minishell/parser/src/api.h
2024-05-01 17:34:54 +02:00

3151 lines
91 KiB
C++

<<<<<<< HEAD
#ifndef TREE_SITTER_ARRAY_H_
#define TREE_SITTER_ARRAY_H_
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <ctype.h>
#define ts_builtin_sym_error_repeat (ts_builtin_sym_error - 1)
#define LANGUAGE_VERSION_WITH_PRIMARY_STATES 14
#define LANGUAGE_VERSION_USABLE_VIA_WASM 13
#define ERROR_STATE 0
#define ERROR_COST_PER_RECOVERY 500
#define ERROR_COST_PER_MISSING_TREE 110
#define ERROR_COST_PER_SKIPPED_TREE 100
#define ERROR_COST_PER_SKIPPED_LINE 30
#define ERROR_COST_PER_SKIPPED_CHAR 1
#define MAX_STEP_CAPTURE_COUNT 3
#define MAX_NEGATED_FIELD_COUNT 8
#define MAX_STATE_PREDECESSOR_COUNT 256
#define MAX_ANALYSIS_STATE_DEPTH 8
#define MAX_ANALYSIS_ITERATION_COUNT 256
#define MAX_LINK_COUNT 8
#define MAX_NODE_POOL_SIZE 50
#define MAX_ITERATOR_COUNT 64
#define TS_MAX_INLINE_TREE_LENGTH UINT8_MAX
#define TS_MAX_TREE_POOL_SIZE 32
#define ts_builtin_sym_error ((TSSymbol) - 1)
#define ts_builtin_sym_end 0
#define TREE_SITTER_SERIALIZATION_BUFFER_SIZE 1024
#define POINT_ZERO ((TSPoint){0, 0})
#define POINT_MAX ((TSPoint){UINT32_MAX, UINT32_MAX})
#define TS_TREE_STATE_NONE USHRT_MAX
#define NULL_SUBTREE ((Subtree){.ptr = NULL})
#define STACK_VERSION_NONE ((StackVersion) - 1)
#define TS_DECODE_ERROR (-1)
// Get a subtree's children, which are allocated immediately before the
// tree's own heap data.
#define ts_subtree_children(self) \
((self).data.is_inline \
? NULL \
: (Subtree *)((self).ptr) - (self).ptr->child_count)
typedef uint16_t TSStateId;
typedef uint16_t TSSymbol;
typedef uint16_t TSFieldId;
typedef struct TSLanguage TSLanguage;
typedef struct TSParser TSParser;
typedef struct TSTree TSTree;
typedef struct TSQuery TSQuery;
typedef struct TSQueryCursor TSQueryCursor;
typedef struct TSLookaheadIterator TSLookaheadIterator;
typedef struct TSPoint
{
uint32_t row;
uint32_t column;
} TSPoint;
typedef struct
{
uint32_t bytes;
TSPoint extent;
} Length;
typedef enum TSInputEncoding
{
TSInputEncodingUTF8,
TSInputEncodingUTF16,
} TSInputEncoding;
typedef enum TSSymbolType
{
TSSymbolTypeRegular,
TSSymbolTypeAnonymous,
TSSymbolTypeAuxiliary,
} TSSymbolType;
typedef struct TSRange
{
TSPoint start_point;
TSPoint end_point;
uint32_t start_byte;
uint32_t end_byte;
} TSRange;
typedef struct TSInput
{
void *payload;
const char *(*read)(void *payload, uint32_t byte_index, TSPoint position,
uint32_t *bytes_read);
TSInputEncoding encoding;
} TSInput;
typedef enum TSLogType
{
TSLogTypeParse,
TSLogTypeLex,
} TSLogType;
typedef struct TSLogger
{
void *payload;
void (*log)(void *payload, TSLogType log_type, const char *buffer);
} TSLogger;
typedef struct TSInputEdit
{
uint32_t start_byte;
uint32_t old_end_byte;
uint32_t new_end_byte;
TSPoint start_point;
TSPoint old_end_point;
TSPoint new_end_point;
} TSInputEdit;
typedef struct TSNode
{
uint32_t context[4];
const void *id;
const TSTree *tree;
} TSNode;
typedef struct TSTreeCursor
{
const void *tree;
const void *id;
uint32_t context[3];
} TSTreeCursor;
typedef struct TSQueryCapture
{
TSNode node;
uint32_t index;
} TSQueryCapture;
typedef enum TSQuantifier
{
TSQuantifierZero = 0, // must match the array initialization value
TSQuantifierZeroOrOne,
TSQuantifierZeroOrMore,
TSQuantifierOne,
TSQuantifierOneOrMore,
} TSQuantifier;
typedef struct TSQueryMatch
{
uint32_t id;
uint16_t pattern_index;
uint16_t capture_count;
const TSQueryCapture *captures;
} TSQueryMatch;
