minishell/parser/src/api.h
2024-07-22 15:41:20 +02:00

735 lines
22 KiB
C

/* ************************************************************************** */
/* */
/* ::: :::::::: */
/* api.h :+: :+: :+: */
/* +:+ +:+ +:+ */
/* By: maiboyer <maiboyer@student.42.fr> +#+ +:+ +#+ */
/* +#+#+#+#+#+ +#+ */
/* Created: 2024/07/22 13:54:54 by maiboyer #+# #+# */
/* Updated: 2024/07/22 13:55:02 by maiboyer ### ########.fr */
/* */
/* ************************************************************************** */
#ifndef API_H
#define API_H
#include "me/types.h"
#define ERROR_STATE 0
#define ERROR_COST_PER_RECOVERY 500
#define ERROR_COST_PER_MISSING_TREE 110
#define ERROR_COST_PER_SKIPPED_TREE 100
#define ERROR_COST_PER_SKIPPED_LINE 30
#define ERROR_COST_PER_SKIPPED_CHAR 1
/****************************/
/* Section - ABI Versioning */
/****************************/
/**
* The latest ABI version that is supported by the current version of the
* library. When Languages are generated by the Tree-sitter CLI, they are
* assigned an ABI version number that corresponds to the current CLI version.
* The Tree-sitter library is generally backwards-compatible with languages
* generated using older CLI versions, but is not forwards-compatible.
*/
#define TREE_SITTER_LANGUAGE_VERSION 14
/**
* The earliest ABI version that is supported by the current version of the
* library.
*/
#define TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION 13
/*******************/
/* Section - Types */
/*******************/
typedef t_u16 TSStateId;
typedef t_u16 TSSymbol;
typedef t_u16 TSFieldId;
typedef struct TSLanguage TSLanguage;
typedef struct TSParser TSParser;
typedef struct TSTree TSTree;
typedef struct TSQuery TSQuery;
typedef struct TSQueryCursor TSQueryCursor;
typedef struct TSLookaheadIterator TSLookaheadIterator;
typedef enum TSInputEncoding
{
TSInputEncodingUTF8,
TSInputEncodingUTF16,
} TSInputEncoding;
typedef enum TSSymbolType
{
TSSymbolTypeRegular,
TSSymbolTypeAnonymous,
TSSymbolTypeAuxiliary,
} TSSymbolType;
typedef struct TSPoint
{
t_u32 row;
t_u32 column;
} TSPoint;
typedef struct TSRange
{
TSPoint start_point;
TSPoint end_point;
t_u32 start_byte;
t_u32 end_byte;
} TSRange;
typedef struct TSInput
{
void *payload;
const t_u8 *(*read)(void *payload, t_u32 byte_index, TSPoint position, t_u32 *bytes_read);
TSInputEncoding encoding;
} TSInput;
typedef enum TSLogType
{
TSLogTypeParse,
TSLogTypeLex,
} TSLogType;
typedef struct TSLogger
{
void *payload;
void (*log)(void *payload, TSLogType log_type, const t_u8 *buffer);
} TSLogger;
typedef struct TSInputEdit
{
t_u32 start_byte;
t_u32 old_end_byte;
t_u32 new_end_byte;
TSPoint start_point;
TSPoint old_end_point;
TSPoint new_end_point;
} TSInputEdit;
typedef struct TSNode
{
t_u32 context[4];
const void *id;
const TSTree *tree;
} TSNode;
typedef struct TSTreeCursor
{
const void *tree;
const void *id;
t_u32 context[3];
} TSTreeCursor;
typedef struct TSQueryCapture
{
TSNode node;
t_u32 index;
} TSQueryCapture;
typedef enum TSQuantifier
{
TSQuantifierZero = 0, // must match the array initialization value
TSQuantifierZeroOrOne,
TSQuantifierZeroOrMore,
TSQuantifierOne,
TSQuantifierOneOrMore,
} TSQuantifier;
typedef struct TSQueryMatch
{
t_u32 id;
t_u16 pattern_index;
t_u16 capture_count;
const TSQueryCapture *captures;
} TSQueryMatch;
typedef enum TSQueryPredicateStepType
{
TSQueryPredicateStepTypeDone,
TSQueryPredicateStepTypeCapture,
TSQueryPredicateStepTypeString,
} TSQueryPredicateStepType;
typedef struct TSQueryPredicateStep
{
TSQueryPredicateStepType type;
t_u32 value_id;
} TSQueryPredicateStep;
typedef enum TSQueryError
{
TSQueryErrorNone = 0,
TSQueryErrorSyntax,
TSQueryErrorNodeType,
TSQueryErrorField,
TSQueryErrorCapture,
TSQueryErrorStructure,
TSQueryErrorLanguage,
} TSQueryError;
/********************/
/* Section - Parser */
/********************/
/**
* Create a new parser.
