#ifndef TREE_SITTER_API_H_ #define TREE_SITTER_API_H_ #include #include #include #include "me/vec/vec_parser_range.h" #include "parser/types/types_language.h" #include "parser/types/types_state_id.h" /****************************/ /* Section - ABI Versioning */ /****************************/ /** * The latest ABI version that is supported by the current version of the * library. When Languages are generated by the Tree-sitter CLI, they are * assigned an ABI version number that corresponds to the current CLI version. * The Tree-sitter library is generally backwards-compatible with languages * generated using older CLI versions, but is not forwards-compatible. */ #define TREE_SITTER_LANGUAGE_VERSION 14 /** * The earliest ABI version that is supported by the current version of the * library. */ #define TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION 13 /*******************/ /* Section - Types */ /*******************/ typedef struct s_parser t_parser; typedef struct t_parse_tree t_parse_tree; typedef struct t_query t_query; typedef struct t_query_cursor t_query_cursor; typedef struct TSLookaheadIterator TSLookaheadIterator; typedef enum TSInputEncoding { TSInputEncodingUTF8, TSInputEncodingUTF16, } TSInputEncoding; typedef enum t_symbol_type { SymbolTypeRegular, SymbolTypeAnonymous, SymbolTypeAuxiliary, } t_symbol_type; typedef struct TSInput { void *payload; const char *(*read)(void *payload, t_u32 byte_index, t_point position, t_u32 *bytes_read); TSInputEncoding encoding; } TSInput; typedef enum TSLogType { TSLogTypeParse, TSLogTypeLex, } TSLogType; typedef struct TSLogger { void *payload; void (*log)(void *payload, TSLogType log_type, const char *buffer); } TSLogger; typedef struct t_input_edit { t_u32 start_byte; t_u32 old_end_byte; t_u32 new_end_byte; t_point start_point; t_point old_end_point; t_point new_end_point; } t_input_edit; typedef struct t_parse_node { t_u32 context[4]; const void *id; const t_parse_tree *tree; } t_parse_node; typedef struct t_parse_tree_cursor { const void *tree; const void *id; t_u32 context[3]; } t_parse_tree_cursor; typedef struct t_queryCapture { t_parse_node node; t_u32 index; } t_queryCapture; typedef enum TSQuantifier { TSQuantifierZero = 0, // must match the array initialization value TSQuantifierZeroOrOne, TSQuantifierZeroOrMore, TSQuantifierOne, TSQuantifierOneOrMore, } TSQuantifier; typedef struct t_query_match { t_u32 id; t_u16 pattern_index; t_u16 capture_count; const t_queryCapture *captures; } t_query_match; typedef enum t_queryPredicateStepType { t_queryPredicateStepTypeDone, t_queryPredicateStepTypeCapture, t_queryPredicateStepTypeString, } t_queryPredicateStepType; typedef struct t_queryPredicateStep { t_queryPredicateStepType type; t_u32 value_id; } t_queryPredicateStep; typedef enum t_queryError { t_queryErrorNone = 0, t_queryErrorSyntax, t_queryErrorNodeType, t_queryErrorField, t_queryErrorCapture, t_queryErrorStructure, t_queryErrorLanguage, } t_queryError; /********************/ /* Section - Parser */ /********************/ /** * Create a new parser. */ t_parser *ts_parser_new(void); /** * Delete the parser, freeing all of the memory that it used. */ void ts_parser_delete(t_parser *self); /** * Get the parser's current language. */ const t_language *ts_parser_language(const t_parser *self); /** * Set the language that the parser should use for parsing. * * Returns a boolean indicating whether or not the language was successfully * assigned. True means assignment succeeded. False means there was a * version mismatch: the language was generated with an incompatible version * of the Tree-sitter CLI. Check the language's version using * [`ts_language_version`] and compare it to this library's * [`TREE_SITTER_LANGUAGE_VERSION`] and * [`TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION`] constants. */ bool ts_parser_set_language(t_parser *self, const t_language *language); /** * Set the ranges of text that the parser should include when parsing. * * By default, the parser will always include entire documents. This * function allows you to parse only a *portion* of a document but still * return a syntax tree whose ranges match up with the document as a whole. * You can also pass multiple disjoint ranges. * * The second and third parameters specify the location and length of an * array of ranges. The parser does *not* take ownership of these ranges; it * copies the data, so it doesn't matter how these ranges are allocated. * * If `count` is zero, then the entire document will be parsed. Otherwise, * the given ranges must be ordered from earliest to latest in the