<<<<<<< HEAD #ifndef TREE_SITTER_ARRAY_H_ #define TREE_SITTER_ARRAY_H_ #include #include #include #include #include #include #include #define ts_builtin_sym_error_repeat (ts_builtin_sym_error - 1) #define LANGUAGE_VERSION_WITH_PRIMARY_STATES 14 #define LANGUAGE_VERSION_USABLE_VIA_WASM 13 #define ERROR_STATE 0 #define ERROR_COST_PER_RECOVERY 500 #define ERROR_COST_PER_MISSING_TREE 110 #define ERROR_COST_PER_SKIPPED_TREE 100 #define ERROR_COST_PER_SKIPPED_LINE 30 #define ERROR_COST_PER_SKIPPED_CHAR 1 #define MAX_STEP_CAPTURE_COUNT 3 #define MAX_NEGATED_FIELD_COUNT 8 #define MAX_STATE_PREDECESSOR_COUNT 256 #define MAX_ANALYSIS_STATE_DEPTH 8 #define MAX_ANALYSIS_ITERATION_COUNT 256 #define MAX_LINK_COUNT 8 #define MAX_NODE_POOL_SIZE 50 #define MAX_ITERATOR_COUNT 64 #define TS_MAX_INLINE_TREE_LENGTH UINT8_MAX #define TS_MAX_TREE_POOL_SIZE 32 #define ts_builtin_sym_error ((TSSymbol) - 1) #define ts_builtin_sym_end 0 #define TREE_SITTER_SERIALIZATION_BUFFER_SIZE 1024 #define POINT_ZERO ((TSPoint){0, 0}) #define POINT_MAX ((TSPoint){UINT32_MAX, UINT32_MAX}) #define TS_TREE_STATE_NONE USHRT_MAX #define NULL_SUBTREE ((Subtree){.ptr = NULL}) #define STACK_VERSION_NONE ((StackVersion) - 1) #define TS_DECODE_ERROR (-1) // Get a subtree's children, which are allocated immediately before the // tree's own heap data. #define ts_subtree_children(self) \ ((self).data.is_inline \ ? NULL \ : (Subtree *)((self).ptr) - (self).ptr->child_count) typedef uint16_t TSStateId; typedef uint16_t TSSymbol; typedef uint16_t TSFieldId; typedef struct TSLanguage TSLanguage; typedef struct TSParser TSParser; typedef struct TSTree TSTree; typedef struct TSQuery TSQuery; typedef struct TSQueryCursor TSQueryCursor; typedef struct TSLookaheadIterator TSLookaheadIterator; typedef struct TSPoint { uint32_t row; uint32_t column; } TSPoint; typedef struct { uint32_t bytes; TSPoint extent; } Length; typedef enum TSInputEncoding { TSInputEncodingUTF8, TSInputEncodingUTF16, } TSInputEncoding; typedef enum TSSymbolType { TSSymbolTypeRegular, TSSymbolTypeAnonymous, TSSymbolTypeAuxiliary, } TSSymbolType; typedef struct TSRange { TSPoint start_point; TSPoint end_point; uint32_t start_byte; uint32_t end_byte; } TSRange; typedef struct TSInput { void *payload; const char *(*read)(void *payload, uint32_t byte_index, TSPoint position, uint32_t *bytes_read); TSInputEncoding encoding; } TSInput; typedef enum TSLogType { TSLogTypeParse, TSLogTypeLex, } TSLogType; typedef struct TSLogger { void *payload; void (*log)(void *payload, TSLogType log_type, const char *buffer); } TSLogger; typedef struct TSInputEdit { uint32_t start_byte; uint32_t old_end_byte; uint32_t new_end_byte; TSPoint start_point; TSPoint old_end_point; TSPoint new_end_point; } TSInputEdit; typedef struct TSNode { uint32_t context[4]; const void *id; const TSTree *tree; } TSNode; typedef struct TSTreeCursor { const void *tree; const void *id; uint32_t context[3]; } TSTreeCursor; typedef struct TSQueryCapture { TSNode node; uint32_t index; } TSQueryCapture; typedef enum TSQuantifier { TSQuantifierZero = 0, // must match the array initialization value TSQuantifierZeroOrOne, TSQuantifierZeroOrMore, TSQuantifierOne, TSQuantifierOneOrMore, } TSQuantifier; typedef struct TSQueryMatch { uint32_t id; uint16_t pattern_index; uint16_t capture_count; const TSQueryCapture *captures; } TSQueryMatch; typedef enum TSQueryPredicateStepType { TSQueryPredicateStepTypeDone, TSQueryPredicateStepTypeCapture, TSQueryPredicateStepTypeString, } TSQueryPredicateStepType; typedef struct TSQueryPredicateStep { TSQueryPredicateStepType type; uint32_t value_id; } TSQueryPredicateStep; typedef enum TSQueryError { TSQueryErrorNone = 0, TSQueryErrorSyntax, TSQueryErrorNodeType, TSQueryErrorField, TSQueryErrorCapture, TSQueryErrorStructure, TSQueryErrorLanguage, } TSQueryError; #define Array(T) \ struct \ { \ T *contents; \ uint32_t size; \ uint32_t capacity; \ } /// Initialize an array. #define array_init(self) \ ((self)->size = 0, (self)->capacity = 0, (self)->contents = NULL) /// Create an empty array. #define array_new() \ { \ NULL, 0, 0 \ } /// Get a pointer to the element at a given `index` in the array. #define array_get(self, _index) \ (assert((uint32_t)(_index) < (self)->size), &(self)->contents[_index]) /// Get a pointer to the first element in the array. #define array_front(self) array_get(self, 0) /// Get a pointer to the last element in the array. #define array_back(self) array_get(self, (self)->size - 1) /// Clear the array, setting its size to zero. Note that this does not free any /// memory allocated for the array's contents. #define array_clear(self) ((self)->size = 0) /// Reserve `new_capacity` elements of space in the array. If `new_capacity` is /// less than the array's current capacity, this function has no effect. #define array_reserve(self, new_capacity) \ _array__reserve((Array *)(self), array_elem_size(self), new_capacity) /// Free any memory allocated for this array. Note that this does not free any /// memory allocated for the array's contents. #define array_delete(self) _array__delete((Array *)(self)) /// Push a new `element` onto the end of the array. #define array_push(self, element) \ (_array__grow((Array *)(self), 1, array_elem_size(self)), \ (self)->contents[(self)->size++] = (element)) /// Increase the array's size by `count` elements. /// New elements are zero-initialized. #define array_grow_by(self, count) \ do \ { \ if ((count) == 0) \ break; \ _array__grow((Array *)(self), count, array_elem_size(self)); \ memset((self)->contents + (self)->size, 0, \ (count) * array_elem_size(self)); \ (self)->size += (count); \ } while (0) /// Append all elements from one array to the end of another. #define array_push_all(self, other) \ array_extend((self), (other)->size, (other)->contents) /// Append `count` elements to the end of the array, reading their values from /// the `contents` pointer. #define array_extend(self, count, contents) \ _array__splice((Array *)(self), array_elem_size(self), (self)->size, 0, \ count, contents) /// Remove `old_count` elements from the array starting at the given `index`. At /// the same index, insert `new_count` new elements, reading their values from /// the `new_contents` pointer. #define array_splice(self, _index, old_count, new_count, new_contents) \ _array__splice((Array *)(self), array_elem_size(self), _index, old_count, \ new_count, new_contents) /// Insert one `element` into the array at the given `index`. #define array_insert(self, _index, element) \ _array__splice((Array *)(self), array_elem_size(self), _index, 0, 1, \ &(element)) /// Remove one element from the array at the given `index`. #define array_erase(self, _index) \ _array__erase((Array *)(self), array_elem_size(self), _index) /// Pop the last element off the array, returning the element by value. #define array_pop(self) ((self)->contents[--(self)->size]) /// Assign the contents of one array to another, reallocating if necessary. #define array_assign(self, other) \ _array__assign((Array *)(self), (const Array *)(other), \ array_elem_size(self)) /// Swap one array with another #define array_swap(self, other) _array__swap((Array *)(self), (Array *)(other)) /// Get the size of the array contents #define array_elem_size(self) (sizeof *(self)->contents) /// Search a sorted array for a given `needle` value, using the given `compare` /// callback to determine the order. /// /// If an existing element is found to be equal to `needle`, then the `index` /// out-parameter is set to the existing value's index, and the `exists` /// out-parameter is set to true. Otherwise, `index` is set to an index where /// `needle` should be inserted in order to preserve the sorting, and `exists` /// is set to false. #define array_search_sorted_with(self, compare, needle, _index, _exists) \ _array__search_sorted(self, 0, compare, , needle, _index, _exists) /// Search a sorted array for a given `needle` value, using integer comparisons /// of a given struct field (specified with a leading dot) to determine the /// order. /// /// See also `array_search_sorted_with`. #define array_search_sorted_by(self, field, needle, _index, _exists) \ _array__search_sorted(self, 0, _compare_int, field, needle, _index, _exists) /// Insert a given `value` into a sorted array, using the given `compare` /// callback to determine the order. #define array_insert_sorted_with(self, compare, value) \ do \ { \ unsigned _index, _exists; \ array_search_sorted_with(self, compare, &(value), &_index, &_exists); \ if (!_exists) \ array_insert(self, _index, value); \ } while (0) /// Insert a given `value` into a sorted array, using integer comparisons of /// a given struct field (specified with a leading dot) to determine the order. /// /// See also `array_search_sorted_by`. #define array_insert_sorted_by(self, field, value) \ do \ { \ unsigned _index, _exists; \ array_search_sorted_by(self, field, (value)field, &_index, &_exists); \ if (!_exists) \ array_insert(self, _index, value); \ } while (0) // Private typedef Array(void) Array; /// This is not what you're looking for, see `array_delete`. static inline void _array__delete(Array *self) { if (self->contents) { free(self->contents); self->contents = NULL; self->size = 0; self->capacity = 0; } } /// This is not what you're looking for, see `array_erase`. static inline void _array__erase(Array *self, size_t element_size, uint32_t index) { assert(index < self->size); char *contents = (char *)self->contents; memmove(contents + index * element_size, contents + (index + 1) * element_size, (self->size - index - 1) * element_size); self->size--; } /// This is not what you're looking for, see `array_reserve`. static inline void _array__reserve(Array *self, size_t element_size, uint32_t new_capacity) { if (new_capacity > self->capacity) { if (self->contents) { self->contents = realloc(self->contents, new_capacity * element_size); } else { self->contents = malloc(new_capacity * element_size); } self->capacity = new_capacity; } } /// This is not what you're looking for, see `array_assign`. static inline void _array__assign(Array *self, const Array *other, size_t element_size) { _array__reserve(self, element_size, other->size); self->size = other->size; memcpy(self->contents, other->contents, self->size * element_size); } /// This is not what you're looking for, see `array_swap`. static inline void _array__swap(Array *self, Array *other) { Array swap = *other; *other = *self; *self = swap; } /// This is not what you're looking for, see `array_push` or `array_grow_by`. static inline void _array__grow(Array *self, uint32_t count, size_t element_size) { uint32_t new_size = self->size + count; if (new_size > self->capacity) { uint32_t new_capacity = self->capacity * 2; if (new_capacity < 8) new_capacity = 8; if (new_capacity < new_size) new_capacity = new_size; _array__reserve(self, element_size, new_capacity); } } /// This is not what you're looking for, see `array_splice`. static inline void _array__splice(Array *self, size_t element_size, uint32_t index, uint32_t old_count, uint32_t new_count, const void *elements) { uint32_t new_size = self->size + new_count - old_count; uint32_t old_end = index + old_count; uint32_t new_end = index + new_count; assert(old_end <= self->size); _array__reserve(self, element_size, new_size); char *contents = (char *)self->contents; if (self->size > old_end) { memmove(contents + new_end * element_size, contents + old_end * element_size, (self->size - old_end) * element_size); } if (new_count > 0) { if (elements) { memcpy((contents + index * element_size), elements, new_count * element_size); } else { memset((contents + index * element_size), 0, new_count * element_size); } } self->size += new_count - old_count; } /// A binary search routine, based on Rust's `std::slice::binary_search_by`. /// This is not what you're looking for, see `array_search_sorted_with` or /// `array_search_sorted_by`. #define _array__search_sorted(self, start, compare, suffix, needle, _index, \ _exists) \ do \ { \ *(_index) = start; \ *(_exists) = false; \ uint32_t size = (self)->size - *(_index); \ if (size == 0) \ break; \ int comparison; \ while (size > 1) \ { \ uint32_t half_size = size / 2; \ uint32_t mid_index = *(_index) + half_size; \ comparison = \ compare(&((self)->contents[mid_index] suffix), (needle)); \ if (comparison <= 0) \ *(_index) = mid_index; \ size -= half_size; \ } \ comparison = compare(&((self)->contents[*(_index)] suffix), (needle)); \ if (comparison == 0) \ *(_exists) = true; \ else if (comparison < 0) \ *(_index) += 1; \ } while (0) /// Helper macro for the `_sorted_by` routines below. This takes the left /// (existing) parameter by reference in order to work with the generic sorting /// function above. #define _compare_int(a, b) ((int)*(a) - (int)(b)) #include #include #include static inline size_t atomic_load(const volatile size_t *p) { #ifdef __ATOMIC_RELAXED return __atomic_load_n(p, __ATOMIC_RELAXED); #else return __sync_fetch_and_add((volatile size_t *)p, 0); #endif } static inline uint32_t atomic_inc(volatile uint32_t *p) { #ifdef __ATOMIC_RELAXED return __atomic_add_fetch(p, 1U, __ATOMIC_SEQ_CST); #else return __sync_add_and_fetch(p, 1U); #endif } static inline uint32_t atomic_dec(volatile uint32_t *p) { #ifdef __ATOMIC_RELAXED return __atomic_sub_fetch(p, 1U, __ATOMIC_SEQ_CST); #else return __sync_sub_and_fetch(p, 1U); #endif } // The serialized state of an external scanner. // // Every time an external token subtree is created after a call to an // external scanner, the scanner's `serialize` function is called to // retrieve a serialized copy of its state. The bytes are then copied // onto the subtree itself so that the scanner's state can later be // restored using its `deserialize` function. // // Small byte arrays are stored inline, and long ones are allocated // separately on the heap. typedef struct { union { char *long_data; char short_data[24]; }; uint32_t length; } ExternalScannerState; // A compact representation of a subtree. // // This representation is used for small leaf nodes that are not // errors, and were not created by an external scanner. // // The idea behind the layout of this struct is that the `is_inline` // bit will fall exactly into the same location as the least significant // bit of the pointer in `Subtree` or `MutableSubtree`, respectively. // Because of alignment, for any valid pointer this will be 0, giving // us the opportunity to make use of this bit to signify whether to use // the pointer or the inline struct. typedef struct SubtreeInlineData SubtreeInlineData; #define SUBTREE_BITS \ bool visible : 1; \ bool named : 1; \ bool extra : 1; \ bool has_changes : 1; \ bool is_missing : 1; \ bool is_keyword : 1; #define SUBTREE_SIZE \ uint8_t padding_columns; \ uint8_t padding_rows : 4; \ uint8_t lookahead_bytes : 4; \ uint8_t padding_bytes; \ uint8_t size_bytes; #if TS_BIG_ENDIAN # if TS_PTR_SIZE == 32 struct SubtreeInlineData { uint16_t parse_state; uint8_t symbol; SUBTREE_BITS bool unused : 1; bool is_inline : 1; SUBTREE_SIZE }; # else struct SubtreeInlineData { SUBTREE_SIZE uint16_t parse_state; uint8_t symbol; SUBTREE_BITS bool unused : 1; bool is_inline : 1; }; # endif #else struct SubtreeInlineData { bool is_inline : 1; SUBTREE_BITS uint8_t symbol; uint16_t parse_state; SUBTREE_SIZE }; #endif #undef SUBTREE_BITS #undef SUBTREE_SIZE // A heap-allocated representation of a subtree. // // This representation is used for parent nodes, external tokens, // errors, and other leaf nodes whose data is too large to fit into // the inline representation. typedef struct { volatile uint32_t ref_count; Length padding; Length size; uint32_t lookahead_bytes; uint32_t error_cost; uint32_t child_count; TSSymbol symbol; TSStateId parse_state; bool visible : 1; bool named : 1; bool extra : 1; bool fragile_left : 1; bool fragile_right : 1; bool has_changes : 1; bool has_external_tokens : 1; bool has_external_scanner_state_change : 1; bool depends_on_column : 1; bool is_missing : 1; bool is_keyword : 1; union { // Non-terminal subtrees (`child_count > 0`) struct { uint32_t visible_child_count; uint32_t named_child_count; uint32_t visible_descendant_count; int32_t dynamic_precedence; uint16_t repeat_depth; uint16_t production_id; struct { TSSymbol symbol; TSStateId parse_state; } first_leaf; }; // External terminal subtrees (`child_count == 0 && // has_external_tokens`) ExternalScannerState external_scanner_state; // Error terminal subtrees (`child_count == 0 && symbol == // ts_builtin_sym_error`) int32_t lookahead_char; }; } SubtreeHeapData; // The fundamental building block of a syntax tree. typedef union { SubtreeInlineData data; const SubtreeHeapData *ptr; } Subtree; // Like Subtree, but mutable. typedef union { SubtreeInlineData data; SubtreeHeapData *ptr; } MutableSubtree; typedef Array(Subtree) SubtreeArray; typedef Array(MutableSubtree) MutableSubtreeArray; typedef struct { MutableSubtreeArray free_trees; MutableSubtreeArray tree_stack; } SubtreePool; typedef Array(TSRange) TSRangeArray; typedef struct { const Subtree *subtree; Length position; uint32_t child_index; uint32_t structural_child_index; uint32_t descendant_index; } TreeCursorEntry; typedef struct { const TSTree *tree; Array(TreeCursorEntry) stack; TSSymbol root_alias_symbol; } TreeCursor; typedef union { struct { uint8_t type; TSStateId state; bool extra; bool repetition; } shift; struct { uint8_t type; uint8_t child_count; TSSymbol symbol; int16_t dynamic_precedence; uint16_t production_id; } reduce; uint8_t type; } TSParseAction; void ts_range_array_get_changed_ranges(const TSRange *old_ranges, unsigned old_range_count, const TSRange *new_ranges, unsigned new_range_count, TSRangeArray *differences); bool ts_range_array_intersects(const TSRangeArray *self, unsigned start_index, uint32_t start_byte, uint32_t end_byte); unsigned ts_subtree_get_changed_ranges( const Subtree *old_tree, const Subtree *new_tree, TreeCursor *cursor1, TreeCursor *cursor2, const TSLanguage *language, const TSRangeArray *included_range_differences, TSRange **ranges); typedef struct { const TSParseAction *actions; uint32_t action_count; bool is_reusable; } TableEntry; typedef struct { const TSLanguage *language; const uint16_t *data; const uint16_t *group_end; TSStateId state; uint16_t table_value; uint16_t section_index; uint16_t group_count; bool is_small_state; const TSParseAction *actions; TSSymbol symbol; TSStateId next_state; uint16_t action_count; } LookaheadIterator; typedef struct { bool visible; bool named; bool supertype; } TSSymbolMetadata; typedef enum { TSParseActionTypeShift, TSParseActionTypeReduce, TSParseActionTypeAccept, TSParseActionTypeRecover, } TSParseActionType; typedef union { TSParseAction action; struct { uint8_t count; bool reusable; } entry; } TSParseActionEntry; typedef struct { TSFieldId field_id; uint8_t child_index; bool inherited; } TSFieldMapEntry; typedef struct { uint16_t index; uint16_t length; } TSFieldMapSlice; typedef struct TSLexer TSLexer; struct TSLexer { int32_t lookahead; TSSymbol result_symbol; void (*advance)(TSLexer *, bool); void (*mark_end)(TSLexer *); uint32_t (*get_column)(TSLexer *); bool (*is_at_included_range_start)(const TSLexer *); bool (*eof)(const TSLexer *); }; typedef struct { uint16_t lex_state; uint16_t external_lex_state; } TSLexMode; typedef struct { int32_t start; int32_t end; } TSCharacterRange; struct TSLanguage { uint32_t version; uint32_t symbol_count; uint32_t alias_count; uint32_t token_count; uint32_t external_token_count; uint32_t state_count; uint32_t large_state_count; uint32_t production_id_count; uint32_t field_count; uint16_t max_alias_sequence_length; const uint16_t *parse_table; const uint16_t *small_parse_table; const uint32_t *small_parse_table_map; const TSParseActionEntry *parse_actions; const char *const *symbol_names; const char *const *field_names; const TSFieldMapSlice *field_map_slices; const TSFieldMapEntry *field_map_entries; const TSSymbolMetadata *symbol_metadata; const TSSymbol *public_symbol_map; const uint16_t *alias_map; const TSSymbol *alias_sequences; const TSLexMode *lex_modes; bool (*lex_fn)(TSLexer *, TSStateId); bool (*keyword_lex_fn)(TSLexer *, TSStateId); TSSymbol keyword_capture_token; struct { const bool *states; const TSSymbol *symbol_map; void *(*create)(void); void (*destroy)(void *); bool (*scan)(void *, TSLexer *, const bool *symbol_whitelist); unsigned (*serialize)(void *, char *); void (*deserialize)(void *, const char *, unsigned); } external_scanner; const TSStateId *primary_state_ids; }; void ts_language_table_entry(const TSLanguage *, TSStateId, TSSymbol, TableEntry *); TSSymbolMetadata ts_language_symbol_metadata(const TSLanguage *, TSSymbol); TSSymbol ts_language_public_symbol(const TSLanguage *, TSSymbol); TSStateId ts_language_next_state(const TSLanguage *self, TSStateId state, TSSymbol symbol); static inline bool ts_language_is_symbol_external(const TSLanguage *self, TSSymbol symbol) { return 0 < symbol && symbol < self->external_token_count + 1; } static inline const TSParseAction *ts_language_actions(const TSLanguage *self, TSStateId state, TSSymbol symbol, uint32_t *count) { TableEntry entry; ts_language_table_entry(self, state, symbol, &entry); *count = entry.action_count; return entry.actions; } static inline bool ts_language_has_reduce_action(const