*/
TSParser *ts_parser_new(void);
/**
* Delete the parser, freeing all of the memory that it used.
*/
void ts_parser_delete(TSParser *self);
/**
* Get the parser's current language.
*/
const TSLanguage *ts_parser_language(const TSParser *self);
/**
* Set the language that the parser should use for parsing.
*
* Returns a boolean indicating whether or not the language was successfully
* assigned. True means assignment succeeded. False means there was a version
* mismatch: the language was generated with an incompatible version of the
* Tree-sitter CLI. Check the language's version using [`ts_language_version`]
* and compare it to this library's [`TREE_SITTER_LANGUAGE_VERSION`] and
* [`TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION`] constants.
*/
bool ts_parser_set_language(TSParser *self, const TSLanguage *language);
/**
* Set the ranges of text that the parser should include when parsing.
*
* By default, the parser will always include entire documents. This function
* allows you to parse only a *portion* of a document but still return a syntax
* tree whose ranges match up with the document as a whole. You can also pass
* multiple disjoint ranges.
*
* The second and third parameters specify the location and length of an array
* of ranges. The parser does *not* take ownership of these ranges; it copies
* the data, so it doesn't matter how these ranges are allocated.
*
* If `count` is zero, then the entire document will be parsed. Otherwise,
* the given ranges must be ordered from earliest to latest in the document,
* and they must not overlap. That is, the following must hold for all:
*
* `i < count - 1`: `ranges[i].end_byte <= ranges[i + 1].start_byte`
*
* If this requirement is not satisfied, the operation will fail, the ranges
* will not be assigned, and this function will return `false`. On success,
* this function returns `true`
*/
bool ts_parser_set_included_ranges(TSParser *self, const TSRange *ranges, t_u32 count);
/**
* Get the ranges of text that the parser will include when parsing.
*
* The returned pointer is owned by the parser. The caller should not free it
* or write to it. The length of the array will be written to the given
* `count` pointer.
*/
const TSRange *ts_parser_included_ranges(const TSParser *self, t_u32 *count);
/**
* Use the parser to parse some source code and create a syntax tree.
*
* If you are parsing this document for the first time, pass `NULL` for the
* `old_tree` parameter. Otherwise, if you have already parsed an earlier
* version of this document and the document has since been edited, pass the
* previous syntax tree so that the unchanged parts of it can be reused.
* This will save time and memory. For this to work correctly, you must have
* already edited the old syntax tree using the [`ts_tree_edit`] function in a
* way that exactly matches the source code changes.
*
* The [`TSInput`] parameter lets you specify how to read the text. It has the
* following three fields:
* 1. [`read`]: A function to retrieve a chunk of text at a given byte offset
* and (row, column) position. The function should return a pointer to the
* text and write its length to the [`bytes_read`] pointer. The parser does
* not take ownership of this buffer; it just borrows it until it has
* finished reading it. The function should write a zero value to the
* [`bytes_read`] pointer to indicate the end of the document.
* 2. [`payload`]: An arbitrary pointer that will be passed to each invocation
* of the [`read`] function.
* 3. [`encoding`]: An indication of how the text is encoded. Either
* `TSInputEncodingUTF8` or `TSInputEncodingUTF16`.
*
* This function returns a syntax tree on success, and `NULL` on failure. There
* are three possible reasons for failure:
* 1. The parser does not have a language assigned. Check for this using the
[`ts_parser_language`] function.
* 2. Parsing was cancelled due to a timeout that was set by an earlier call to
* the [`ts_parser_set_timeout_micros`] function. You can resume parsing from
* where the parser left out by calling [`ts_parser_parse`] again with the
* same arguments. Or you can start parsing from scratch by first calling
* [`ts_parser_reset`].
* 3. Parsing was cancelled using a cancellation flag that was set by an
* earlier call to [`ts_parser_set_cancellation_flag`]. You can resume parsing
* from where the parser left out by calling [`ts_parser_parse`] again with
* the same arguments.
*
* [`read`]: TSInput::read
* [`payload`]: TSInput::payload
* [`encoding`]: TSInput::encoding
* [`bytes_read`]: TSInput::read
*/
TSTree *ts_parser_parse(TSParser *self, const TSTree *old_tree, TSInput input);
/**
* Use the parser to parse some source code stored in one contiguous buffer.
