_capture_count` - The number of captures from this match that
* have already been returned.
* - `capture_list_id` - A numeric id that can be used to retrieve the state's
* list of captures from the `t_capture_list_pool`.
* - `seeking_immediate_match` - A flag that indicates that the state's next
* step must be matched by the very next sibling. This is used when
* processing repetitions.
* - `has_in_progress_alternatives` - A flag that indicates that there is are
* other states that have the same captures as this state, but are at
* different steps in their pattern. This means that in order to obey the
* 'longest-match' rule, this state should not be returned as a match until
* it is clear that there can be no other alternative match with more
* captures.
*/
struct s_query_state
{
uint32_t id;
uint32_t capture_list_id;
uint16_t start_depth;
uint16_t step_index;
uint16_t pattern_index;
uint16_t consumed_capture_count : 12;
bool seeking_immediate_match : 1;
bool has_in_progress_alternatives : 1;
bool dead : 1;
bool needs_parent : 1;
};
/*
* t_capture_list_pool - A collection of *lists* of captures. Each query state
* needs to maintain its own list of captures. To avoid repeated allocations,
* this struct maintains a fixed set of capture lists, and keeps track of which
* ones are currently in use by a query state.
*/
struct s_capture_list_pool
{
Array(t_capture_list) list;
t_capture_list empty_list;
// The maximum number of capture lists that we are allowed to allocate. We
// never allow `list` to allocate more entries than this, dropping pending
// matches if needed to stay under the limit.
uint32_t max_capture_list_count;
// The number of capture lists allocated in `list` that are not currently in
// use. We reuse those existing-but-unused capture lists before trying to
// allocate any new ones. We use an invalid value (UINT32_MAX) for a capture
// list's length to indicate that it's not in use.
uint32_t free_capture_list_count;
};
/*
* t_analysis_state - The state needed for walking the parse table when
* analyzing a query pattern, to determine at which steps the pattern might fail
* to match.
*/
struct s_analysis_state_entry
{
t_state_id parse_state;
t_symbol parent_symbol;
uint16_t child_index;
t_field_id field_id : 15;
bool done : 1;
};
struct s_analysis_state
{
t_analysis_state_entry stack[MAX_ANALYSIS_STATE_DEPTH];
uint16_t depth;
uint16_t step_index;
t_symbol root_symbol;
};
struct s_query_analysis
{
t_analysis_state_set states;
t_analysis_state_set next_states;
t_analysis_state_set deeper_states;
t_analysis_state_set state_pool;
Array(uint16_t) final_step_indices;
Array(t_symbol) finished_parent_symbols;
bool did_abort;
};
/*
* t_analysis_subgraph - A subset of the states in the parse table that are used
* in constructing nodes with a certain symbol. Each state is accompanied by
* some information about the possible node that could be produced in
* downstream states.
*/
struct s_analysis_subgraph_node
{
t_state_id state;
uint16_t production_id;
uint8_t child_index : 7;
bool done : 1;
};
struct s_analysis_subgraph
{
t_symbol symbol;
Array(t_state_id) start_states;
Array(t_analysis_subgraph_node) nodes;
};
/*
* t_state_predecessor_map - A map that stores the predecessors of each parse
* state. This is used during query analysis to determine which parse states can
* lead to which reduce actions.
*/
struct s_state_predecessor_map
{
t_state_id *contents;
};
/*
* t_parse_query - A tree query, compiled from a string of S-expressions. The
* query itself is immutable. The mutable state used in the process of executing
* the query is stored in a `t_query_cursor`.
*/
struct s_parse_query
{
t_symbol_table captures;
t_symbol_table predicate_values;
Array(t_capture_quantifiers) capture_quantifiers;
Array(t_query_step) steps;
Array(t_pattern_entry) pattern_map;
Array(t_query_predicate_step) predicate_steps;
Array(t_query_pattern) patterns;
Array(t_step_offset) step_offsets;
Array(t_field_id) negated_fields;
Array(char) string_buffer;
Array(t_symbol) repeat_symbols_with_rootless_patterns;
const t_language *language;
uint16_t wildcard_root_pattern_count;
};
/*
* t_query_cursor - A stateful struct used to execute a query on a tree.
*/
struct s_query_cursor
{
const t_parse_query *query;
t_tree_cursor cursor;
Array(t_query_state) states;
Array(t_query_state) finished_states;
t_capture_list_pool capture_list_pool;
uint32_t depth;
uint32_t max_start_depth;
uint32_t start_byte;
uint32_t end_byte;
t_point start_point;
t_point end_point;
uint32_t next_state_id;
bool on_visible_node;
bool ascending;
bool halted;
bool did_exceed_match_limit;
};
struct s_stack_link
{
t_stack_node *node;
t_subtree subtree;
bool is_pending;
};
struct s_stack_node
{
t_state_id state;
t_length position;
t_stack_link links[MAX_LINK_COUNT];
short unsigned int link_count;
uint32_t ref_count;
unsigned error_cost;
unsigned node_count;
int dynamic_precedence;
};
struct s_stack_iterator
{
t_stack_node *node;
t_subtree_array subtrees;
uint32_t subtree_count;
bool is_pending;
};
enum e_stack_status
{
StackStatusActive,
StackStatusPaused,
StackStatusHalted,
};
struct s_stack_head
{
t_stack_node *node;
t_stack_summary *summary;
unsigned node_count_at_last_error;
t_subtree last_external_token;
t_subtree lookahead_when_paused;
t_stack_status status;
};
struct s_stack
{
Array(t_stack_head) heads;
t_stack_slice_array slices;
Array(t_stack_iterator) iterators;
t_stack_node_array node_pool;
t_stack_node *base_node;
t_subtree_pool *subtree_pool;
};
enum e_stack_action
{
StackActionNone,
StackActionStop = 1,
StackActionPop = 2,
};
struct s_summarize_stack_session
{
t_stack_summary *summary;
unsigned max_depth;
};
struct s_edit
{
t_length start;
t_length old_end;
t_length new_end;
};
struct s_edit_entry
{
t_subtree *tree;
t_edit edit;
};
struct s_cursor_child_iterator
{
t_subtree parent;
const t_first_tree *tree;
t_length position;
uint32_t child_index;
uint32_t structural_child_index;
uint32_t descendant_index;
const t_symbol *alias_sequence;
};
#endif // STRUCTS_H