TSLanguage *self, TSStateId state, TSSymbol symbol) { TableEntry entry; ts_language_table_entry(self, state, symbol, &entry); return entry.action_count > 0 && entry.actions[0].type == TSParseActionTypeReduce; } // Lookup the table value for a given symbol and state. // // For non-terminal symbols, the table value represents a successor state. // For terminal symbols, it represents an index in the actions table. // For 'large' parse states, this is a direct lookup. For 'small' parse // states, this requires searching through the symbol groups to find // the given symbol. static inline uint16_t ts_language_lookup(const TSLanguage *self, TSStateId state, TSSymbol symbol) { if (state >= self->large_state_count) { uint32_t index = self->small_parse_table_map[state - self->large_state_count]; const uint16_t *data = &self->small_parse_table[index]; uint16_t group_count = *(data++); for (unsigned i = 0; i < group_count; i++) { uint16_t section_value = *(data++); uint16_t symbol_count = *(data++); for (unsigned j = 0; j < symbol_count; j++) { if (*(data++) == symbol) return section_value; } } return 0; } else { return self->parse_table[state * self->symbol_count + symbol]; } } static inline bool ts_language_has_actions(const TSLanguage *self, TSStateId state, TSSymbol symbol) { return ts_language_lookup(self, state, symbol) != 0; } // Iterate over all of the symbols that are valid in the given state. // // For 'large' parse states, this just requires iterating through // all possible symbols and checking the parse table for each one. // For 'small' parse states, this exploits the structure of the // table to only visit the valid symbols. static inline LookaheadIterator ts_language_lookaheads(const TSLanguage *self, TSStateId state) { bool is_small_state = state >= self->large_state_count; const uint16_t *data; const uint16_t *group_end = NULL; uint16_t group_count = 0; if (is_small_state) { uint32_t index = self->small_parse_table_map[state - self->large_state_count]; data = &self->small_parse_table[index]; group_end = data + 1; group_count = *data; } else { data = &self->parse_table[state * self->symbol_count] - 1; } return (LookaheadIterator){ .language = self, .data = data, .group_end = group_end, .group_count = group_count, .is_small_state = is_small_state, .symbol = UINT16_MAX, .next_state = 0, }; } static inline bool ts_lookahead_iterator__next(LookaheadIterator *self) { // For small parse states, valid symbols are listed explicitly, // grouped by their value. There's no need to look up the actions // again until moving to the next group. if (self->is_small_state) { self->data++; if (self->data == self->group_end) { if (self->group_count == 0) return false; self->group_count--; self->table_value = *(self->data++); unsigned symbol_count = *(self->data++); self->group_end = self->data + symbol_count; self->symbol = *self->data; } else { self->symbol = *self->data; return true; } } // For large parse states, iterate through every symbol until one // is found that has valid actions. else { do { self->data++; self->symbol++; if (self->symbol >= self->language->symbol_count) return false; self->table_value = *self->data; } while (!self->table_value); } // Depending on if the symbols is terminal or non-terminal, the table value // either represents a list of actions or a successor state. if (self->symbol < self->language->token_count) { const TSParseActionEntry *entry = &self->language->parse_actions[self->table_value]; self->action_count = entry->entry.count; self->actions = (const TSParseAction *)(entry + 1); self->next_state = 0; } else { self->action_count = 0; self->next_state = self->table_value; } return true; } // Whether the state is a "primary state". If this returns false, it indicates // that there exists another state that behaves identically to this one with // respect to query analysis. static inline bool ts_language_state_is_primary(const TSLanguage *self, TSStateId state) { if (self->version >= LANGUAGE_VERSION_WITH_PRIMARY_STATES) { return state == self->primary_state_ids[state]; } else { return true; } } static inline const bool *ts_language_enabled_external_tokens( const TSLanguage *self, unsigned external_scanner_state) { if (external_scanner_state == 0) { return NULL; } else { return self->external_scanner.states + self->external_token_count * external_scanner_state; } } static inline const TSSymbol *ts_language_alias_sequence(const TSLanguage *self, uint32_t production_id) { return production_id ? &self->alias_sequences[production_id * self->max_alias_sequence_length] : NULL; } static inline TSSymbol ts_language_alias_at(const TSLanguage *self, uint32_t production_id, uint32_t child_index) { return production_id ? self->alias_sequences[production_id * self->max_alias_sequence_length + child_index] : 0; } static inline void ts_language_field_map(const TSLanguage *self, uint32_t production_id, const TSFieldMapEntry **start, const TSFieldMapEntry **end) { if (self->field_count == 0) { *start = NULL; *end = NULL; return; } TSFieldMapSlice slice = self->field_map_slices[production_id]; *start = &self->field_map_entries[slice.index]; *end = &self->field_map_entries[slice.index] + slice.length; } static inline void ts_language_aliases_for_symbol(const TSLanguage *self, TSSymbol original_symbol, const TSSymbol **start, const TSSymbol **end) { *start = &self->public_symbol_map[original_symbol]; *end = *start + 1; unsigned idx = 0; for (;;) { TSSymbol symbol = self->alias_map[idx++]; if (symbol == 0 || symbol > original_symbol) break; uint16_t count = self->alias_map[idx++]; if (symbol == original_symbol) { *start = &self->alias_map[idx]; *end = &self->alias_map[idx + count]; break; } idx += count; } } static const Length LENGTH_UNDEFINED = {0, {0, 1}}; static const Length LENGTH_MAX = {UINT32_MAX, {UINT32_MAX, UINT32_MAX}}; static TSPoint point_add(TSPoint a, TSPoint b); static TSPoint point_sub(TSPoint a, TSPoint b); static inline bool length_is_undefined(Length length) { return length.bytes == 0 && length.extent.column != 0; } static inline Length length_min(Length len1, Length len2) { return (len1.bytes < len2.bytes) ? len1 : len2; } static inline Length length_add(Length len1, Length len2) { Length result; result.bytes = len1.bytes + len2.bytes; result.extent = point_add(len1.extent, len2.extent); return result; } static inline Length length_sub(Length len1, Length len2) { Length result; result.bytes = len1.bytes - len2.bytes; result.extent = point_sub(len1.extent, len2.extent); return result; } static inline Length length_zero(void) { Length result = {0, {0, 0}}; return result; } static inline Length length_saturating_sub(Length len1, Length len2) { if (len1.bytes > len2.bytes) { return length_sub(len1, len2); } else { return length_zero(); } } typedef struct { TSLexer data; Length current_position; Length token_start_position; Length token_end_position; TSRange *included_ranges; const char *chunk; TSInput input; TSLogger logger; uint32_t included_range_count; uint32_t current_included_range_index; uint32_t chunk_start; uint32_t chunk_size; uint32_t lookahead_size; bool did_get_column; char debug_buffer[TREE_SITTER_SERIALIZATION_BUFFER_SIZE]; } Lexer; void ts_lexer_init(Lexer *); void ts_lexer_delete(Lexer *); void ts_lexer_set_input(Lexer *, TSInput); void ts_lexer_reset(Lexer *, Length); void ts_lexer_start(Lexer *); void ts_lexer_finish(Lexer *, uint32_t *); void ts_lexer_advance_to_end(Lexer *); void ts_lexer_mark_end(Lexer *); bool ts_lexer_set_included_ranges(Lexer *self, const TSRange *ranges, uint32_t count); TSRange *ts_lexer_included_ranges(const Lexer *self, uint32_t *count); static inline bool set_contains(TSCharacterRange *ranges, uint32_t len, int32_t lookahead) { uint32_t index = 0; uint32_t size = len - index; while (size > 1) { uint32_t half_size = size / 2; uint32_t mid_index = index + half_size; TSCharacterRange *range = &ranges[mid_index]; if (lookahead >= range->start && lookahead <= range->end) { return true; } else if (lookahead > range->end) { index = mid_index; } size -= half_size; } TSCharacterRange *range = &ranges[index]; return (lookahead >= range->start && lookahead <= range->end); } static inline TSPoint point__new(unsigned row, unsigned column) { TSPoint result = {row, column}; return result; } static inline TSPoint point_add(TSPoint a, TSPoint b) { if (b.row > 0) return point__new(a.row + b.row, b.column); else return point__new(a.row, a.column + b.column); } static inline TSPoint point_sub(TSPoint a, TSPoint b) { if (a.row > b.row) return point__new(a.row - b.row, a.column); else return point__new(0, a.column - b.column); } static inline bool point_lte(TSPoint a, TSPoint b) { return (a.row < b.row) || (a.row == b.row && a.column <= b.column); } static inline bool point_lt(TSPoint a, TSPoint b) { return (a.row < b.row) || (a.row == b.row && a.column < b.column); } static inline bool point_gt(TSPoint a, TSPoint b) { return (a.row > b.row) || (a.row == b.row && a.column > b.column); } static inline bool point_gte(TSPoint a, TSPoint b) { return (a.row > b.row) || (a.row == b.row && a.column >= b.column); } static inline bool point_eq(TSPoint a, TSPoint b) { return a.row == b.row && a.column == b.column; } static inline TSPoint point_min(TSPoint a, TSPoint b) { if (a.row < b.row || (a.row == b.row && a.column < b.column)) return a; else return b; } static inline TSPoint point_max(TSPoint a, TSPoint b) { if (a.row > b.row || (a.row == b.row && a.column > b.column)) return a; else return b; } typedef struct { uint32_t count; TSSymbol symbol; int dynamic_precedence; unsigned short production_id; } ReduceAction; typedef Array(ReduceAction) ReduceActionSet; static inline void ts_reduce_action_set_add(ReduceActionSet *self, ReduceAction new_action) { for (uint32_t i = 0; i < self->size; i++) { ReduceAction action = self->contents[i]; if (action.symbol == new_action.symbol && action.count == new_action.count) return; } array_push(self, new_action); } typedef struct { Subtree tree; uint32_t child_index; uint32_t byte_offset; } StackEntry; typedef struct { Array(StackEntry) stack; Subtree last_external_token; } ReusableNode; static inline ReusableNode reusable_node_new(void) { return (ReusableNode){array_new(), NULL_SUBTREE}; } static inline void reusable_node_clear(ReusableNode *self) { array_clear(&self->stack); self->last_external_token = NULL_SUBTREE; } static inline Subtree reusable_node_tree(ReusableNode *self) { return self->stack.size > 0 ? self->stack.contents[self->stack.size - 1].tree : NULL_SUBTREE; } static inline uint32_t reusable_node_byte_offset(ReusableNode *self) { return self->stack.size > 0 ? self->stack.contents[self->stack.size - 1].byte_offset : UINT32_MAX; } static inline void reusable_node_delete(ReusableNode *self) { array_delete(&self->stack); } static inline uint32_t ts_subtree_total_bytes(Subtree self); static inline bool ts_subtree_has_external_tokens(Subtree self); Subtree ts_subtree_last_external_token(Subtree self); static inline uint32_t ts_subtree_child_count(Subtree self); static inline void reusable_node_advance(ReusableNode *self) { StackEntry last_entry = *array_back(&self->stack); uint32_t byte_offset = last_entry.byte_offset + ts_subtree_total_bytes(last_entry.tree); if (ts_subtree_has_external_tokens(last_entry.tree)) { self->last_external_token = ts_subtree_last_external_token(last_entry.tree); } Subtree tree; uint32_t next_index; do { StackEntry popped_entry = array_pop(&self->stack); next_index = popped_entry.child_index + 1; if (self->stack.size == 0) return; tree = array_back(&self->stack)->tree; } while (ts_subtree_child_count(tree) <= next_index); array_push(&self->stack, ((StackEntry){ .tree = ts_subtree_children(tree)[next_index], .child_index = next_index, .byte_offset = byte_offset, })); } static inline bool reusable_node_descend(ReusableNode *self) { StackEntry last_entry = *array_back(&self->stack); if (ts_subtree_child_count(last_entry.tree) > 0) { array_push(&self->stack, ((StackEntry){ .tree = ts_subtree_children(last_entry.tree)[0], .child_index = 0, .byte_offset = last_entry.byte_offset, })); return true; } else { return false; } } static inline void reusable_node_advance_past_leaf(ReusableNode *self) { while (reusable_node_descend(self)) { } reusable_node_advance(self); } static inline void reusable_node_reset(ReusableNode *self, Subtree tree) { reusable_node_clear(self); array_push(&self->stack, ((StackEntry){ .tree = tree, .child_index = 0, .byte_offset = 0, })); // Never reuse the root node, because it has a non-standard internal // structure due to transformations that are applied when it is accepted: // adding the EOF child and any extra children. if (!reusable_node_descend(self)) { reusable_node_clear(self); } } typedef struct Stack Stack; typedef unsigned StackVersion; typedef struct { SubtreeArray subtrees; StackVersion version; } StackSlice; typedef Array(StackSlice) StackSliceArray; typedef struct { Length position; unsigned depth; TSStateId state; } StackSummaryEntry; typedef Array(StackSummaryEntry) StackSummary; // Create a stack. Stack *ts_stack_new(SubtreePool *); // Release the memory reserved for a given stack. void ts_stack_delete(Stack *); // Get the stack's current number of versions. uint32_t ts_stack_version_count(const Stack *); // Get the state at the top of the given version of the stack. If the stack is // empty, this returns the initial state, 0. TSStateId ts_stack_state(const Stack *, StackVersion); // Get the last external token associated with a given version of the stack. Subtree ts_stack_last_external_token(const Stack *, StackVersion); // Set the last external token associated with a given version of the stack. void ts_stack_set_last_external_token(Stack *, StackVersion, Subtree); // Get the position of the given version of the stack within the document. Length ts_stack_position(const Stack *, StackVersion); // Push a tree and state onto the given version of the stack. // // This transfers ownership of the tree to the Stack. Callers that // need to retain ownership of the tree for their own purposes should // first retain the tree. void ts_stack_push(Stack *, StackVersion, Subtree, bool, TSStateId); // Pop the given number of entries from the given version of the stack. This // operation can increase the number of stack versions by revealing multiple // versions which had previously been merged. It returns an array that // specifies the index of each revealed version and the trees that were // removed from that version. StackSliceArray ts_stack_pop_count(Stack *, StackVersion, uint32_t count); // Remove an error at the top of the given version of the stack. SubtreeArray ts_stack_pop_error(Stack *, StackVersion); // Remove any pending trees from the top of the given version of the stack. StackSliceArray ts_stack_pop_pending(Stack *, StackVersion); // Remove any all trees from the given version of the stack. StackSliceArray ts_stack_pop_all(Stack *, StackVersion); // Get the maximum number of tree nodes reachable from this version of the stack // since the last error was detected. unsigned ts_stack_node_count_since_error(const Stack *, StackVersion); int ts_stack_dynamic_precedence(Stack *, StackVersion); bool ts_stack_has_advanced_since_error(const Stack *, StackVersion); // Compute a summary of all the parse states near the top of the given // version of the stack and store the summary for later retrieval. void ts_stack_record_summary(Stack *, StackVersion, unsigned max_depth); // Retrieve a summary of all the parse states near the top of the // given version of the stack. StackSummary *ts_stack_get_summary(Stack *, StackVersion); // Get the total cost of all errors on the given version of the stack. unsigned ts_stack_error_cost(const Stack *, StackVersion version); // Merge the given two stack versions if possible, returning true // if they were successfully merged and false otherwise. bool ts_stack_merge(Stack *, StackVersion, StackVersion); // Determine whether the given two stack versions can be merged. bool ts_stack_can_merge(Stack *, StackVersion, StackVersion); Subtree ts_stack_resume(Stack *, StackVersion); void ts_stack_pause(Stack *, StackVersion, Subtree); void ts_stack_halt(Stack *, StackVersion); bool ts_stack_is_active(const Stack *, StackVersion); bool ts_stack_is_paused(const Stack *, StackVersion); bool ts_stack_is_halted(const Stack *, StackVersion); void ts_stack_renumber_version(Stack *, StackVersion, StackVersion); void ts_stack_swap_versions(Stack *, StackVersion, StackVersion); StackVersion ts_stack_copy_version(Stack *, StackVersion); // Remove the given version from the stack. void ts_stack_remove_version(Stack *, StackVersion); void ts_stack_clear(Stack *); typedef void (*StackIterateCallback)(void *, TSStateId, uint32_t); void ts_external_scanner_state_init(ExternalScannerState *, const char *, unsigned); const char *ts_external_scanner_state_data(const ExternalScannerState *); bool ts_external_scanner_state_eq(const ExternalScannerState *self, const char *, unsigned); void ts_external_scanner_state_delete(ExternalScannerState *self); void ts_subtree_array_copy(SubtreeArray, SubtreeArray *); void ts_subtree_array_clear(SubtreePool *, SubtreeArray *); void ts_subtree_array_delete(SubtreePool *, SubtreeArray *); void ts_subtree_array_remove_trailing_extras(SubtreeArray *, SubtreeArray *); void ts_subtree_array_reverse(SubtreeArray *); SubtreePool ts_subtree_pool_new(uint32_t capacity); void ts_subtree_pool_delete(SubtreePool *); Subtree ts_subtree_new_leaf(SubtreePool *, TSSymbol, Length, Length, uint32_t, TSStateId, bool, bool, bool, const TSLanguage *); Subtree ts_subtree_new_error(SubtreePool *, int32_t, Length, Length, uint32_t, TSStateId, const TSLanguage *); MutableSubtree ts_subtree_new_node(TSSymbol, SubtreeArray *, unsigned, const TSLanguage *); Subtree ts_subtree_new_error_node(SubtreeArray *, bool, const TSLanguage *); Subtree ts_subtree_new_missing_leaf(SubtreePool *, TSSymbol, Length, uint32_t, const TSLanguage *); MutableSubtree ts_subtree_make_mut(SubtreePool *, Subtree); void ts_subtree_retain(Subtree); void ts_subtree_release(SubtreePool *, Subtree); int ts_subtree_compare(Subtree, Subtree, SubtreePool *); void ts_subtree_set_symbol(MutableSubtree *, TSSymbol, const TSLanguage *); void ts_subtree_summarize(MutableSubtree, const Subtree *, uint32_t, const TSLanguage *); void ts_subtree_summarize_children(MutableSubtree, const TSLanguage *); void ts_subtree_balance(Subtree, SubtreePool *, const TSLanguage *); Subtree ts_subtree_edit(Subtree, const TSInputEdit *edit, SubtreePool *); char *ts_subtree_string(Subtree, TSSymbol, bool, const TSLanguage *, bool include_all); Subtree ts_subtree_last_external_token(Subtree); const ExternalScannerState *ts_subtree_external_scanner_state(Subtree self); bool ts_subtree_external_scanner_state_eq(Subtree, Subtree); #define SUBTREE_GET(self, name) \ ((self).data.is_inline ? (self).data.name : (self).ptr->name) static inline TSSymbol ts_subtree_symbol(Subtree self) { return SUBTREE_GET(self, symbol); } static inline bool ts_subtree_visible(Subtree self) { return SUBTREE_GET(self, visible); } static inline bool ts_subtree_named(Subtree self) { return SUBTREE_GET(self, named); } static inline bool ts_subtree_extra(Subtree self) { return SUBTREE_GET(self, extra); } static inline bool ts_subtree_has_changes(Subtree self) { return SUBTREE_GET(self, has_changes); } static inline bool ts_subtree_missing(Subtree self) { return SUBTREE_GET(self, is_missing); } static inline bool ts_subtree_is_keyword(Subtree self) { return SUBTREE_GET(self, is_keyword); } static inline TSStateId ts_subtree_parse_state(Subtree self) { return SUBTREE_GET(self, parse_state); } static inline uint32_t ts_subtree_lookahead_bytes(Subtree self) { return SUBTREE_GET(self, lookahead_bytes); } #undef SUBTREE_GET // Get the size needed to store a heap-allocated subtree with the given // number of children. static inline size_t ts_subtree_alloc_size(uint32_t child_count) { return child_count * sizeof(Subtree) + sizeof(SubtreeHeapData); } static inline void ts_subtree_set_extra(MutableSubtree *self, bool is_extra) { if (self->data.is_inline) { self->data.extra = is_extra; } else { self->ptr->extra = is_extra; } } static inline TSSymbol ts_subtree_leaf_symbol(Subtree self) { if (self.data.is_inline) return self.data.symbol; if (self.ptr->child_count == 0) return self.ptr->symbol; return self.ptr->first_leaf.symbol; } static inline TSStateId ts_subtree_leaf_parse_state(Subtree self) { if (self.data.is_inline) return self.data.parse_state; if (self.ptr->child_count == 0) return self.ptr->parse_state; return self.ptr->first_leaf.parse_state; } static inline Length ts_subtree_padding(Subtree self) { if (self.data.is_inline) { Length result = {self.data.padding_bytes, {self.data.padding_rows, self.data.padding_columns}}; return result; } else { return self.ptr->padding; } } static inline Length ts_subtree_size(Subtree self) { if (self.data.is_inline) { Length result = {self.data.size_bytes, {0, self.data.size_bytes}}; return result; } else { return self.ptr->size; } } static inline Length ts_subtree_total_size(Subtree self) { return length_add(ts_subtree_padding(self), ts_subtree_size(self)); } static inline uint32_t ts_subtree_total_bytes(Subtree self) { return ts_subtree_total_size(self).bytes; } static inline uint32_t ts_subtree_child_count(Subtree self) { return self.data.is_inline ? 