* The first two parameters are the same as in the [`ts_parser_parse`] function
* above. The second two parameters indicate the location of the buffer and its
* length in bytes.
*/
TSTree *ts_parser_parse_string(TSParser *self, const TSTree *old_tree, t_const_str string, t_u32 length);
/**
* Use the parser to parse some source code stored in one contiguous buffer with
* a given encoding. The first four parameters work the same as in the
* [`ts_parser_parse_string`] method above. The final parameter indicates whether
* the text is encoded as UTF8 or UTF16.
*/
TSTree *ts_parser_parse_string_encoding(TSParser *self, const TSTree *old_tree, t_const_str string, t_u32 length, TSInputEncoding encoding);
/**
* Instruct the parser to start the next parse from the beginning.
*
* If the parser previously failed because of a timeout or a cancellation, then
* by default, it will resume where it left off on the next call to
* [`ts_parser_parse`] or other parsing functions. If you don't want to resume,
* and instead intend to use this parser to parse some other document, you must
* call [`ts_parser_reset`] first.
*/
void ts_parser_reset(TSParser *self);
/**
* Set the maximum duration in microseconds that parsing should be allowed to
* take before halting.
*
* If parsing takes longer than this, it will halt early, returning NULL.
* See [`ts_parser_parse`] for more information.
*/
void ts_parser_set_timeout_micros(TSParser *self, t_u64 timeout_micros);
/**
* Get the duration in microseconds that parsing is allowed to take.
*/
t_u64 ts_parser_timeout_micros(const TSParser *self);
/**
* Set the parser's current cancellation flag pointer.
*
* If a non-null pointer is assigned, then the parser will periodically read
* from this pointer during parsing. If it reads a non-zero value, it will
* halt early, returning NULL. See [`ts_parser_parse`] for more information.
*/
void ts_parser_set_cancellation_flag(TSParser *self, const size_t *flag);
/**
* Get the parser's current cancellation flag pointer.
*/
const size_t *ts_parser_cancellation_flag(const TSParser *self);
/**
* Set the logger that a parser should use during parsing.
*
* The parser does not take ownership over the logger payload. If a logger was
* previously assigned, the caller is responsible for releasing any memory
* owned by the previous logger.
*/
void ts_parser_set_logger(TSParser *self, TSLogger logger);
/**
* Get the parser's current logger.
*/
TSLogger ts_parser_logger(const TSParser *self);
/**
* Set the file descriptor to which the parser should write debugging graphs
* during parsing. The graphs are formatted in the DOT language. You may want
* to pipe these graphs directly to a `dot(1)` process in order to generate
* SVG output. You can turn off this logging by passing a negative number.
*/
void ts_parser_print_dot_graphs(TSParser *self, int fd);
/******************/
/* Section - Tree */
/******************/
/**
* Create a shallow copy of the syntax tree. This is very fast.
*
* You need to copy a syntax tree in order to use it on more than one thread at
* a time, as syntax trees are not thread safe.
*/
TSTree *ts_tree_copy(const TSTree *self);
/**
* Delete the syntax tree, freeing all of the memory that it used.
*/
void ts_tree_delete(TSTree *self);
/**
* Get the root node of the syntax tree.
*/
TSNode ts_tree_root_node(const TSTree *self);
/**
* Get the root node of the syntax tree, but with its position
* shifted forward by the given offset.
*/
TSNode ts_tree_root_node_with_offset(const TSTree *self, t_u32 offset_bytes, TSPoint offset_extent);
/**
* Get the language that was used to parse the syntax tree.
*/
const TSLanguage *ts_tree_language(const TSTree *self);
/**
* Get the array of included ranges that was used to parse the syntax tree.
*
* The returned pointer must be freed by the caller.
*/
TSRange *ts_tree_included_ranges(const TSTree *self, t_u32 *length);
/**
* Edit the syntax tree to keep it in sync with source code that has been
* edited.
*
* You must describe the edit both in terms of byte offsets and in terms of
* (row, column) coordinates.
*/
void ts_tree_edit(TSTree *self, const TSInputEdit *edit);
/**
* Compare an old edited syntax tree to a new syntax tree representing the same
* document, returning an array of ranges whose syntactic structure has changed.
*
* For this to work correctly, the old syntax tree must have been edited such
* that its ranges match up to the new tree. Generally, you'll want to call
* this function right after calling one of the [`ts_parser_parse`] functions.