document, * and they must not overlap. That is, the following must hold for all: * * `i < count - 1`: `ranges[i].end_byte <= ranges[i + 1].start_byte` * * If this requirement is not satisfied, the operation will fail, the ranges * will not be assigned, and this function will return `false`. On success, * this function returns `true` */ bool ts_parser_set_included_ranges(t_parser *self, const t_parser_range *ranges, t_u32 count); /** * Get the ranges of text that the parser will include when parsing. * * The returned pointer is owned by the parser. The caller should not free * it or write to it. The length of the array will be written to the given * `count` pointer. */ const t_parser_range *ts_parser_included_ranges(const t_parser *self, t_u32 *count); /** * Use the parser to parse some source code and create a syntax tree. * * If you are parsing this document for the first time, pass `NULL` for the * `old_tree` parameter. Otherwise, if you have already parsed an earlier * version of this document and the document has since been edited, pass the * previous syntax tree so that the unchanged parts of it can be reused. * This will save time and memory. For this to work correctly, you must have * already edited the old syntax tree using the [`ts_tree_edit`] function in a * way that exactly matches the source code changes. * * The [`TSInput`] parameter lets you specify how to read the text. It has the * following three fields: * 1. [`read`]: A function to retrieve a chunk of text at a given byte offset * and (row, column) position. The function should return a pointer to the * text and write its length to the [`bytes_read`] pointer. The parser does * not take ownership of this buffer; it just borrows it until it has * finished reading it. The function should write a zero value to the * [`bytes_read`] pointer to indicate the end of the document. * 2. [`payload`]: An arbitrary pointer that will be passed to each invocation * of the [`read`] function. * 3. [`encoding`]: An indication of how the text is encoded. Either * `TSInputEncodingUTF8` or `TSInputEncodingUTF16`. * * This function returns a syntax tree on success, and `NULL` on failure. There * are three possible reasons for failure: * 1. The parser does not have a language assigned. Check for this using the [`ts_parser_language`] function. * 2. Parsing was cancelled due to a timeout that was set by an earlier call to * the [`ts_parser_set_timeot_micros`] function. You can resume parsing from * where the parser left out by calling [`ts_parser_parse`] again with the * same arguments. Or you can start parsing from scratch by first calling * [`ts_parser_reset`]. * 3. Parsing was cancelled using a cancellation flag that was set by an * earlier call to [`ts_parser_set_cancellation_flag`]. You can resume parsing * from where the parser left out by calling [`ts_parser_parse`] again with * the same arguments. * * [`read`]: TSInput::read * [`payload`]: TSInput::payload * [`encoding`]: TSInput::encoding * [`bytes_read`]: TSInput::read */ t_parse_tree *ts_parser_parse(t_parser *self, const t_parse_tree *old_tree, TSInput input); /** * Use the parser to parse some source code stored in one contiguous buffer. * The first two parameters are the same as in the [`ts_parser_parse`] * function above. The second two parameters indicate the location of the * buffer and its length in bytes. */ t_parse_tree *ts_parser_parse_string(t_parser *self, const t_parse_tree *old_tree, const char *string, t_u32 length); /** * Use the parser to parse some source code stored in one contiguous buffer * with a given encoding. The first four parameters work the same as in the * [`ts_parser_parse_string`] method above. The final parameter indicates * whether the text is encoded as UTF8 or UTF16. */ t_parse_tree *ts_parser_parse_string_encoding(t_parser *self, const t_parse_tree *old_tree, const char *string, t_u32 length, TSInputEncoding encoding); /** * Instruct the parser to start the next parse from the beginning. * * If the parser previously failed because of a timeout or a cancellation, * then by default, it will resume where it left off on the next call to * [`ts_parser_parse`] or other parsing functions. If you don't want to * resume, and instead intend to use this parser to parse some other * document, you must call [`ts_parser_reset`] first. */ void ts_parser_reset(t_parser *self); /** * Set the maximum duration in microseconds that parsing should be allowed * to take before halting. * * If parsing takes longer than this, it will halt early, returning NULL. * See [`ts_parser_parse`] for more information. */ void