0 : self.ptr->child_count; } static inline uint32_t ts_subtree_repeat_depth(Subtree self) { return self.data.is_inline ? 0 : self.ptr->repeat_depth; } static inline uint32_t ts_subtree_is_repetition(Subtree self) { return self.data.is_inline ? 0 : !self.ptr->named && !self.ptr->visible && self.ptr->child_count != 0; } static inline uint32_t ts_subtree_visible_descendant_count(Subtree self) { return (self.data.is_inline || self.ptr->child_count == 0) ? 0 : self.ptr->visible_descendant_count; } static inline uint32_t ts_subtree_visible_child_count(Subtree self) { if (ts_subtree_child_count(self) > 0) { return self.ptr->visible_child_count; } else { return 0; } } static inline uint32_t ts_subtree_error_cost(Subtree self) { if (ts_subtree_missing(self)) { return ERROR_COST_PER_MISSING_TREE + ERROR_COST_PER_RECOVERY; } else { return self.data.is_inline ? 0 : self.ptr->error_cost; } } static inline int32_t ts_subtree_dynamic_precedence(Subtree self) { return (self.data.is_inline || self.ptr->child_count == 0) ? 0 : self.ptr->dynamic_precedence; } static inline uint16_t ts_subtree_production_id(Subtree self) { if (ts_subtree_child_count(self) > 0) { return self.ptr->production_id; } else { return 0; } } static inline bool ts_subtree_fragile_left(Subtree self) { return self.data.is_inline ? false : self.ptr->fragile_left; } static inline bool ts_subtree_fragile_right(Subtree self) { return self.data.is_inline ? false : self.ptr->fragile_right; } static inline bool ts_subtree_has_external_tokens(Subtree self) { return self.data.is_inline ? false : self.ptr->has_external_tokens; } static inline bool ts_subtree_has_external_scanner_state_change(Subtree self) { return self.data.is_inline ? false : self.ptr->has_external_scanner_state_change; } static inline bool ts_subtree_depends_on_column(Subtree self) { return self.data.is_inline ? false : self.ptr->depends_on_column; } static inline bool ts_subtree_is_fragile(Subtree self) { return self.data.is_inline ? false : (self.ptr->fragile_left || self.ptr->fragile_right); } static inline bool ts_subtree_is_error(Subtree self) { return ts_subtree_symbol(self) == ts_builtin_sym_error; } static inline bool ts_subtree_is_eof(Subtree self) { return ts_subtree_symbol(self) == ts_builtin_sym_end; } static inline Subtree ts_subtree_from_mut(MutableSubtree self) { Subtree result; result.data = self.data; return result; } static inline MutableSubtree ts_subtree_to_mut_unsafe(Subtree self) { MutableSubtree result; result.data = self.data; return result; } typedef enum { TreeCursorStepNone, TreeCursorStepHidden, TreeCursorStepVisible, } TreeCursorStep; void ts_tree_cursor_init(TreeCursor *, TSNode); void ts_tree_cursor_current_status(const TSTreeCursor *, TSFieldId *, bool *, bool *, bool *, TSSymbol *, unsigned *); TreeCursorStep ts_tree_cursor_goto_first_child_internal(TSTreeCursor *); TreeCursorStep ts_tree_cursor_goto_next_sibling_internal(TSTreeCursor *); static inline Subtree ts_tree_cursor_current_subtree(const TSTreeCursor *_self) { const TreeCursor *self = (const TreeCursor *)_self; TreeCursorEntry *last_entry = array_back(&self->stack); return *last_entry->subtree; } TSNode ts_tree_cursor_parent_node(const TSTreeCursor *); typedef struct { const Subtree *child; const Subtree *parent; Length position; TSSymbol alias_symbol; } ParentCacheEntry; struct TSTree { Subtree root; const TSLanguage *language; TSRange *included_ranges; unsigned included_range_count; }; TSTree *ts_tree_new(Subtree root, const TSLanguage *language, const TSRange *, unsigned); TSNode ts_node_new(const TSTree *, const Subtree *, Length, TSSymbol); typedef uint64_t TSClock; typedef uint64_t TSDuration; #endif // TREE_SITTER_TREE_H_ ======= #ifndef TREE_SITTER_API_H_ #define TREE_SITTER_API_H_ #ifndef TREE_SITTER_HIDE_SYMBOLS #if defined(__GNUC__) || defined(__clang__) #pragma GCC visibility push(default) #endif #endif #ifdef __cplusplus extern "C" { #endif #include #include #include /****************************/ /* Section - ABI Versioning */ /****************************/ /** * The latest ABI version that is supported by the current version of the * library. When Languages are generated by the Tree-sitter CLI, they are * assigned an ABI version number that corresponds to the current CLI version. * The Tree-sitter library is generally backwards-compatible with languages * generated using older CLI versions, but is not forwards-compatible. */ #define TREE_SITTER_LANGUAGE_VERSION 14 /** * The earliest ABI version that is supported by the current version of the * library. */ #define TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION 13 /*******************/ /* Section - Types */ /*******************/ typedef uint16_t TSStateId; typedef uint16_t TSSymbol; typedef uint16_t TSFieldId; typedef struct TSLanguage TSLanguage; typedef struct TSParser TSParser; typedef struct TSTree TSTree; typedef struct TSQuery TSQuery; typedef struct TSQueryCursor TSQueryCursor; typedef struct TSLookaheadIterator TSLookaheadIterator; typedef enum TSInputEncoding { TSInputEncodingUTF8, TSInputEncodingUTF16, } TSInputEncoding; typedef enum TSSymbolType { TSSymbolTypeRegular, TSSymbolTypeAnonymous, TSSymbolTypeAuxiliary, } TSSymbolType; typedef struct TSPoint { uint32_t row; uint32_t column; } TSPoint; typedef struct TSRange { TSPoint start_point; TSPoint end_point; uint32_t start_byte; uint32_t end_byte; } TSRange; typedef struct TSInput { void *payload; const char *(*read)(void *payload, uint32_t byte_index, TSPoint position, uint32_t *bytes_read); TSInputEncoding encoding; } TSInput; typedef enum TSLogType { TSLogTypeParse, TSLogTypeLex, } TSLogType; typedef struct TSLogger { void *payload; void (*log)(void *payload, TSLogType log_type, const char *buffer); } TSLogger; typedef struct TSInputEdit { uint32_t start_byte; uint32_t old_end_byte; uint32_t new_end_byte; TSPoint start_point; TSPoint old_end_point; TSPoint new_end_point; } TSInputEdit; typedef struct TSNode { uint32_t context[4]; const void *id; const TSTree *tree; } TSNode; typedef struct TSTreeCursor { const void *tree; const void *id; uint32_t context[3]; } TSTreeCursor; typedef struct TSQueryCapture { TSNode node; uint32_t index; } TSQueryCapture; typedef enum TSQuantifier { TSQuantifierZero = 0, // must match the array initialization value TSQuantifierZeroOrOne, TSQuantifierZeroOrMore, TSQuantifierOne, TSQuantifierOneOrMore, } TSQuantifier; typedef struct TSQueryMatch { uint32_t id; uint16_t pattern_index; uint16_t capture_count; const TSQueryCapture *captures; } TSQueryMatch; typedef enum TSQueryPredicateStepType { TSQueryPredicateStepTypeDone, TSQueryPredicateStepTypeCapture, TSQueryPredicateStepTypeString, } TSQueryPredicateStepType; typedef struct TSQueryPredicateStep { TSQueryPredicateStepType type; uint32_t value_id; } TSQueryPredicateStep; typedef enum TSQueryError { TSQueryErrorNone = 0, TSQueryErrorSyntax, TSQueryErrorNodeType, TSQueryErrorField, TSQueryErrorCapture, TSQueryErrorStructure, TSQueryErrorLanguage, } TSQueryError; /********************/ /* Section - Parser */ /********************/ /** * Create a new parser. */ TSParser *ts_parser_new(void); /** * Delete the parser, freeing all of the memory that it used. */ void ts_parser_delete(TSParser *self); /** * Get the parser's current language. */ const TSLanguage *ts_parser_language(const TSParser *self); /** * Set the language that the parser should use for parsing. * * Returns a boolean indicating whether or not the language was successfully * assigned. True means assignment succeeded. False means there was a version * mismatch: the language was generated with an incompatible version of the * Tree-sitter CLI. Check the language's version using [`ts_language_version`] * and compare it to this library's [`TREE_SITTER_LANGUAGE_VERSION`] and * [`TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION`] constants. */ bool ts_parser_set_language(TSParser *self, const TSLanguage *language); /** * Set the ranges of text that the parser should include when parsing. * * By default, the parser will always include entire documents. This function * allows you to parse only a *portion* of a document but still return a syntax * tree whose ranges match up with the document as a whole. You can also pass * multiple disjoint ranges. * * The second and third parameters specify the location and length of an array * of ranges. The parser does *not* take ownership of these ranges; it copies * the data, so it doesn't matter how these ranges are allocated. * * If `count` is zero, then the entire document will be parsed. Otherwise, * the given ranges must be ordered from earliest to latest in the document, * and they must not overlap. That is, the following must hold for all: * * `i < count - 1`: `ranges[i].end_byte <= ranges[i + 1].start_byte` * * If this requirement is not satisfied, the operation will fail, the ranges * will not be assigned, and this function will return `false`. On success, * this function returns `true` */ bool ts_parser_set_included_ranges( TSParser *self, const TSRange *ranges, uint32_t count ); /** * Get the ranges of text that the parser will include when parsing. * * The returned pointer is owned by the parser. The caller should not free it * or write to it. The length of the array will be written to the given * `count` pointer. */ const TSRange *ts_parser_included_ranges( const TSParser *self, uint32_t *count ); /** * Use the parser to parse some source code and create a syntax tree. * * If you are parsing this document for the first time, pass `NULL` for the * `old_tree` parameter. Otherwise, if you have already parsed an earlier * version of this document and the document has since been edited, pass the * previous syntax tree so that the unchanged parts of it can be reused. * This will save time and memory. For this to work correctly, you must have * already edited the old syntax tree using the [`ts_tree_edit`] function in a * way that exactly matches the source code changes. * * The [`TSInput`] parameter lets you specify how to read the text. It has the * following three fields: * 1. [`read`]: A function to retrieve a chunk of text at a given byte offset * and (row, column) position. The function should return a pointer to the * text and write its length to the [`bytes_read`] pointer. The parser does * not take ownership of this buffer; it just borrows it until it has * finished reading it. The function should write a zero value to the * [`bytes_read`] pointer to indicate the end of the document. * 2. [`payload`]: An arbitrary pointer that will be passed to