* You need to pass the old tree that was passed to parse, as well as the new
* tree that was returned from that function.
*
* The returned array is allocated using `malloc` and the caller is responsible
* for freeing it using `free`. The length of the array will be written to the
* given `length` pointer.
*/
TSRange *ts_tree_get_changed_ranges(const TSTree *old_tree, const TSTree *new_tree, t_u32 *length);
/**
* Write a DOT graph describing the syntax tree to the given file.
*/
void ts_tree_print_dot_graph(const TSTree *self, int file_descriptor);
/******************/
/* Section - Node */
/******************/
/**
* Get the node's type as a null-terminated string.
*/
t_const_str ts_node_type(TSNode self);
/**
* Get the node's type as a numerical id.
*/
TSSymbol ts_node_symbol(TSNode self);
/**
* Get the node's language.
*/
const TSLanguage *ts_node_language(TSNode self);
/**
* Get the node's type as it appears in the grammar ignoring aliases as a
* null-terminated string.
*/
t_const_str ts_node_grammar_type(TSNode self);
/**
* Get the node's type as a numerical id as it appears in the grammar ignoring
* aliases. This should be used in [`ts_language_next_state`] instead of
* [`ts_node_symbol`].
*/
TSSymbol ts_node_grammar_symbol(TSNode self);
/**
* Get the node's start byte.
*/
t_u32 ts_node_start_byte(TSNode self);
/**
* Get the node's start position in terms of rows and columns.
*/
TSPoint ts_node_start_point(TSNode self);
/**
* Get the node's end byte.
*/
t_u32 ts_node_end_byte(TSNode self);
/**
* Get the node's end position in terms of rows and columns.
*/
TSPoint ts_node_end_point(TSNode self);
/**
* Get an S-expression representing the node as a string.
*
* This string is allocated with `malloc` and the caller is responsible for
* freeing it using `free`.
*/
char *ts_node_string(TSNode self);
/**
* Check if the node is null. Functions like [`ts_node_child`] and
* [`ts_node_next_sibling`] will return a null node to indicate that no such node
* was found.
*/
bool ts_node_is_null(TSNode self);
/**
* Check if the node is *named*. Named nodes correspond to named rules in the
* grammar, whereas *anonymous* nodes correspond to string literals in the
* grammar.
*/
bool ts_node_is_named(TSNode self);
/**
* Check if the node is *missing*. Missing nodes are inserted by the parser in
* order to recover from certain kinds of syntax errors.
*/
bool ts_node_is_missing(TSNode self);
/**
* Check if the node is *extra*. Extra nodes represent things like comments,
* which are not required the grammar, but can appear anywhere.
*/
bool ts_node_is_extra(TSNode self);
/**
* Check if a syntax node has been edited.
*/
bool ts_node_has_changes(TSNode self);
/**
* Check if the node is a syntax error or contains any syntax errors.
*/
bool ts_node_has_error(TSNode self);
/**
* Check if the node is a syntax error.
*/
bool ts_node_is_error(TSNode self);
/**
* Get this node's parse state.
*/
TSStateId ts_node_parse_state(TSNode self);
/**
* Get the parse state after this node.
*/
TSStateId ts_node_next_parse_state(TSNode self);
/**
* Get the node's immediate parent.
* Prefer [`ts_node_child_containing_descendant`] for
* iterating over the node's ancestors.
*/
TSNode ts_node_parent(TSNode self);
/**
* Get the node's child that contains `descendant`.
*/
TSNode ts_node_child_containing_descendant(TSNode self, TSNode descendant);
/**
* Get the node's child at the given index, where zero represents the first
* child.
*/
TSNode ts_node_child(TSNode self, t_u32 child_index);
/**
* Get the field name for node's child at the given index, where zero represents
* the first child. Returns NULL, if no field is found.
*/
t_const_str ts_node_field_name_for_child(TSNode self, t_u32 child_index);
/**
* Get the field name for node's child at the given index, where zero represents
* the first child. Returns NULL, if no field is found.
*/
TSFieldId ts_node_field_id_for_child(TSNode self, t_u32 child_index);
/**
* Get the node's number of children.
*/
t_u32 ts_node_child_count(TSNode self);
/**
* Get the node's *named* child at the given index.
*
* See also [`ts_node_is_named`].
*/
TSNode ts_node_named_child(TSNode self, t_u32 child_index);
/**
* Get the node's number of *named* children.
*
* See also [`ts_node_is_named`].