ts_parser_set_timeot_micros(t_parser *self, t_u64 timeot_micros); /** * Get the duration in microseconds that parsing is allowed to take. */ t_u64 ts_parser_timeot_micros(const t_parser *self); /** * Set the parser's current cancellation flag pointer. * * If a non-null pointer is assigned, then the parser will periodically read * from this pointer during parsing. If it reads a non-zero value, it will * halt early, returning NULL. See [`ts_parser_parse`] for more information. */ void ts_parser_set_cancellation_flag(t_parser *self, const size_t *flag); /** * Get the parser's current cancellation flag pointer. */ const size_t *ts_parser_cancellation_flag(const t_parser *self); /** * Set the logger that a parser should use during parsing. * * The parser does not take ownership over the logger payload. If a logger * was previously assigned, the caller is responsible for releasing any * memory owned by the previous logger. */ void ts_parser_set_logger(t_parser *self, TSLogger logger); /** * Get the parser's current logger. */ TSLogger ts_parser_logger(const t_parser *self); /** * Set the file descriptor to which the parser should write debugging graphs * during parsing. The graphs are formatted in the DOT language. You may * want to pipe these graphs directly to a `dot(1)` process in order to * generate SVG output. You can turn off this logging by passing a negative * number. */ void ts_parser_print_dot_graphs(t_parser *self, int fd); /******************/ /* Section - Tree */ /******************/ /** * Create a shallow copy of the syntax tree. This is very fast. * * You need to copy a syntax tree in order to use it on more than one thread * at a time, as syntax trees are not thread safe. */ t_parse_tree *ts_tree_copy(const t_parse_tree *self); /** * Delete the syntax tree, freeing all of the memory that it used. */ void ts_tree_delete(t_parse_tree *self); /** * Get the root node of the syntax tree. */ t_parse_node ts_tree_root_node(const t_parse_tree *self); /** * Get the root node of the syntax tree, but with its position * shifted forward by the given offset. */ t_parse_node ts_tree_root_node_with_offset(const t_parse_tree *self, t_u32 offset_bytes, t_point offset_extent); /** * Get the language that was used to parse the syntax tree. */ const t_language *ts_tree_language(const t_parse_tree *self); /** * Get the array of included ranges that was used to parse the syntax tree. * * The returned pointer must be freed by the caller. */ t_parser_range *ts_tree_included_ranges(const t_parse_tree *self, t_u32 *length); /** * Edit the syntax tree to keep it in sync with source code that has been * edited. * * You must describe the edit both in terms of byte offsets and in terms of * (row, column) coordinates. */ void ts_tree_edit(t_parse_tree *self, const t_input_edit *edit); /** * Compare an old edited syntax tree to a new syntax tree representing the * same document, returning an array of ranges whose syntactic structure has * changed. * * For this to work correctly, the old syntax tree must have been edited * such that its ranges match up to the new tree. Generally, you'll want to * call this function right after calling one of the [`ts_parser_parse`] * functions. You need to pass the old tree that was passed to parse, as * well as the new tree that was returned from that function. * * The returned array is allocated using `malloc` and the caller is * responsible for freeing it using `free`. The length of the array will be * written to the given `length` pointer. */ t_parser_range *ts_tree_get_changed_ranges(const t_parse_tree *old_tree, const t_parse_tree *new_tree, t_u32 *length); /** * Write a DOT graph describing the syntax tree to the given file. */ void ts_tree_print_dot_graph(const t_parse_tree *self, int file_descriptor); /******************/ /* Section - Node */ /******************/ /** * Get the node's type as a null-terminated string. */ const char *ts_node_type(t_parse_node self); /** * Get the node's type as a numerical id. */ t_symbol ts_node_symbol(t_parse_node self); /** * Get the node's language. */ const t_language *ts_node_language(t_parse_node self); /** * Get the node's type as it appears in the grammar ignoring aliases as a * null-terminated string. */ const char *ts_node_grammar_type(t_parse_node self); /** * Get the node's type as a numerical id as it appears in the grammar * ignoring aliases. This should be used in [`ts_language_next_state`] * instead of * [`ts_node_symbol`]. */ t_symbol ts_node_grammar_symbol(t_parse_node self); /** * Get the node's start byte. */ t_u32 ts_node_start_byte(t_parse_node self); /** * Get