each invocation * of the [`read`] function. * 3. [`encoding`]: An indication of how the text is encoded. Either * `TSInputEncodingUTF8` or `TSInputEncodingUTF16`. * * This function returns a syntax tree on success, and `NULL` on failure. There * are three possible reasons for failure: * 1. The parser does not have a language assigned. Check for this using the [`ts_parser_language`] function. * 2. Parsing was cancelled due to a timeout that was set by an earlier call to * the [`ts_parser_set_timeout_micros`] function. You can resume parsing from * where the parser left out by calling [`ts_parser_parse`] again with the * same arguments. Or you can start parsing from scratch by first calling * [`ts_parser_reset`]. * 3. Parsing was cancelled using a cancellation flag that was set by an * earlier call to [`ts_parser_set_cancellation_flag`]. You can resume parsing * from where the parser left out by calling [`ts_parser_parse`] again with * the same arguments. * * [`read`]: TSInput::read * [`payload`]: TSInput::payload * [`encoding`]: TSInput::encoding * [`bytes_read`]: TSInput::read */ TSTree *ts_parser_parse( TSParser *self, const TSTree *old_tree, TSInput input ); /** * Use the parser to parse some source code stored in one contiguous buffer. * The first two parameters are the same as in the [`ts_parser_parse`] function * above. The second two parameters indicate the location of the buffer and its * length in bytes. */ TSTree *ts_parser_parse_string( TSParser *self, const TSTree *old_tree, const char *string, uint32_t length ); /** * Use the parser to parse some source code stored in one contiguous buffer with * a given encoding. The first four parameters work the same as in the * [`ts_parser_parse_string`] method above. The final parameter indicates whether * the text is encoded as UTF8 or UTF16. */ TSTree *ts_parser_parse_string_encoding( TSParser *self, const TSTree *old_tree, const char *string, uint32_t length, TSInputEncoding encoding ); /** * Instruct the parser to start the next parse from the beginning. * * If the parser previously failed because of a timeout or a cancellation, then * by default, it will resume where it left off on the next call to * [`ts_parser_parse`] or other parsing functions. If you don't want to resume, * and instead intend to use this parser to parse some other document, you must * call [`ts_parser_reset`] first. */ void ts_parser_reset(TSParser *self); /** * Set the maximum duration in microseconds that parsing should be allowed to * take before halting. * * If parsing takes longer than this, it will halt early, returning NULL. * See [`ts_parser_parse`] for more information. */ void ts_parser_set_timeout_micros(TSParser *self, uint64_t timeout_micros); /** * Get the duration in microseconds that parsing is allowed to take. */ uint64_t ts_parser_timeout_micros(const TSParser *self); /** * Set the parser's current cancellation flag pointer. * * If a non-null pointer is assigned, then the parser will periodically read * from this pointer during parsing. If it reads a non-zero value, it will * halt early, returning NULL. See [`ts_parser_parse`] for more information. */ void ts_parser_set_cancellation_flag(TSParser *self, const size_t *flag); /** * Get the parser's current cancellation flag pointer. */ const size_t *ts_parser_cancellation_flag(const TSParser *self); /** * Set the logger that a parser should use during parsing. * * The parser does not take ownership over the logger payload. If a logger was * previously assigned, the caller is responsible for releasing any memory * owned by the previous logger. */ void ts_parser_set_logger(TSParser *self, TSLogger logger); /** * Get the parser's current logger. */ TSLogger ts_parser_logger(const TSParser *self); /** * Set the file descriptor to which the parser should write debugging graphs * during parsing. The graphs are formatted in the DOT language. You may want * to pipe these graphs directly to a `dot(1)` process in order to generate * SVG output. You can turn off this logging by passing a negative number. */ void ts_parser_print_dot_graphs(TSParser *self, int fd); /******************/ /* Section - Tree */ /******************/ /** * Create a shallow copy of the syntax tree. This is very fast. * * You need to copy a syntax tree in order to use it on more than one thread at * a time, as syntax trees are not thread safe. */ TSTree *ts_tree_copy(const TSTree *self); /** * Delete the syntax tree, freeing all of the memory that it used. */ void ts_tree_delete(TSTree *self); /** * Get the root node of the syntax tree. */ TSNode ts_tree_root_node(const TSTree *self); /** * Get the root node of the syntax tree, but with its position * shifted forward by the given offset. */ TSNode ts_tree_root_node_with_offset( const TSTree *self, uint32_t offset_bytes, TSPoint offset_extent ); /** * Get the language that was used to parse the syntax tree. */ const TSLanguage *ts_tree_language(const TSTree *self); /** * Get the array of included ranges that was used to parse the syntax tree. * * The returned pointer must be freed by the caller. */ TSRange *ts_tree_included_ranges(const TSTree *self, uint32_t *length); /** * Edit the syntax tree to keep it in sync with source code that has been * edited. * * You must describe the edit both in terms of byte offsets and in terms of * (row, column) coordinates. */ void ts_tree_edit(TSTree *self, const TSInputEdit *edit); /** * Compare an old edited syntax tree to a new syntax tree representing the same * document, returning an array of ranges whose syntactic structure has changed. * * For this to work correctly, the old syntax tree must have been edited such * that its ranges match up to the new tree. Generally, you'll want to call * this function right after calling one of the [`ts_parser_parse`] functions. * You need to pass the old tree that was passed to parse, as well as the new * tree that was returned from that function. * * The returned array is allocated using `malloc` and the caller is responsible * for freeing it using `free`. The length of the array will be written to the * given `length` pointer. */ TSRange *ts_tree_get_changed_ranges( const TSTree *old_tree, const TSTree *new_tree, uint32_t *length ); /** * Write a DOT graph describing the syntax tree to the given file. */ void ts_tree_print_dot_graph(const TSTree *self, int file_descriptor); /******************/ /* Section - Node */ /******************/ /** * Get the node's type as a null-terminated string. */ const char *ts_node_type(TSNode self); /** * Get the node's type as a numerical id. */ TSSymbol ts_node_symbol(TSNode self); /** * Get the node's language. */ const TSLanguage *ts_node_language(TSNode self); /** * Get the node's type as it appears in the grammar ignoring aliases as a * null-terminated string. */ const char *ts_node_grammar_type(TSNode self); /** * Get the node's type as a numerical id as it appears in the grammar ignoring * aliases. This should be used in [`ts_language_next_state`] instead of * [`ts_node_symbol`]. */ TSSymbol ts_node_grammar_symbol(TSNode self); /** * Get the node's start byte. */ uint32_t ts_node_start_byte(TSNode self); /** * Get the node's start position in terms of rows and columns. */ TSPoint ts_node_start_point(TSNode self); /** * Get the node's end byte. */ uint32_t ts_node_end_byte(TSNode self); /** * Get the node's end position in terms of rows and columns. */ TSPoint ts_node_end_point(TSNode self); /** * Get an S-expression representing the node as a string. * * This string is allocated with `malloc` and the caller is responsible for * freeing it using `free`. */ char *ts_node_string(TSNode self); /** * Check if the node is null. Functions like [`ts_node_child`] and * [`ts_node_next_sibling`] will return a null node to indicate that no such node * was found. */ bool ts_node_is_null(TSNode self); /** * Check if the node is *named*. Named nodes correspond to named rules in the * grammar, whereas *anonymous* nodes correspond to string literals in the * grammar. */ bool ts_node_is_named(TSNode self); /** * Check if the node is *missing*. Missing nodes are inserted by the parser in * order to recover from certain kinds of syntax errors. */ bool ts_node_is_missing(TSNode self); /** * Check if the node is *extra*. Extra nodes represent things like comments, * which are not required the grammar, but can appear anywhere. */ bool ts_node_is_extra(TSNode self); /** * Check if a syntax node has been edited. */ bool ts_node_has_changes(TSNode self); /** * Check if the node is a syntax error or contains any syntax errors. */ bool ts_node_has_error(TSNode self); /** * Check if the node is a syntax error. */ bool ts_node_is_error(TSNode self); /** * Get this node's parse state. */ TSStateId ts_node_parse_state(TSNode self); /** * Get the parse state after this node. */ TSStateId ts_node_next_parse_state(TSNode self); /** * Get the node's immediate parent. * Prefer [`ts_node_child_containing_descendant`] for * iterating over the node's ancestors. */ TSNode ts_node_parent(TSNode self); /** * Get the node's child that contains `descendant`. */ TSNode ts_node_child_containing_descendant(TSNode self, TSNode descendant); /** * Get the node's child at the given index, where zero represents the first * child. */ TSNode ts_node_child(TSNode self, uint32_t child_index); /** * Get the field name for node's child at the given index, where zero represents * the first child. Returns NULL, if no field is found. */ const char *ts_node_field_name_for_child(TSNode self, uint32_t child_index); /** * Get the node's number of children. */ uint32_t ts_node_child_count(TSNode self); /** * Get the node's *named* child at the given index. * * See also [`ts_node_is_named`]. */ TSNode ts_node_named_child(TSNode self, uint32_t child_index); /** * Get the node's number of *named* children. * * See also [`ts_node_is_named`]. */ uint32_t ts_node_named_child_count(TSNode self); /** * Get the node's child with the given field name. */ TSNode ts_node_child_by_field_name( TSNode self, const char *name, uint32_t name_length ); /** * Get the node's child with the given numerical field id. * * You can convert a field name to an id using the * [`ts_language_field_id_for_name`] function. */ TSNode ts_node_child_by_field_id(TSNode self, TSFieldId field_id); /** * Get the node's next / previous sibling. */ TSNode ts_node_next_sibling(TSNode self); TSNode ts_node_prev_sibling(TSNode self); /** * Get the node's next / previous *named* sibling. */ TSNode ts_node_next_named_sibling(TSNode self); TSNode ts_node_prev_named_sibling(TSNode self); /** * Get the node's first child that extends beyond the given byte offset. */ TSNode ts_node_first_child_for_byte(TSNode self, uint32_t byte); /** * Get the node's first named child that extends beyond the given byte offset. */ TSNode ts_node_first_named_child_for_byte(TSNode self, uint32_t byte); /** * Get the node's number of descendants, including one for the node itself. */ uint32_t ts_node_descendant_count(TSNode self); /** * Get the smallest node within this node that spans the given range of bytes * or (row, column) positions. */ TSNode ts_node_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end); TSNode ts_node_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end); /** * Get the smallest named node within this node that spans the given range of * bytes or (row, column) positions. */ TSNode ts_node_named_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end); TSNode ts_node_named_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end); /** * Edit the node to keep it in-sync with source code that has been edited. * * This function is only rarely needed. When you edit a syntax tree with the * [`ts_tree_edit`] function, all of the nodes that you retrieve from the tree * afterward will already reflect the edit. You only need to use [`ts_node_edit`] * when you have a [`TSNode`] instance that you want to keep and continue to use * after an edit. */ void ts_node_edit(TSNode *self, const TSInputEdit *edit); /** * Check if two nodes are identical. */ bool ts_node_eq(TSNode self, TSNode other); /************************/ /* Section - TreeCursor */ /************************/ /** * Create a new tree cursor starting from the given node. * * A tree cursor allows you to walk a syntax tree more efficiently than is * possible using the [`TSNode`] functions. It is a mutable object that is always * on a certain syntax node, and can be moved imperatively to different nodes. */ TSTreeCursor ts_tree_cursor_new(TSNode node); /** * Delete a tree cursor, freeing all of the memory that it used. */ void ts_tree_cursor_delete(TSTreeCursor *self); /** * Re-initialize a tree cursor to start at a different node. */ void ts_tree_cursor_reset(TSTreeCursor *self, TSNode node); /** * Re-initialize a tree cursor to the same position as another cursor. * * Unlike [`ts_tree_cursor_reset`], this will not lose parent information and * allows reusing already created cursors. */ void ts_tree_cursor_reset_to(TSTreeCursor *dst, const TSTreeCursor *src); /** * Get the tree cursor's current node. */ TSNode ts_tree_cursor_current_node(const TSTreeCursor *self); /** * Get the field name of the tree cursor's current node. * * This returns `NULL` if the current node doesn't have a field. * See also [`ts_node_child_by_field_name`]. */ const char *ts_tree_cursor_current_field_name(const TSTreeCursor *self); /** * Get the field id of the tree cursor's current node. * * This returns zero if the current node doesn't have a field. * See also [`ts_node_child_by_field_id`], [`ts_language_field_id_for_name`]. */ TSFieldId ts_tree_cursor_current_field_id(const TSTreeCursor *self); /** * Move the cursor to the parent of its current node. * * This returns `true` if the cursor successfully moved, and returns `false` * if there was no parent node (the cursor was already on the root node). */ bool ts_tree_cursor_goto_parent(TSTreeCursor *self); /** * Move the cursor to the next sibling of its current node. * * This returns `true` if the cursor successfully moved, and returns `false` * if there was no next sibling node. */ bool ts_tree_cursor_goto_next_sibling(TSTreeCursor *self); /** * Move the cursor to the previous sibling of its current node. * * This returns `true` if the cursor successfully moved, and returns `false` if * there was no previous sibling node. * * Note, that this function may be slower than * [`ts_tree_cursor_goto_next_sibling`] due to how node positions are stored. In * the worst case, this will need to iterate through all the children upto the * previous sibling node to recalculate its position. */ bool ts_tree_cursor_goto_previous_sibling(TSTreeCursor *self); /** * Move the cursor to the first child of its current node. * * This returns `true` if the cursor successfully moved, and returns `false` * if there were no children. */ bool ts_tree_cursor_goto_first_child(TSTreeCursor *self); /** * Move the cursor to the last child of its current node. * * This returns `true` if the cursor successfully moved, and returns `false` if * there were no children. * * Note that this function may be slower than [`ts_tree_cursor_goto_first_child`] * because it needs to iterate through all the children to compute the child's * position. */ bool ts_tree_cursor_goto_last_child(TSTreeCursor *self); /** * Move the cursor to the node that is the nth descendant of * the original node that the cursor was constructed with, where * zero represents the original node itself. */ void ts_tree_cursor_goto_descendant(TSTreeCursor *self, uint32_t goal_descendant_index); /** * Get the index of the cursor's current node out of all of the * descendants of the original node that the cursor was constructed with. */ uint32_t ts_tree_cursor_current_descendant_index(const TSTreeCursor *self); /** * Get the depth of the cursor's current node relative to the original * node that the cursor was constructed with. */ uint32_t ts_tree_cursor_current_depth(const TSTreeCursor *self); /** * Move the cursor to the first child of its current node that extends beyond * the given byte offset or point. * * This returns the index of the child node if one was found, and returns -1 * if no such child was found. */ int64_t ts_tree_cursor_goto_first_child_for_byte(TSTreeCursor *self, uint32_t goal_byte); int64_t ts_tree_cursor_goto_first_child_for_point(TSTreeCursor *self, TSPoint goal_point); TSTreeCursor ts_tree_cursor_copy(const TSTreeCursor *cursor); /*******************/ /* Section - Query */ /*******************/ /** * Create a new query from a string containing one or more S-expression * patterns. The query is associated with a particular language, and can * only be run on syntax nodes parsed with that language. * * If all of the given patterns are valid, this returns a [`TSQuery`]. * If a pattern is invalid, this returns `NULL`, and provides two pieces * of information about the problem: * 1. The byte offset of the error is written to the `error_offset` parameter. * 2. The type of error is written to the `error_type` parameter. */ TSQuery *ts_query_new( const TSLanguage *language, const char *source, uint32_t source_len, uint32_t *error_offset, TSQueryError *error_type ); /** * Delete a query, freeing all of the memory that it used. */ void ts_query_delete(TSQuery *self); /** * Get the number of patterns, captures, or string literals in the query. */ uint32_t ts_query_pattern_count(const TSQuery *self); uint32_t ts_query_capture_count(const TSQuery *self); uint32_t ts_query_string_count(const TSQuery *self); /** * Get the byte offset where the given pattern starts in the query's source. * * This can be useful when combining queries by concatenating their source * code strings. */ uint32_t ts_query_start_byte_for_pattern(const TSQuery *self, uint32_t pattern_index); /** * Get all of the predicates for the given pattern in the query. * * The predicates are represented as a single array of steps. There are three * types of steps in this array, which correspond to the three legal values for * the `type` field: * - `TSQueryPredicateStepTypeCapture` - Steps with this type represent names * of captures. Their `value_id` can be used with the * [`ts_query_capture_name_for_id`] function to obtain the name of the capture. * - `TSQueryPredicateStepTypeString` - Steps with this type represent literal * strings. Their `value_id` can be used with the * [`ts_query_string_value_for_id`] function to obtain their string value. * - `TSQueryPredicateStepTypeDone` - Steps with this type are *sentinels* * that represent the end of an individual predicate. If a pattern has two * predicates, then there will be two steps with this `type` in the array. */ const TSQueryPredicateStep *ts_query_predicates_for_pattern( const TSQuery *self, uint32_t pattern_index, uint32_t *step_count ); /* * Check if the given pattern in the query has a single root node. */ bool ts_query_is_pattern_rooted(const TSQuery *self, uint32_t pattern_index); /* * Check if the given pattern in the query is 'non local'. * * A non-local pattern has multiple root nodes and can match within a * repeating sequence of nodes, as specified by the grammar. Non-local * patterns disable certain optimizations that would otherwise be possible * when executing a query on a specific range of a syntax tree. */ bool ts_query_is_pattern_non_local(const TSQuery *self, uint32_t pattern_index); /* * Check if a given pattern is guaranteed to match once a given step is reached. * The step is specified by its byte offset in the query's source code. */ bool ts_query_is_pattern_guaranteed_at_step(const TSQuery *self, uint32_t byte_offset); /** * Get the name and length of one of the query's captures, or one of the * query's string literals. Each capture and string is associated with a * numeric id based on the order that it appeared in the query's source. */ const char *ts_query_capture_name_for_id( const TSQuery *self, uint32_t index, uint32_t *length ); /** * Get the quantifier of the query's captures. Each capture is * associated * with a numeric id based on the order that it appeared in the query's source. */ TSQuantifier ts_query_capture_quantifier_for_id( const TSQuery *self, uint32_t pattern_index, uint32_t capture_index ); const char *ts_query_string_value_for_id( const TSQuery *self, uint32_t index, uint32_t *length ); /** * Disable a certain capture within a query. * * This prevents the capture from being returned in matches, and also avoids * any resource usage associated with recording the capture. Currently, there * is no way to undo this. */ void ts_query_disable_capture(TSQuery *self, const char *name, uint32_t length); /** * Disable a certain pattern within a query. * * This prevents the pattern from matching and removes most of the overhead * associated with the pattern. Currently, there is no way to undo this. */ void ts_query_disable_pattern(TSQuery *self, uint32_t pattern_index); /** * Create a new cursor for executing a given query. * * The cursor stores the state that is needed to iteratively search * for matches. To use the query cursor, first call [`ts_query_cursor_exec`] * to start running a given query on a given syntax node. Then, there are * two options for consuming the results of the query: * 1. Repeatedly call [`ts_query_cursor_next_match`] to iterate over all of the * *matches* in