*/
t_u32 ts_node_named_child_count(TSNode self);
/**
* Get the node's child with the given field name.
*/
TSNode ts_node_child_by_field_name(TSNode self, t_const_str name, t_u32 name_length);
/**
* Get the node's child with the given numerical field id.
*
* You can convert a field name to an id using the
* [`ts_language_field_id_for_name`] function.
*/
TSNode ts_node_child_by_field_id(TSNode self, TSFieldId field_id);
/**
* Get the node's next / previous sibling.
*/
TSNode ts_node_next_sibling(TSNode self);
TSNode ts_node_prev_sibling(TSNode self);
/**
* Get the node's next / previous *named* sibling.
*/
TSNode ts_node_next_named_sibling(TSNode self);
TSNode ts_node_prev_named_sibling(TSNode self);
/**
* Get the node's first child that extends beyond the given byte offset.
*/
TSNode ts_node_first_child_for_byte(TSNode self, t_u32 byte);
/**
* Get the node's first named child that extends beyond the given byte offset.
*/
TSNode ts_node_first_named_child_for_byte(TSNode self, t_u32 byte);
/**
* Get the node's number of descendants, including one for the node itself.
*/
t_u32 ts_node_descendant_count(TSNode self);
/**
* Get the smallest node within this node that spans the given range of bytes
* or (row, column) positions.
*/
TSNode ts_node_descendant_for_byte_range(TSNode self, t_u32 start, t_u32 end);
TSNode ts_node_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end);
/**
* Get the smallest named node within this node that spans the given range of
* bytes or (row, column) positions.
*/
TSNode ts_node_named_descendant_for_byte_range(TSNode self, t_u32 start, t_u32 end);
TSNode ts_node_named_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end);
/**
* Edit the node to keep it in-sync with source code that has been edited.
*
* This function is only rarely needed. When you edit a syntax tree with the
* [`ts_tree_edit`] function, all of the nodes that you retrieve from the tree
* afterward will already reflect the edit. You only need to use [`ts_node_edit`]
* when you have a [`TSNode`] instance that you want to keep and continue to use
* after an edit.
*/
void ts_node_edit(TSNode *self, const TSInputEdit *edit);
/**
* Check if two nodes are identical.
*/
bool ts_node_eq(TSNode self, TSNode other);
/**********************/
/* Section - Language */
/**********************/
/**
* Get another reference to the given language.
*/
const TSLanguage *ts_language_copy(const TSLanguage *self);
/**
* Free any dynamically-allocated resources for this language, if
* this is the last reference.
*/
void ts_language_delete(const TSLanguage *self);
/**
* Get the number of distinct node types in the language.
*/
t_u32 ts_language_symbol_count(const TSLanguage *self);
/**
* Get the number of valid states in this language.
*/
t_u32 ts_language_state_count(const TSLanguage *self);
/**
* Get a node type string for the given numerical id.
*/
t_const_str ts_language_symbol_name(const TSLanguage *self, TSSymbol symbol);
/**
* Get the numerical id for the given node type string.
*/
TSSymbol ts_language_symbol_for_name(const TSLanguage *self, t_const_str string, t_u32 length, bool is_named);
/**
* Get the number of distinct field names in the language.
*/
t_u32 ts_language_field_count(const TSLanguage *self);
/**
* Get the field name string for the given numerical id.
*/
t_const_str ts_language_field_name_for_id(const TSLanguage *self, TSFieldId id);
/**
* Get the numerical id for the given field name string.
*/
TSFieldId ts_language_field_id_for_name(const TSLanguage *self, t_const_str name, t_u32 name_length);
/**
* Check whether the given node type id belongs to named nodes, anonymous nodes,
* or a hidden nodes.
*
* See also [`ts_node_is_named`]. Hidden nodes are never returned from the API.
*/
TSSymbolType ts_language_symbol_type(const TSLanguage *self, TSSymbol symbol);
/**
* Get the ABI version number for this language. This version number is used
* to ensure that languages were generated by a compatible version of
* Tree-sitter.
*
* See also [`ts_parser_set_language`].
*/
t_u32 ts_language_version(const TSLanguage *self);
/**
* Get the next parse state. Combine this with lookahead iterators to generate
* completion suggestions or valid symbols in error nodes. Use
* [`ts_node_grammar_symbol`] for valid symbols.
*/
TSStateId ts_language_next_state(const TSLanguage *self, TSStateId state, TSSymbol symbol);
#endif // TREE_SITTER_API_H_