the node's start position in terms of rows and columns. */ t_point ts_node_start_point(t_parse_node self); /** * Get the node's end byte. */ t_u32 ts_node_end_byte(t_parse_node self); /** * Get the node's end position in terms of rows and columns. */ t_point ts_node_end_point(t_parse_node self); /** * Get an S-expression representing the node as a string. * * This string is allocated with `malloc` and the caller is responsible for * freeing it using `free`. */ char *ts_node_string(t_parse_node self); /** * Check if the node is null. Functions like [`ts_node_child`] and * [`ts_node_next_sibling`] will return a null node to indicate that no such * node was found. */ bool ts_node_is_null(t_parse_node self); /** * Check if the node is *named*. Named nodes correspond to named rules in * the grammar, whereas *anonymous* nodes correspond to string literals in * the grammar. */ bool ts_node_is_named(t_parse_node self); /** * Check if the node is *missing*. Missing nodes are inserted by the parser * in order to recover from certain kinds of syntax errors. */ bool ts_node_is_missing(t_parse_node self); /** * Check if the node is *extra*. Extra nodes represent things like comments, * which are not required the grammar, but can appear anywhere. */ bool ts_node_is_extra(t_parse_node self); /** * Check if a syntax node has been edited. */ bool ts_node_has_changes(t_parse_node self); /** * Check if the node is a syntax error or contains any syntax errors. */ bool ts_node_has_error(t_parse_node self); /** * Check if the node is a syntax error. */ bool ts_node_is_error(t_parse_node self); /** * Get this node's parse state. */ t_state_id ts_node_parse_state(t_parse_node self); /** * Get the parse state after this node. */ t_state_id ts_node_next_parse_state(t_parse_node self); /** * Get the node's immediate parent. */ t_parse_node ts_node_parent(t_parse_node self); /** * Get the node's child at the given index, where zero represents the first * child. */ t_parse_node ts_node_child(t_parse_node self, t_u32 child_index); /** * Get the field name for node's child at the given index, where zero * represents the first child. Returns NULL, if no field is found. */ const char *ts_node_field_name_for_child(t_parse_node self, t_u32 child_index); /** * Get the node's number of children. */ t_u32 ts_node_child_count(t_parse_node self); /** * Get the node's *named* child at the given index. * * See also [`ts_node_is_named`]. */ t_parse_node ts_node_named_child(t_parse_node self, t_u32 child_index); /** * Get the node's number of *named* children. * * See also [`ts_node_is_named`]. */ t_u32 ts_node_named_child_count(t_parse_node self); /** * Get the node's child with the given field name. */ t_parse_node ts_node_child_by_field_name(t_parse_node self, const char *name, t_u32 name_length); /** * Get the node's child with the given numerical field id. * * You can convert a field name to an id using the * [`ts_language_field_id_for_name`] function. */ t_parse_node ts_node_child_by_field_id(t_parse_node self, t_field_id field_id); /** * Get the node's next / previous sibling. */ t_parse_node ts_node_next_sibling(t_parse_node self); t_parse_node ts_node_prev_sibling(t_parse_node self); /** * Get the node's next / previous *named* sibling. */ t_parse_node ts_node_next_named_sibling(t_parse_node self); t_parse_node ts_node_prev_named_sibling(t_parse_node self); /** * Get the node's first child that extends beyond the given byte offset. */ t_parse_node ts_node_first_child_for_byte(t_parse_node self, t_u32 byte); /** * Get the node's first named child that extends beyond the given byte * offset. */ t_parse_node ts_node_first_named_child_for_byte(t_parse_node self, t_u32 byte); /** * Get the node's number of descendants, including one for the node itself. */ t_u32 ts_node_descendant_count(t_parse_node self); /** * Get the smallest node within this node that spans the given range of * bytes or (row, column) positions. */ t_parse_node ts_node_descendant_for_byte_range(t_parse_node self, t_u32 start, t_u32 end); t_parse_node ts_node_descendant_for_point_range(t_parse_node self, t_point start, t_point end); /** * Get the smallest named node within this node that spans the given range * of bytes or (row, column) positions. */ t_parse_node ts_node_named_descendant_for_byte_range(t_parse_node self, t_u32 start, t_u32 end); t_parse_node ts_node_named_descendant_for_point_range(t_parse_node self, t_point start, t_point end); /** * Edit the node to keep it in-sync with source code that has been edited. * * This function is only rarely needed. When you edit a syntax tree with the * [`ts_tree_edit`] function, all of the nodes that you retrieve from the * tree afterward will already reflect the edit. You only need to use * [`ts_node_edit`] when you have a [`t_parse_node`] instance that you want to * keep and continue to use after an edit. */ void ts_node_edit(t_parse_node *self, const t_input_edit *edit); /** * Check if two nodes are identical. */ bool ts_node_eq(t_parse_node self, t_parse_node other); /************************/ /* Section - TreeCursor */ /************************/ /** * Create a new tree cursor starting from the given node. * * A tree cursor allows you to walk a syntax tree more efficiently than is * possible using the [`t_parse_node`] functions. It is a mutable object that is * always on a certain syntax node, and can be moved imperatively to * different nodes. */ t_parse_tree_cursor ts_tree_cursor_new(t_parse_node node); /** * Delete a tree cursor, freeing all of the memory that it used. */ void ts_tree_cursor_delete(t_parse_tree_cursor *self); /** * Re-initialize a tree cursor to start at a different node. */ void ts_tree_cursor_reset(t_parse_tree_cursor *self, t_parse_node node); /** * Re-initialize a tree cursor to the same position as another cursor. * * Unlike [`ts_tree_cursor_reset`], this will not lose parent information * and allows reusing already created cursors. */ void ts_tree_cursor_reset_to(t_parse_tree_cursor *dst, const t_parse_tree_cursor *src); /** * Get the tree cursor's current node. */ t_parse_node ts_tree_cursor_current_node(const t_parse_tree_cursor *self); /** * Get the field name of the tree cursor's current node. * * This returns `NULL` if the current node doesn't have a field. * See also [`ts_node_child_by_field_name`]. */ const char *ts_tree_cursor_current_field_name(const t_parse_tree_cursor *self); /** * Get the field id of the tree cursor's current node. * * This returns zero if the current node doesn't have a field. * See also [`ts_node_child_by_field_id`], * [`ts_language_field_id_for_name`]. */ t_field_id ts_tree_cursor_current_field_id(const t_parse_tree_cursor *self); /** * Move the cursor to the parent of its current node. * * This returns `true` if the cursor successfully moved, and returns `false` * if there was no parent node (the cursor was already on the root node). */ bool ts_tree_cursor_goto_parent(t_parse_tree_cursor *self); /** * Move the cursor to the next sibling of its current node. * * This returns `true` if the cursor successfully moved, and returns `false` * if there was no next sibling node. */ bool ts_tree_cursor_goto_next_sibling(t_parse_tree_cursor *self); /** * Move the cursor to the previous sibling of its current node. * * This returns `true` if the cursor successfully moved, and returns `false` * if there was no previous sibling node. * * Note, that this function may be slower than * [`ts_tree_cursor_goto_next_sibling`] due to how node positions are * stored. In the worst case, this will need to iterate through all the * children upto the previous sibling node to recalculate its position. */ bool ts_tree_cursor_goto_previous_sibling(t_parse_tree_cursor *self); /** * Move the cursor to the first child of its current node. * * This returns `true` if the cursor successfully moved, and returns `false` * if there were no children. */ bool ts_tree_cursor_goto_first_child(t_parse_tree_cursor *self); /** * Move the cursor to the last child of its current node. * * This returns `true` if the cursor successfully moved, and returns `false` * if there were no children. * * Note that this function may be slower than * [`ts_tree_cursor_goto_first_child`] because it needs to iterate through * all the children to compute the child's position. */ bool ts_tree_cursor_goto_last_child(t_parse_tree_cursor *self); /** * Move the cursor to the node that is the nth descendant of * the original node that the cursor was constructed with, where * zero represents the original node itself. */ void ts_tree_cursor_goto_descendant(t_parse_tree_cursor *self, t_u32 goal_descendant_index); /** * Get the index of the cursor's current node out of all of the * descendants of the original node that the cursor was constructed with. */ t_u32 ts_tree_cursor_current_descendant_index(const t_parse_tree_cursor *self); /** * Get the depth of the cursor's current node relative to the original * node that the cursor was constructed with. */ t_u32 ts_tree_cursor_current_depth(const t_parse_tree_cursor *self); /** * Move the cursor to the first child of its current node that extends * beyond the given byte offset or point. * * This returns the index of the child node if one was