the order that they were found. Each match contains the * index of the pattern that matched, and an array of captures. Because * multiple patterns can match the same set of nodes, one match may contain * captures that appear *before* some of the captures from a previous match. * 2. Repeatedly call [`ts_query_cursor_next_capture`] to iterate over all of the * individual *captures* in the order that they appear. This is useful if * don't care about which pattern matched, and just want a single ordered * sequence of captures. * * If you don't care about consuming all of the results, you can stop calling * [`ts_query_cursor_next_match`] or [`ts_query_cursor_next_capture`] at any point. * You can then start executing another query on another node by calling * [`ts_query_cursor_exec`] again. */ TSQueryCursor *ts_query_cursor_new(void); /** * Delete a query cursor, freeing all of the memory that it used. */ void ts_query_cursor_delete(TSQueryCursor *self); /** * Start running a given query on a given node. */ void ts_query_cursor_exec(TSQueryCursor *self, const TSQuery *query, TSNode node); /** * Manage the maximum number of in-progress matches allowed by this query * cursor. * * Query cursors have an optional maximum capacity for storing lists of * in-progress captures. If this capacity is exceeded, then the * earliest-starting match will silently be dropped to make room for further * matches. This maximum capacity is optional — by default, query cursors allow * any number of pending matches, dynamically allocating new space for them as * needed as the query is executed. */ bool ts_query_cursor_did_exceed_match_limit(const TSQueryCursor *self); uint32_t ts_query_cursor_match_limit(const TSQueryCursor *self); void ts_query_cursor_set_match_limit(TSQueryCursor *self, uint32_t limit); /** * Set the range of bytes or (row, column) positions in which the query * will be executed. */ void ts_query_cursor_set_byte_range(TSQueryCursor *self, uint32_t start_byte, uint32_t end_byte); void ts_query_cursor_set_point_range(TSQueryCursor *self, TSPoint start_point, TSPoint end_point); /** * Advance to the next match of the currently running query. * * If there is a match, write it to `*match` and return `true`. * Otherwise, return `false`. */ bool ts_query_cursor_next_match(TSQueryCursor *self, TSQueryMatch *match); void ts_query_cursor_remove_match(TSQueryCursor *self, uint32_t match_id); /** * Advance to the next capture of the currently running query. * * If there is a capture, write its match to `*match` and its index within * the matche's capture list to `*capture_index`. Otherwise, return `false`. */ bool ts_query_cursor_next_capture( TSQueryCursor *self, TSQueryMatch *match, uint32_t *capture_index ); /** * Set the maximum start depth for a query cursor. * * This prevents cursors from exploring children nodes at a certain depth. * Note if a pattern includes many children, then they will still be checked. * * The zero max start depth value can be used as a special behavior and * it helps to destructure a subtree by staying on a node and using captures * for interested parts. Note that the zero max start depth only limit a search * depth for a pattern's root node but other nodes that are parts of the pattern * may be searched at any depth what defined by the pattern structure. * * Set to `UINT32_MAX` to remove the maximum start depth. */ void ts_query_cursor_set_max_start_depth(TSQueryCursor *self, uint32_t max_start_depth); /**********************/ /* Section - Language */ /**********************/ /** * Get another reference to the given language. */ const TSLanguage *ts_language_copy(const TSLanguage *self); /** * Free any dynamically-allocated resources for this language, if * this is the last reference. */ void ts_language_delete(const TSLanguage *self); /** * Get the number of distinct node types in the language. */ uint32_t ts_language_symbol_count(const TSLanguage *self); /** * Get the number of valid states in this language. */ uint32_t ts_language_state_count(const TSLanguage *self); /** * Get a node type string for the given numerical id. */ const char *ts_language_symbol_name(const TSLanguage *self, TSSymbol symbol); /** * Get the numerical id for the given node type string. */ TSSymbol ts_language_symbol_for_name( const TSLanguage *self, const char *string, uint32_t length, bool is_named ); /** * Get the number of distinct field names in the language. */ uint32_t ts_language_field_count(const TSLanguage *self); /** * Get the field name string for the given numerical id. */ const char *ts_language_field_name_for_id(const TSLanguage *self, TSFieldId id); /** * Get the numerical id for the given field name string. */ TSFieldId ts_language_field_id_for_name(const TSLanguage *self, const char *name, uint32_t name_length); /** * Check whether the given node type id belongs to named nodes, anonymous nodes, * or a hidden nodes. * * See also [`ts_node_is_named`]. Hidden nodes are never returned from the API. */ TSSymbolType ts_language_symbol_type(const TSLanguage *self, TSSymbol symbol); /** * Get the ABI version number for this language. This version number is used * to ensure that languages were generated by a compatible version of * Tree-sitter. * * See also [`ts_parser_set_language`]. */ uint32_t ts_language_version(const TSLanguage *self); /** * Get the next parse state. Combine this with lookahead iterators to generate * completion suggestions or valid symbols in error nodes. Use * [`ts_node_grammar_symbol`] for valid symbols. */ TSStateId ts_language_next_state(const TSLanguage *self, TSStateId state, TSSymbol symbol); /********************************/ /* Section - Lookahead Iterator */ /********************************/ /** * Create a new lookahead iterator for the given language and parse state. * * This returns `NULL` if state is invalid for the language. * * Repeatedly using [`ts_lookahead_iterator_next`] and * [`ts_lookahead_iterator_current_symbol`] will generate valid symbols in the * given parse state. Newly created lookahead iterators will contain the `ERROR` * symbol. * * Lookahead iterators can be useful to generate suggestions and improve syntax * error diagnostics. To get symbols valid in an ERROR node, use the lookahead * iterator on its first leaf node state. For `MISSING` nodes, a lookahead * iterator created on the previous non-extra leaf node may be appropriate. */ TSLookaheadIterator *ts_lookahead_iterator_new(const TSLanguage *self, TSStateId state); /** * Delete a lookahead iterator freeing all the memory used. */ void ts_lookahead_iterator_delete(TSLookaheadIterator *self); /** * Reset the lookahead iterator to another state. * * This returns `true` if the iterator was reset to the given state and `false` * otherwise. */ bool ts_lookahead_iterator_reset_state(TSLookaheadIterator *self, TSStateId state); /** * Reset the lookahead iterator. * * This returns `true` if the language was set successfully and `false` * otherwise. */ bool ts_lookahead_iterator_reset(TSLookaheadIterator *self, const TSLanguage *language, TSStateId state); /** * Get the current language of the lookahead iterator. */ const TSLanguage *ts_lookahead_iterator_language(const TSLookaheadIterator *self); /** * Advance the lookahead iterator to the next symbol. * * This returns `true` if there is a new symbol and `false` otherwise. */ bool ts_lookahead_iterator_next(TSLookaheadIterator *self); /** * Get the current symbol of the lookahead iterator; */ TSSymbol ts_lookahead_iterator_current_symbol(const TSLookaheadIterator *self); /** * Get the current symbol type of the lookahead iterator as a null terminated * string. */ const char *ts_lookahead_iterator_current_symbol_name(const TSLookaheadIterator *self); /*************************************/ /* Section - WebAssembly Integration */ /************************************/ typedef struct wasm_engine_t TSWasmEngine; typedef struct TSWasmStore TSWasmStore; typedef enum { TSWasmErrorKindNone = 0, TSWasmErrorKindParse, TSWasmErrorKindCompile, TSWasmErrorKindInstantiate, TSWasmErrorKindAllocate, } TSWasmErrorKind; typedef struct { TSWasmErrorKind kind; char *message; } TSWasmError; /** * Create a Wasm store. */ TSWasmStore *ts_wasm_store_new( TSWasmEngine *engine, TSWasmError *error ); /** * Free the memory associated with the given Wasm store. */ void ts_wasm_store_delete(TSWasmStore *); /** * Create a language from a buffer of Wasm. The resulting language behaves * like any other Tree-sitter language, except that in order to use it with * a parser, that parser must have a Wasm store. Note that the language * can be used with any Wasm store, it doesn't need to be the same store that * was used to originally load it. */ const TSLanguage *ts_wasm_store_load_language( TSWasmStore *, const char *name, const char *wasm, uint32_t wasm_len, TSWasmError *error ); /** * Get the number of languages instantiated in the given wasm store. */ size_t ts_wasm_store_language_count(const TSWasmStore *); /** * Check if the language came from a Wasm module. If so, then in order to use * this language with a Parser, that parser must have a Wasm store assigned. */ bool ts_language_is_wasm(const TSLanguage *); /** * Assign the given Wasm store to the parser. A parser must have a Wasm store * in order to use Wasm languages. */ void ts_parser_set_wasm_store(TSParser *, TSWasmStore *); /** * Remove the parser's current Wasm store and return it. This returns NULL if * the parser doesn't have a Wasm store. */ TSWasmStore *ts_parser_take_wasm_store(TSParser *); /**********************************/ /* Section - Global Configuration */ /**********************************/ /** * Set the allocation functions used by the library. * * By default, Tree-sitter uses the standard libc allocation functions, * but aborts the process when an allocation fails. This function lets * you supply alternative allocation functions at runtime. * * If you pass `NULL` for any parameter, Tree-sitter will switch back to * its default implementation of that function. * * If you call this function after the library has already been used, then * you must ensure that either: * 1. All the existing objects have been freed. * 2. The new allocator shares its state with the old one, so it is capable * of freeing memory that was allocated by the old allocator. */ void ts_set_allocator( void *(*new_malloc)(size_t), void *(*new_calloc)(size_t, size_t), void *(*new_realloc)(void *, size_t), void (*new_free)(void *) ); #ifdef __cplusplus } #endif #ifndef TREE_SITTER_HIDE_SYMBOLS #if defined(__GNUC__) || defined(__clang__) #pragma GCC visibility pop #endif #endif #endif // TREE_SITTER_API_H_ >>>>>>> master