typedef enum TSQueryPredicateStepType
{
TSQueryPredicateStepTypeDone,
TSQueryPredicateStepTypeCapture,
TSQueryPredicateStepTypeString,
} TSQueryPredicateStepType;
typedef struct TSQueryPredicateStep
{
TSQueryPredicateStepType type;
uint32_t value_id;
} TSQueryPredicateStep;
typedef enum TSQueryError
{
TSQueryErrorNone = 0,
TSQueryErrorSyntax,
TSQueryErrorNodeType,
TSQueryErrorField,
TSQueryErrorCapture,
TSQueryErrorStructure,
TSQueryErrorLanguage,
} TSQueryError;
#define Array(T) \
struct \
{ \
T *contents; \
uint32_t size; \
uint32_t capacity; \
}
/// Initialize an array.
#define array_init(self) \
((self)->size = 0, (self)->capacity = 0, (self)->contents = NULL)
/// Create an empty array.
#define array_new() \
{ \
NULL, 0, 0 \
}
/// Get a pointer to the element at a given `index` in the array.
#define array_get(self, _index) \
(assert((uint32_t)(_index) < (self)->size), &(self)->contents[_index])
/// Get a pointer to the first element in the array.
#define array_front(self) array_get(self, 0)
/// Get a pointer to the last element in the array.
#define array_back(self) array_get(self, (self)->size - 1)
/// Clear the array, setting its size to zero. Note that this does not free any
/// memory allocated for the array's contents.
#define array_clear(self) ((self)->size = 0)
/// Reserve `new_capacity` elements of space in the array. If `new_capacity` is
/// less than the array's current capacity, this function has no effect.
#define array_reserve(self, new_capacity) \
_array__reserve((Array *)(self), array_elem_size(self), new_capacity)
/// Free any memory allocated for this array. Note that this does not free any
/// memory allocated for the array's contents.
#define array_delete(self) _array__delete((Array *)(self))
/// Push a new `element` onto the end of the array.
#define array_push(self, element) \
(_array__grow((Array *)(self), 1, array_elem_size(self)), \
(self)->contents[(self)->size++] = (element))
/// Increase the array's size by `count` elements.
/// New elements are zero-initialized.
#define array_grow_by(self, count) \
do \
{ \
if ((count) == 0) \
break; \
_array__grow((Array *)(self), count, array_elem_size(self)); \
memset((self)->contents + (self)->size, 0, \
(count) * array_elem_size(self)); \
(self)->size += (count); \
} while (0)
/// Append all elements from one array to the end of another.
#define array_push_all(self, other) \
array_extend((self), (other)->size, (other)->contents)
/// Append `count` elements to the end of the array, reading their values from
/// the `contents` pointer.
#define array_extend(self, count, contents) \
_array__splice((Array *)(self), array_elem_size(self), (self)->size, 0, \
count, contents)
/// Remove `old_count` elements from the array starting at the given `index`. At
/// the same index, insert `new_count` new elements, reading their values from
/// the `new_contents` pointer.
#define array_splice(self, _index, old_count, new_count, new_contents) \
_array__splice((Array *)(self), array_elem_size(self), _index, old_count, \
new_count, new_contents)
/// Insert one `element` into the array at the given `index`.
#define array_insert(self, _index, element) \
_array__splice((Array *)(self), array_elem_size(self), _index, 0, 1, \
&(element))
/// Remove one element from the array at the given `index`.
#define array_erase(self, _index) \
_array__erase((Array *)(self), array_elem_size(self), _index)
/// Pop the last element off the array, returning the element by value.
