minishell/parser/nsrc/subtree.h
2024-06-24 00:20:08 +02:00

456 lines
14 KiB
C

#ifndef TREE_SITTER_SUBTREE_H_
#define TREE_SITTER_SUBTREE_H_
#ifdef __cplusplus
extern "C"
{
#endif
#include "./api.h"
#include "./array.h"
#include "./error_costs.h"
#include "./host.h"
#include "./length.h"
#include "./parser.h"
#include <limits.h>
#include <stdbool.h>
#include <stdio.h>
#define TS_TREE_STATE_NONE USHRT_MAX
#define NULL_SUBTREE ((Subtree){.ptr = NULL})
// The serialized state of an external scanner.
//
// Every time an external token subtree is created after a call to an
// external scanner, the scanner's `serialize` function is called to
// retrieve a serialized copy of its state. The bytes are then copied
// onto the subtree itself so that the scanner's state can later be
// restored using its `deserialize` function.
//
// Small byte arrays are stored inline, and long ones are allocated
// separately on the heap.
typedef struct ExternalScannerState
{
union ExternalScannerStateData {
char *long_data;
char short_data[24];
} data;
uint32_t length;
} ExternalScannerState;
// A compact representation of a subtree.
//
// This representation is used for small leaf nodes that are not
// errors, and were not created by an external scanner.
//
// The idea behind the layout of this struct is that the `is_inline`
// bit will fall exactly into the same location as the least significant
// bit of the pointer in `Subtree` or `MutableSubtree`, respectively.
// Because of alignment, for any valid pointer this will be 0, giving
// us the opportunity to make use of this bit to signify whether to use
// the pointer or the inline struct.
typedef struct SubtreeInlineData SubtreeInlineData;
#define SUBTREE_BITS \
bool visible : 1; \
bool named : 1; \
bool extra : 1; \
bool has_changes : 1; \
bool is_missing : 1; \
bool is_keyword : 1;
#define SUBTREE_SIZE \
uint8_t padding_columns; \
uint8_t padding_rows : 4; \
uint8_t lookahead_bytes : 4; \
uint8_t padding_bytes; \
uint8_t size_bytes;
#if TS_BIG_ENDIAN
# if TS_PTR_SIZE == 32
struct SubtreeInlineData
{
uint16_t parse_state;
uint8_t symbol;
SUBTREE_BITS
bool unused : 1;
bool is_inline : 1;
SUBTREE_SIZE
};
# else
struct SubtreeInlineData
{
SUBTREE_SIZE
uint16_t parse_state;
uint8_t symbol;
SUBTREE_BITS
bool unused : 1;
bool is_inline : 1;
};
# endif
#else
struct SubtreeInlineData
{
bool is_inline : 1;
SUBTREE_BITS
uint8_t symbol;
uint16_t parse_state;
SUBTREE_SIZE
};
#endif
#undef SUBTREE_BITS
#undef SUBTREE_SIZE
// A heap-allocated representation of a subtree.
//
// This representation is used for parent nodes, external tokens,
// errors, and other leaf nodes whose data is too large to fit into
// the inline representation.
typedef struct SubtreeHeapData
{
volatile uint32_t ref_count;
Length padding;
Length size;
uint32_t lookahead_bytes;
uint32_t error_cost;
uint32_t child_count;
TSSymbol symbol;
TSStateId parse_state;
bool visible : 1;
bool named : 1;
bool extra : 1;
bool fragile_left : 1;
bool fragile_right : 1;
bool has_changes : 1;
bool has_external_tokens : 1;
bool has_external_scanner_state_change : 1;
bool depends_on_column : 1;
bool is_missing : 1;
bool is_keyword : 1;
union SubtreeHeapDataInner {
// Non-terminal subtrees (`child_count > 0`)
struct SubtreeHeapDataInnerNonTerminal
{
uint32_t visible_child_count;
uint32_t named_child_count;
uint32_t visible_descendant_count;
int32_t dynamic_precedence;
uint16_t repeat_depth;
uint16_t production_id;
struct SubtreeHeapDataInnerNonTerminalFirstLeaf
{
TSSymbol symbol;
TSStateId parse_state;
} first_leaf;
} non_terminal;
// External terminal subtrees (`child_count == 0 && has_external_tokens`)
ExternalScannerState external_scanner_state;
// Error terminal subtrees (`child_count == 0 && symbol == ts_builtin_sym_error`)
int32_t lookahead_char;
} inner;
} SubtreeHeapData;
// The fundamental building block of a syntax tree.
typedef union Subtree {
SubtreeInlineData data;
const SubtreeHeapData *ptr;
} Subtree;
// Like Subtree, but mutable.