found, and returns -1 * if no such child was found. */ t_i64 ts_tree_cursor_goto_first_child_for_byte(t_parse_tree_cursor *self, t_u32 goal_byte); t_i64 ts_tree_cursor_goto_first_child_for_point(t_parse_tree_cursor *self, t_point goal_point); t_parse_tree_cursor ts_tree_cursor_copy(const t_parse_tree_cursor *cursor); /*******************/ /* Section - Query */ /*******************/ /** * Create a new query from a string containing one or more S-expression * patterns. The query is associated with a particular language, and can * only be run on syntax nodes parsed with that language. * * If all of the given patterns are valid, this returns a [`t_query`]. * If a pattern is invalid, this returns `NULL`, and provides two pieces * of information about the problem: * 1. The byte offset of the error is written to the `error_offset` * parameter. * 2. The type of error is written to the `error_type` parameter. */ t_query *ts_query_new(const t_language *language, const char *source, t_u32 source_len, t_u32 *error_offset, t_queryError *error_type); /** * Delete a query, freeing all of the memory that it used. */ void ts_query_delete(t_query *self); /** * Get the number of patterns, captures, or string literals in the query. */ t_u32 ts_query_pattern_count(const t_query *self); t_u32 ts_query_capture_count(const t_query *self); t_u32 ts_query_string_count(const t_query *self); /** * Get the byte offset where the given pattern starts in the query's source. * * This can be useful when combining queries by concatenating their source * code strings. */ t_u32 ts_query_start_byte_for_pattern(const t_query *self, t_u32 pattern_index); /** * Get all of the predicates for the given pattern in the query. * * The predicates are represented as a single array of steps. There are * three types of steps in this array, which correspond to the three legal * values for the `type` field: * - `t_queryPredicateStepTypeCapture` - Steps with this type represent * names of captures. Their `value_id` can be used with the * [`ts_query_capture_name_for_id`] function to obtain the name of the * capture. * - `t_queryPredicateStepTypeString` - Steps with this type represent * literal strings. Their `value_id` can be used with the * [`ts_query_string_value_for_id`] function to obtain their string * value. * - `t_queryPredicateStepTypeDone` - Steps with this type are *sentinels* * that represent the end of an individual predicate. If a pattern has * two predicates, then there will be two steps with this `type` in the * array. */ const t_queryPredicateStep *ts_query_predicates_for_pattern(const t_query *self, t_u32 pattern_index, t_u32 *step_count); /* * Check if the given pattern in the query has a single root node. */ bool ts_query_is_pattern_rooted(const t_query *self, t_u32 pattern_index); /* * Check if the given pattern in the query is 'non local'. * * A non-local pattern has multiple root nodes and can match within a * repeating sequence of nodes, as specified by the grammar. Non-local * patterns disable certain optimizations that would otherwise be possible * when executing a query on a specific range of a syntax tree. */ bool ts_query_is_pattern_non_local(const t_query *self, t_u32 pattern_index); /* * Check if a given pattern is guaranteed to match once a given step is * reached. The step is specified by its byte offset in the query's source * code. */ bool ts_query_is_pattern_guaranteed_at_step(const t_query *self, t_u32 byte_offset); /** * Get the name and length of one of the query's captures, or one of the * query's string literals. Each capture and string is associated with a * numeric id based on the order that it appeared in the query's source. */ const char *ts_query_capture_name_for_id(const t_query *self, t_u32 index, t_u32 *length); /** * Get the quantifier of the query's captures. Each capture is * associated * with a numeric id based on the order that it appeared in the query's * source. */ TSQuantifier ts_query_capture_quantifier_for_id(const t_query *self, t_u32 pattern_index, t_u32 capture_index); const char *ts_query_string_value_for_id(const t_query *self, t_u32 index, t_u32 *length); /** * Disable a certain capture within a query. * * This prevents the capture from being returned in matches, and also avoids * any resource usage associated with recording the capture. Currently, * there is no way to undo this. */ void ts_query_disable_capture(t_query *self, const char *name, t_u32 length); /** * Disable a certain pattern within a query. * * This prevents the pattern from matching and removes most of the overhead * associated with the pattern. Currently, there