#define array_pop(self) ((self)->contents[--(self)->size])
/// Assign the contents of one array to another, reallocating if necessary.
#define array_assign(self, other) \
_array__assign((Array *)(self), (const Array *)(other), \
array_elem_size(self))
/// Swap one array with another
#define array_swap(self, other) _array__swap((Array *)(self), (Array *)(other))
/// Get the size of the array contents
#define array_elem_size(self) (sizeof *(self)->contents)
/// Search a sorted array for a given `needle` value, using the given `compare`
/// callback to determine the order.
///
/// If an existing element is found to be equal to `needle`, then the `index`
/// out-parameter is set to the existing value's index, and the `exists`
/// out-parameter is set to true. Otherwise, `index` is set to an index where
/// `needle` should be inserted in order to preserve the sorting, and `exists`
/// is set to false.
#define array_search_sorted_with(self, compare, needle, _index, _exists) \
_array__search_sorted(self, 0, compare, , needle, _index, _exists)
/// Search a sorted array for a given `needle` value, using integer comparisons
/// of a given struct field (specified with a leading dot) to determine the
/// order.
///
/// See also `array_search_sorted_with`.
#define array_search_sorted_by(self, field, needle, _index, _exists) \
_array__search_sorted(self, 0, _compare_int, field, needle, _index, _exists)
/// Insert a given `value` into a sorted array, using the given `compare`
/// callback to determine the order.
#define array_insert_sorted_with(self, compare, value) \
do \
{ \
unsigned _index, _exists; \
array_search_sorted_with(self, compare, &(value), &_index, &_exists); \
if (!_exists) \
array_insert(self, _index, value); \
} while (0)
/// Insert a given `value` into a sorted array, using integer comparisons of
/// a given struct field (specified with a leading dot) to determine the order.
///
/// See also `array_search_sorted_by`.
#define array_insert_sorted_by(self, field, value) \
do \
{ \
unsigned _index, _exists; \
array_search_sorted_by(self, field, (value)field, &_index, &_exists); \
if (!_exists) \
array_insert(self, _index, value); \
} while (0)
// Private
typedef Array(void) Array;
/// This is not what you're looking for, see `array_delete`.
static inline void _array__delete(Array *self)
{
if (self->contents)
{
free(self->contents);
self->contents = NULL;
self->size = 0;
self->capacity = 0;
}
}
/// This is not what you're looking for, see `array_erase`.
static inline void _array__erase(Array *self, size_t element_size,
uint32_t index)
{
assert(index < self->size);
char *contents = (char *)self->contents;
memmove(contents + index * element_size,
contents + (index + 1) * element_size,
(self->size - index - 1) * element_size);
self->size--;
}
/// This is not what you're looking for, see `array_reserve`.
static inline void _array__reserve(Array *self, size_t element_size,
uint32_t new_capacity)
{
if (new_capacity > self->capacity)
{
if (self->contents)
{
self->contents =
realloc(self->contents, new_capacity * element_size);
}
else
{
self->contents = malloc(new_capacity * element_size);
}
self->capacity = new_capacity;
}
}
/// This is not what you're looking for, see `array_assign`.
static inline void _array__assign(Array *self, const Array *other,
size_t element_size)
{
_array__reserve(self, element_size, other->size);
self->size = other->size;
memcpy(self->contents, other->contents, self->size * element_size);
}
/// This is not what you're looking for, see `array_swap`.
static inline void _array__swap(Array *self, Array *other)
{
Array swap = *other;
*other = *self;
*self = swap;
}
/// This is not what you're looking for, see `array_push` or `array_grow_by`.
static inline void _array__grow(Array *self, uint32_t count,
size_t element_size)
{
uint32_t new_size = self->size + count;
if (new_size > self->capacity)
{
uint32_t new_capacity = self->capacity * 2;
if (new_capacity < 8)
new_capacity = 8;
if (new_capacity < new_size)
new_capacity = new_size;
_array__reserve(self, element_size, new_capacity);
}
}
/// This is not what you're looking for, see `array_splice`.