typedef union MutableSubtree {
SubtreeInlineData data;
SubtreeHeapData *ptr;
} MutableSubtree;
typedef Array(Subtree) SubtreeArray;
typedef Array(MutableSubtree) MutableSubtreeArray;
typedef struct SubtreePool
{
MutableSubtreeArray free_trees;
MutableSubtreeArray tree_stack;
} SubtreePool;
void ts_external_scanner_state_init(ExternalScannerState *, const char *, unsigned);
const char *ts_external_scanner_state_data(const ExternalScannerState *);
bool ts_external_scanner_state_eq(const ExternalScannerState *self, const char *, unsigned);
void ts_external_scanner_state_delete(ExternalScannerState *self);
void ts_subtree_array_copy(SubtreeArray, SubtreeArray *);
void ts_subtree_array_clear(SubtreePool *, SubtreeArray *);
void ts_subtree_array_delete(SubtreePool *, SubtreeArray *);
void ts_subtree_array_remove_trailing_extras(SubtreeArray *, SubtreeArray *);
void ts_subtree_array_reverse(SubtreeArray *);
SubtreePool ts_subtree_pool_new(uint32_t capacity);
void ts_subtree_pool_delete(SubtreePool *);
Subtree ts_subtree_new_leaf(SubtreePool *, TSSymbol, Length, Length, uint32_t, TSStateId, bool, bool, bool, const TSLanguage *);
Subtree ts_subtree_new_error(SubtreePool *, int32_t, Length, Length, uint32_t, TSStateId, const TSLanguage *);
MutableSubtree ts_subtree_new_node(TSSymbol, SubtreeArray *, unsigned, const TSLanguage *);
Subtree ts_subtree_new_error_node(SubtreeArray *, bool, const TSLanguage *);
Subtree ts_subtree_new_missing_leaf(SubtreePool *, TSSymbol, Length, uint32_t, const TSLanguage *);
MutableSubtree ts_subtree_make_mut(SubtreePool *, Subtree);
void ts_subtree_retain(Subtree);
void ts_subtree_release(SubtreePool *, Subtree);
int ts_subtree_compare(Subtree, Subtree, SubtreePool *);
void ts_subtree_set_symbol(MutableSubtree *, TSSymbol, const TSLanguage *);
void ts_subtree_summarize(MutableSubtree, const Subtree *, uint32_t, const TSLanguage *);
void ts_subtree_summarize_children(MutableSubtree, const TSLanguage *);
void ts_subtree_balance(Subtree, SubtreePool *, const TSLanguage *);
Subtree ts_subtree_edit(Subtree, const TSInputEdit *edit, SubtreePool *);
char *ts_subtree_string(Subtree, TSSymbol, bool, const TSLanguage *, bool include_all);
void ts_subtree_print_dot_graph(Subtree, const TSLanguage *, FILE *);
Subtree ts_subtree_last_external_token(Subtree);
const ExternalScannerState *ts_subtree_external_scanner_state(Subtree self);
bool ts_subtree_external_scanner_state_eq(Subtree, Subtree);
#define SUBTREE_GET(self, name) ((self).data.is_inline ? (self).data.name : (self).ptr->name)
static inline TSSymbol ts_subtree_symbol(Subtree self)
{
return SUBTREE_GET(self, symbol);
}
static inline bool ts_subtree_visible(Subtree self)
{
return SUBTREE_GET(self, visible);
}
static inline bool ts_subtree_named(Subtree self)
{
return SUBTREE_GET(self, named);
}
static inline bool ts_subtree_extra(Subtree self)
{
return SUBTREE_GET(self, extra);
}
static inline bool ts_subtree_has_changes(Subtree self)
{
return SUBTREE_GET(self, has_changes);
}
static inline bool ts_subtree_missing(Subtree self)
{
return SUBTREE_GET(self, is_missing);
}
static inline bool ts_subtree_is_keyword(Subtree self)
{
return SUBTREE_GET(self, is_keyword);
}
static inline TSStateId ts_subtree_parse_state(Subtree self)
{
return SUBTREE_GET(self, parse_state);
}
static inline uint32_t ts_subtree_lookahead_bytes(Subtree self)
{
return SUBTREE_GET(self, lookahead_bytes);
}
#undef SUBTREE_GET
// Get the size needed to store a heap-allocated subtree with the given
// number of children.
static inline size_t ts_subtree_alloc_size(uint32_t child_count)
{
return child_count * sizeof(Subtree) + sizeof(SubtreeHeapData);
}
// Get a subtree's children, which are allocated immediately before the
// tree's own heap data.