is no way to undo this. */ void ts_query_disable_pattern(t_query *self, t_u32 pattern_index); /** * Create a new cursor for executing a given query. * * The cursor stores the state that is needed to iteratively search * for matches. To use the query cursor, first call [`ts_query_cursor_exec`] * to start running a given query on a given syntax node. Then, there are * two options for consuming the results of the query: * 1. Repeatedly call [`ts_query_cursor_next_match`] to iterate over all of * the *matches* in the order that they were found. Each match contains the * index of the pattern that matched, and an array of captures. Because * multiple patterns can match the same set of nodes, one match may * contain captures that appear *before* some of the captures from a * previous match. * 2. Repeatedly call [`ts_query_cursor_next_capture`] to iterate over all * of the individual *captures* in the order that they appear. This is * useful if don't care about which pattern matched, and just want a single * ordered sequence of captures. * * If you don't care about consuming all of the results, you can stop * calling * [`ts_query_cursor_next_match`] or [`ts_query_cursor_next_capture`] at any * point. You can then start executing another query on another node by * calling * [`ts_query_cursor_exec`] again. */ t_query_cursor *ts_query_cursor_new(void); /** * Delete a query cursor, freeing all of the memory that it used. */ void ts_query_cursor_delete(t_query_cursor *self); /** * Start running a given query on a given node. */ void ts_query_cursor_exec(t_query_cursor *self, const t_query *query, t_parse_node node); /** * Manage the maximum number of in-progress matches allowed by this query * cursor. * * Query cursors have an optional maximum capacity for storing lists of * in-progress captures. If this capacity is exceeded, then the * earliest-starting match will silently be dropped to make room for further * matches. This maximum capacity is optional — by default, query cursors * allow any number of pending matches, dynamically allocating new space for * them as needed as the query is executed. */ bool ts_query_cursor_did_exceed_match_limit(const t_query_cursor *self); t_u32 ts_query_cursor_match_limit(const t_query_cursor *self); void ts_query_cursor_set_match_limit(t_query_cursor *self, t_u32 limit); /** * Set the range of bytes or (row, column) positions in which the query * will be executed. */ void ts_query_cursor_set_byte_range(t_query_cursor *self, t_u32 start_byte, t_u32 end_byte); void ts_query_cursor_set_point_range(t_query_cursor *self, t_point start_point, t_point end_point); /** * Advance to the next match of the currently running query. * * If there is a match, write it to `*match` and return `true`. * Otherwise, return `false`. */ bool ts_query_cursor_next_match(t_query_cursor *self, t_query_match *match); void ts_query_cursor_remove_match(t_query_cursor *self, t_u32 match_id); /** * Advance to the next capture of the currently running query. * * If there is a capture, write its match to `*match` and its index within * the matche's capture list to `*capture_index`. Otherwise, return `false`. */ bool ts_query_cursor_next_capture(t_query_cursor *self, t_query_match *match, t_u32 *capture_index); /** * Set the maximum start depth for a query cursor. * * This prevents cursors from exploring children nodes at a certain depth. * Note if a pattern includes many children, then they will still be * checked. * * The zero max start depth value can be used as a special behavior and * it helps to destructure a subtree by staying on a node and using captures * for interested parts. Note that the zero max start depth only limit a * search depth for a pattern's root node but other nodes that are parts of * the pattern may be searched at any depth what defined by the pattern * structure. * * Set to `UINT32_MAX` to remove the maximum start depth. */ void ts_query_cursor_set_max_start_depth(t_query_cursor *self, t_u32 max_start_depth); /**********************/ /* Section - Language */ /**********************/ /** * Get another reference to the given language. */ const t_language *ts_language_copy(const t_language *self); /** * Free any dynamically-allocated resources for this language, if * this is the last reference. */ void ts_language_delete(const t_language *self); /** * Get the number of distinct node types in the language. */ t_u32 ts_language_symbol_count(const t_language *self); /** * Get the number of valid states in this language. */ t_u32 ts_language_state_count(const t_language *self); /** * Get a node type string for