static inline void _array__splice(Array *self, size_t element_size,
uint32_t index, uint32_t old_count,
uint32_t new_count, const void *elements)
{
uint32_t new_size = self->size + new_count - old_count;
uint32_t old_end = index + old_count;
uint32_t new_end = index + new_count;
assert(old_end <= self->size);
_array__reserve(self, element_size, new_size);
char *contents = (char *)self->contents;
if (self->size > old_end)
{
memmove(contents + new_end * element_size,
contents + old_end * element_size,
(self->size - old_end) * element_size);
}
if (new_count > 0)
{
if (elements)
{
memcpy((contents + index * element_size), elements,
new_count * element_size);
}
else
{
memset((contents + index * element_size), 0,
new_count * element_size);
}
}
self->size += new_count - old_count;
}
/// A binary search routine, based on Rust's `std::slice::binary_search_by`.
/// This is not what you're looking for, see `array_search_sorted_with` or
/// `array_search_sorted_by`.
#define _array__search_sorted(self, start, compare, suffix, needle, _index, \
_exists) \
do \
{ \
*(_index) = start; \
*(_exists) = false; \
uint32_t size = (self)->size - *(_index); \
if (size == 0) \
break; \
int comparison; \
while (size > 1) \
{ \
uint32_t half_size = size / 2; \
uint32_t mid_index = *(_index) + half_size; \
comparison = \
compare(&((self)->contents[mid_index] suffix), (needle)); \
if (comparison <= 0) \
*(_index) = mid_index; \
size -= half_size; \
} \
comparison = compare(&((self)->contents[*(_index)] suffix), (needle)); \
if (comparison == 0) \
*(_exists) = true; \
else if (comparison < 0) \
*(_index) += 1; \
} while (0)
/// Helper macro for the `_sorted_by` routines below. This takes the left
/// (existing) parameter by reference in order to work with the generic sorting
/// function above.
#define _compare_int(a, b) ((int)*(a) - (int)(b))
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
static inline size_t atomic_load(const volatile size_t *p)
{
#ifdef __ATOMIC_RELAXED
return __atomic_load_n(p, __ATOMIC_RELAXED);
#else
return __sync_fetch_and_add((volatile size_t *)p, 0);
#endif
}
static inline uint32_t atomic_inc(volatile uint32_t *p)
{
#ifdef __ATOMIC_RELAXED
return __atomic_add_fetch(p, 1U, __ATOMIC_SEQ_CST);
#else
return __sync_add_and_fetch(p, 1U);
#endif
}
static inline uint32_t atomic_dec(volatile uint32_t *p)
{
#ifdef __ATOMIC_RELAXED
return __atomic_sub_fetch(p, 1U, __ATOMIC_SEQ_CST);
#else
return __sync_sub_and_fetch(p, 1U);
#endif
}
// The serialized state of an external scanner.
//
// Every time an external token subtree is created after a call to an
// external scanner, the scanner's `serialize` function is called to
// retrieve a serialized copy of its state. The bytes are then copied
// onto the subtree itself so that the scanner's state can later be
// restored using its `deserialize` function.
//
// Small byte arrays are stored inline, and long ones are allocated
// separately on the heap.
typedef struct
{
union {
char *long_data;
char short_data[24];
};
uint32_t length;
} ExternalScannerState;
// A compact representation of a subtree.
//
// This representation is used for small leaf nodes that are not
// errors, and were not created by an external scanner.
//
// The idea behind the layout of this struct is that the `is_inline`
// bit will fall exactly into the same location as the least significant
// bit of the pointer in `Subtree` or `MutableSubtree`, respectively.
// Because of alignment, for any valid pointer this will be 0, giving
// us the opportunity to make use of this bit to signify whether to use
// the pointer or the inline struct.
typedef struct SubtreeInlineData SubtreeInlineData;
#define SUBTREE_BITS \
bool visible : 1; \
bool named : 1; \
bool extra : 1; \
bool has_changes : 1; \
bool is_missing : 1; \
bool is_keyword : 1;
#define SUBTREE_SIZE \
uint8_t padding_columns; \
uint8_t padding_rows : 4; \
uint8_t lookahead_bytes : 4; \
uint8_t padding_bytes; \
uint8_t size_bytes;
#if TS_BIG_ENDIAN
# if TS_PTR_SIZE == 32
struct SubtreeInlineData
{
uint16_t parse_state;
uint8_t symbol;
SUBTREE_BITS
bool unused : 1;
bool is_inline : 1;
SUBTREE_SIZE
};
# else
struct SubtreeInlineData
{
SUBTREE_SIZE
uint16_t parse_state;
uint8_t symbol;
SUBTREE_BITS
bool unused : 1;
bool is_inline : 1;
};
# endif
#else
struct SubtreeInlineData
{
bool is_inline : 1;
SUBTREE_BITS
uint8_t symbol;
uint16_t parse_state;
SUBTREE_SIZE
};
#endif
#undef SUBTREE_BITS
#undef SUBTREE_SIZE
// A heap-allocated representation of a subtree.