#define ts_subtree_children(self) ((self).data.is_inline ? NULL : (Subtree *)((self).ptr) - (self).ptr->child_count)
static inline void ts_subtree_set_extra(MutableSubtree *self, bool is_extra)
{
if (self->data.is_inline)
{
self->data.extra = is_extra;
}
else
{
self->ptr->extra = is_extra;
}
}
static inline TSSymbol ts_subtree_leaf_symbol(Subtree self)
{
if (self.data.is_inline)
return self.data.symbol;
if (self.ptr->child_count == 0)
return self.ptr->symbol;
return self.ptr->inner.non_terminal.first_leaf.symbol;
}
static inline TSStateId ts_subtree_leaf_parse_state(Subtree self)
{
if (self.data.is_inline)
return self.data.parse_state;
if (self.ptr->child_count == 0)
return self.ptr->parse_state;
return self.ptr->inner.non_terminal.first_leaf.parse_state;
}
static inline Length ts_subtree_padding(Subtree self)
{
if (self.data.is_inline)
{
Length result = {self.data.padding_bytes, {self.data.padding_rows, self.data.padding_columns}};
return result;
}
else
{
return self.ptr->padding;
}
}
static inline Length ts_subtree_size(Subtree self)
{
if (self.data.is_inline)
{
Length result = {self.data.size_bytes, {0, self.data.size_bytes}};
return result;
}
else
{
return self.ptr->size;
}
}
static inline Length ts_subtree_total_size(Subtree self)
{
return length_add(ts_subtree_padding(self), ts_subtree_size(self));
}
static inline uint32_t ts_subtree_total_bytes(Subtree self)
{
return ts_subtree_total_size(self).bytes;
}
static inline uint32_t ts_subtree_child_count(Subtree self)
{
return self.data.is_inline ? 0 : self.ptr->child_count;
}
static inline uint32_t ts_subtree_repeat_depth(Subtree self)
{
return self.data.is_inline ? 0 : self.ptr->inner.non_terminal.repeat_depth;
}
static inline uint32_t ts_subtree_is_repetition(Subtree self)
{
return self.data.is_inline ? 0 : !self.ptr->named && !self.ptr->visible && self.ptr->child_count != 0;
}
static inline uint32_t ts_subtree_visible_descendant_count(Subtree self)
{
return (self.data.is_inline || self.ptr->child_count == 0) ? 0 : self.ptr->inner.non_terminal.visible_descendant_count;
}
static inline uint32_t ts_subtree_visible_child_count(Subtree self)
{
if (ts_subtree_child_count(self) > 0)
{
return self.ptr->inner.non_terminal.visible_child_count;
}
else
{
return 0;
}
}
static inline uint32_t ts_subtree_error_cost(Subtree self)
{
if (ts_subtree_missing(self))
{
return ERROR_COST_PER_MISSING_TREE + ERROR_COST_PER_RECOVERY;
}
else
{
return self.data.is_inline ? 0 : self.ptr->error_cost;
}
}
static inline int32_t ts_subtree_dynamic_precedence(Subtree self)
{
return (self.data.is_inline || self.ptr->child_count == 0) ? 0 : self.ptr->inner.non_terminal.dynamic_precedence;
}
static inline uint16_t ts_subtree_production_id(Subtree self)
{
if (ts_subtree_child_count(self) > 0)
{
return self.ptr->inner.non_terminal.production_id;
}
else
{
return 0;
}
}
static inline bool ts_subtree_fragile_left(Subtree self)
{
return self.data.is_inline ? false : self.ptr->fragile_left;
}
static inline bool ts_subtree_fragile_right(Subtree self)
{
return self.data.is_inline ? false : self.ptr->fragile_right;
}
static inline bool ts_subtree_has_external_tokens(Subtree self)
{
return self.data.is_inline ? false : self.ptr->has_external_tokens;
}
static inline bool ts_subtree_has_external_scanner_state_change(Subtree self)
{
return self.data.is_inline ? false : self.ptr->has_external_scanner_state_change;
}
static inline bool ts_subtree_depends_on_column(Subtree self)
{
return self.data.is_inline ? false : self.ptr->depends_on_column;
}
static inline bool ts_subtree_is_fragile(Subtree self)
{
return self.data.is_inline ? false : (self.ptr->fragile_left || self.ptr->fragile_right);
}
static inline bool ts_subtree_is_error(Subtree self)
{
return ts_subtree_symbol(self) == ts_builtin_sym_error;
}
static inline bool ts_subtree_is_eof(Subtree self)
{
return ts_subtree_symbol(self) == ts_builtin_sym_end;
}
static inline Subtree ts_subtree_from_mut(MutableSubtree self)
{
Subtree result;
result.data = self.data;
return result;
}
static inline MutableSubtree ts_subtree_to_mut_unsafe(Subtree self)
{
MutableSubtree result;
result.data = self.data;
return result;
}
#ifdef __cplusplus
}
#endif
#endif // TREE_SITTER_SUBTREE_H_