the given numerical id. */ const char *ts_language_symbol_name(const t_language *self, t_symbol symbol); /** * Get the numerical id for the given node type string. */ t_symbol ts_language_symbol_for_name(const t_language *self, const char *string, t_u32 length, bool is_named); /** * Get the number of distinct field names in the language. */ t_u32 ts_language_field_count(const t_language *self); /** * Get the field name string for the given numerical id. */ const char *ts_language_field_name_for_id(const t_language *self, t_field_id id); /** * Get the numerical id for the given field name string. */ t_field_id ts_language_field_id_for_name(const t_language *self, const char *name, t_u32 name_length); /** * Check whether the given node type id belongs to named nodes, anonymous * nodes, or a hidden nodes. * * See also [`ts_node_is_named`]. Hidden nodes are never returned from the * API. */ t_symbol_type ts_language_symbol_type(const t_language *self, t_symbol symbol); /** * Get the ABI version number for this language. This version number is used * to ensure that languages were generated by a compatible version of * Tree-sitter. * * See also [`ts_parser_set_language`]. */ t_u32 ts_language_version(const t_language *self); /** * Get the next parse state. Combine this with lookahead iterators to * generate completion suggestions or valid symbols in error nodes. Use * [`ts_node_grammar_symbol`] for valid symbols. */ t_state_id ts_language_next_state(const t_language *self, t_state_id state, t_symbol symbol); /********************************/ /* Section - Lookahead Iterator */ /********************************/ /** * Create a new lookahead iterator for the given language and parse state. * * This returns `NULL` if state is invalid for the language. * * Repeatedly using [`ts_lookahead_iterator_next`] and * [`ts_lookahead_iterator_current_symbol`] will generate valid symbols in * the given parse state. Newly created lookahead iterators will contain the * `ERROR` symbol. * * Lookahead iterators can be useful to generate suggestions and improve * syntax error diagnostics. To get symbols valid in an ERROR node, use the * lookahead iterator on its first leaf node state. For `MISSING` nodes, a * lookahead iterator created on the previous non-extra leaf node may be * appropriate. */ TSLookaheadIterator *ts_lookahead_iterator_new(const t_language *self, t_state_id state); /** * Delete a lookahead iterator freeing all the memory used. */ void ts_lookahead_iterator_delete(TSLookaheadIterator *self); /** * Reset the lookahead iterator to another state. * * This returns `true` if the iterator was reset to the given state and * `false` otherwise. */ bool ts_lookahead_iterator_reset_state(TSLookaheadIterator *self, t_state_id state); /** * Reset the lookahead iterator. * * This returns `true` if the language was set successfully and `false` * otherwise. */ bool ts_lookahead_iterator_reset(TSLookaheadIterator *self, const t_language *language, t_state_id state); /** * Get the current language of the lookahead iterator. */ const t_language *ts_lookahead_iterator_language( const TSLookaheadIterator *self); /** * Advance the lookahead iterator to the next symbol. * * This returns `true` if there is a new symbol and `false` otherwise. */ bool ts_lookahead_iterator_next(TSLookaheadIterator *self); /** * Get the current symbol of the lookahead iterator; */ t_symbol ts_lookahead_iterator_current_symbol(const TSLookaheadIterator *self); /** * Get the current symbol type of the lookahead iterator as a null * terminated string. */ const char *ts_lookahead_iterator_current_symbol_name( const TSLookaheadIterator *self); /**********************************/ /* Section - Global Configuration */ /**********************************/ /** * Set the allocation functions used by the library. * * By default, Tree-sitter uses the standard libc allocation functions, * but aborts the process when an allocation fails. This function lets * you supply alternative allocation functions at runtime. * * If you pass `NULL` for any parameter, Tree-sitter will switch back to * its default implementation of that function. * * If you call this function after the library has already been used, then * you must ensure that either: * 1. All the existing objects have been freed. * 2. The new allocator shares its state with the old one, so it is capable * of freeing memory that was allocated by the old allocator. */ void ts_set_allocator(void *(*new_malloc)(size_t), void *(*new_calloc)(size_t, size_t), void *(*new_realloc)(void *, size_t), void (*new_free)(void *)); #endif // TREE_SITTER_API_H_