//
// This representation is used for parent nodes, external tokens,
// errors, and other leaf nodes whose data is too large to fit into
// the inline representation.
typedef struct
{
volatile uint32_t ref_count;
Length padding;
Length size;
uint32_t lookahead_bytes;
uint32_t error_cost;
uint32_t child_count;
TSSymbol symbol;
TSStateId parse_state;
bool visible : 1;
bool named : 1;
bool extra : 1;
bool fragile_left : 1;
bool fragile_right : 1;
bool has_changes : 1;
bool has_external_tokens : 1;
bool has_external_scanner_state_change : 1;
bool depends_on_column : 1;
bool is_missing : 1;
bool is_keyword : 1;
union {
// Non-terminal subtrees (`child_count > 0`)
struct
{
uint32_t visible_child_count;
uint32_t named_child_count;
uint32_t visible_descendant_count;
int32_t dynamic_precedence;
uint16_t repeat_depth;
uint16_t production_id;
struct
{
TSSymbol symbol;
TSStateId parse_state;
} first_leaf;
};
// External terminal subtrees (`child_count == 0 &&
// has_external_tokens`)
ExternalScannerState external_scanner_state;
// Error terminal subtrees (`child_count == 0 && symbol ==
// ts_builtin_sym_error`)
int32_t lookahead_char;
};
} SubtreeHeapData;
// The fundamental building block of a syntax tree.
typedef union {
SubtreeInlineData data;
const SubtreeHeapData *ptr;
} Subtree;
// Like Subtree, but mutable.
typedef union {
SubtreeInlineData data;
SubtreeHeapData *ptr;
} MutableSubtree;
typedef Array(Subtree) SubtreeArray;
typedef Array(MutableSubtree) MutableSubtreeArray;
typedef struct
{
MutableSubtreeArray free_trees;
MutableSubtreeArray tree_stack;
} SubtreePool;
typedef Array(TSRange) TSRangeArray;
typedef struct
{
const Subtree *subtree;
Length position;
uint32_t child_index;
uint32_t structural_child_index;
uint32_t descendant_index;
} TreeCursorEntry;
typedef struct
{
const TSTree *tree;
Array(TreeCursorEntry) stack;
TSSymbol root_alias_symbol;
} TreeCursor;
typedef union {
struct
{
uint8_t type;
TSStateId state;
bool extra;
bool repetition;
} shift;
struct
{
uint8_t type;
uint8_t child_count;
TSSymbol symbol;
int16_t dynamic_precedence;
uint16_t production_id;
} reduce;
uint8_t type;
} TSParseAction;
void ts_range_array_get_changed_ranges(const TSRange *old_ranges,
unsigned old_range_count,
const TSRange *new_ranges,
unsigned new_range_count,
TSRangeArray *differences);
bool ts_range_array_intersects(const TSRangeArray *self, unsigned start_index,
uint32_t start_byte, uint32_t end_byte);
unsigned ts_subtree_get_changed_ranges(
const Subtree *old_tree, const Subtree *new_tree, TreeCursor *cursor1,
TreeCursor *cursor2, const TSLanguage *language,
const TSRangeArray *included_range_differences, TSRange **ranges);
typedef struct
{
const TSParseAction *actions;
uint32_t action_count;
bool is_reusable;
} TableEntry;
typedef struct
{
const TSLanguage *language;
const uint16_t *data;
const uint16_t *group_end;
TSStateId state;
uint16_t table_value;
uint16_t section_index;
uint16_t group_count;
bool is_small_state;
const TSParseAction *actions;
TSSymbol symbol;
TSStateId next_state;
uint16_t action_count;
} LookaheadIterator;
typedef struct
{
bool visible;
bool named;
bool supertype;
} TSSymbolMetadata;
typedef enum
{
TSParseActionTypeShift,
TSParseActionTypeReduce,
TSParseActionTypeAccept,
TSParseActionTypeRecover,
} TSParseActionType;
typedef union {
TSParseAction action;
struct
{
uint8_t count;
bool reusable;
} entry;
} TSParseActionEntry;
typedef struct
{
TSFieldId field_id;
uint8_t child_index;
bool inherited;
} TSFieldMapEntry;
typedef struct
{
uint16_t index;
uint16_t length;
} TSFieldMapSlice;
typedef struct TSLexer TSLexer;
struct TSLexer
{
int32_t lookahead;
TSSymbol result_symbol;
void (*advance)(TSLexer *, bool);
void (*mark_end)(TSLexer *);
uint32_t (*get_column)(TSLexer *);
bool (*is_at_included_range_start)(const TSLexer *);
bool (*eof)(const TSLexer *);
};
typedef struct
{
uint16_t lex_state;
uint16_t external_lex_state;
} TSLexMode;
typedef struct
{
int32_t start;
int32_t end;
} TSCharacterRange;
struct TSLanguage
{
uint32_t version;
uint32_t symbol_count;
uint32_t alias_count;
uint32_t token_count;
uint32_t external_token_count;
uint32_t state_count;
uint32_t large_state_count;
uint32_t production_id_count;
uint32_t field_count;
uint16_t max_alias_sequence_length;
const uint16_t *parse_table;
const uint16_t *small_parse_table;
const uint32_t *small_parse_table_map;
const TSParseActionEntry *parse_actions;
const char *const *symbol_names;
const char *const *field_names;
const TSFieldMapSlice *field_map_slices;
const TSFieldMapEntry *field_map_entries;
const TSSymbolMetadata *symbol_metadata;
const TSSymbol *public_symbol_map;
const uint16_t *alias_map;
const TSSymbol *alias_sequences;
const TSLexMode *lex_modes;
bool (*lex_fn)(TSLexer *, TSStateId);
bool (*keyword_lex_fn)(TSLexer *, TSStateId);
TSSymbol keyword_capture_token;
struct
{
const bool *states;
const TSSymbol *symbol_map;
void *(*create)(void);
void (*destroy)(void *);
bool (*scan)(void *, TSLexer *, const bool *symbol_whitelist);
unsigned (*serialize)(void *, char *);
void (*deserialize)(void *, const char *, unsigned);
} external_scanner;
const TSStateId *primary_state_ids;
};
void ts_language_table_entry(const TSLanguage *, TSStateId, TSSymbol,
TableEntry *);
TSSymbolMetadata ts_language_symbol_metadata(const TSLanguage *, TSSymbol);
TSSymbol ts_language_public_symbol(const TSLanguage *, TSSymbol);
TSStateId ts_language_next_state(const TSLanguage *self, TSStateId state,
TSSymbol symbol);
static inline bool ts_language_is_symbol_external(const TSLanguage *self,
TSSymbol symbol)
{
return 0 < symbol && symbol < self->external_token_count + 1;
}
static inline const TSParseAction *ts_language_actions(const TSLanguage *self,
TSStateId state,
TSSymbol symbol,
uint32_t *count)
{
TableEntry entry;
ts_language_table_entry(self, state, symbol, &entry);
*count = entry.action_count;
return entry.actions;
}
static inline bool ts_language_has_reduce_action(const TSLanguage *self,
TSStateId state,
TSSymbol symbol)
{
TableEntry entry;
ts_language_table_entry(self, state, symbol, &entry);
return entry.action_count > 0 &&
entry.actions[0].type == TSParseActionTypeReduce;
}
// Lookup the table value for a given symbol and state.
//
// For non-terminal symbols, the table value represents a successor state.
// For terminal symbols, it represents an index in the actions table.
// For 'large' parse states, this is a direct lookup. For 'small' parse
// states, this requires searching through the symbol groups to find
// the given symbol.
static inline uint16_t ts_language_lookup(const TSLanguage *self,
TSStateId state, TSSymbol symbol)
{
if (state >= self->large_state_count)
{
uint32_t index =
self->small_parse_table_map[state - self->large_state_count];
const uint16_t *data = &self->small_parse_table[index];
uint16_t group_count = *(data++);
for (unsigned i = 0; i < group_count; i++)
{
uint16_t section_value = *(data++);
uint16_t symbol_count = *(data++);
for (unsigned j = 0; j < symbol_count; j++)
{
if (*(data++) == symbol)
return section_value;
}
}
return 0;
}
else
{
return self->parse_table[state * self->symbol_count + symbol];
}
}
static inline bool ts_language_has_actions(const TSLanguage *self,
TSStateId state, TSSymbol symbol)
{
return ts_language_lookup(self, state, symbol) != 0;
}
// Iterate over all of the symbols that are valid in the given state.
//
// For 'large' parse states, this just requires iterating through
// all possible symbols and checking the parse table for each one.
// For 'small' parse states, this exploits the structure of the
// table to only visit the valid symbols.
static inline LookaheadIterator ts_language_lookaheads(const TSLanguage *self,
TSStateId state)
{
bool is_small_state = state >= self->large_state_count;
const uint16_t *data;
const uint16_t *group_end = NULL;
uint16_t group_count = 0;
if (is_small_state)
{
uint32_t index =
self->small_parse_table_map[state - self->large_state_count];
data = &self->small_parse_table[index];
group_end = data + 1;
group_count = *data;
}
else
{
data = &self->parse_table[state * self->symbol_count] - 1;
}
return (LookaheadIterator){
.language = self,
.data = data,
.group_end = group_end,
.group_count = group_count,
.is_small_state = is_small_state,
.symbol = UINT16_MAX,
.next_state = 0,
};
}
static inline bool ts_lookahead_iterator__next(LookaheadIterator *self)
{
// For small parse states, valid symbols are listed explicitly,
// grouped by their value. There's no need to look up the actions
// again until moving to the next group.
if (self->is_small_state)
{
self->data++;
if (self->data == self->group_end)
{
if (self->group_count == 0)
return false;
self->group_count--;
self->table_value = *(self->data++);
unsigned symbol_count = *(self->data++);
self->group_end = self->data + symbol_count;
self->symbol = *self->data;
}
else
{
self->symbol = *self->data;
return true;
}
}
// For large parse states, iterate through every symbol until one
// is found that has valid actions.
else
{
do
{
self->data++;
self->symbol++;
if (self->symbol >= self->language->symbol_count)
return false;
self->table_value = *self->data;
} while (!self->table_value);
}
// Depending on if the symbols is terminal or non-terminal, the table value
// either represents a list of actions or a successor state.
if (self->symbol < self->language->token_count)
{
const TSParseActionEntry *entry =
&self->language->parse_actions[self->table_value];
self->action_count = entry->entry.count;
self->actions = (const TSParseAction *)(entry + 1);
self->next_state = 0;
}
else
{
self->action_count = 0;
self->next_state = self->table_value;
}
return true;
}
// Whether the state is a "primary state". If this returns false, it indicates
// that there exists another state that behaves identically to this one with
// respect to query analysis.
static inline bool ts_language_state_is_primary(const TSLanguage *self,
TSStateId state)
{
if (self->version >= LANGUAGE_VERSION_WITH_PRIMARY_STATES)
{
return state == self->primary_state_ids[state];
}
else
{
return true;
}
}
static inline const bool *ts_language_enabled_external_tokens(
const TSLanguage *self, unsigned external_scanner_state)
{
if (external_scanner_state == 0)
{
return NULL;
}
else
{
return self->external_scanner.states +
self->external_token_count * external_scanner_state;
}
}
static inline const TSSymbol *ts_language_alias_sequence(const TSLanguage *self,
uint32_t production_id)
{
return production_id
? &self->alias_sequences[production_id *
self->max_alias_sequence_length]
: NULL;
}
static inline TSSymbol ts_language_alias_at(const TSLanguage *self,
uint32_t production_id,
uint32_t child_index)
{
return production_id
? self->alias_sequences[production_id *
self->max_alias_sequence_length +
child_index]
: 0;
}
static inline void ts_language_field_map(const TSLanguage *self,
uint32_t production_id,
const TSFieldMapEntry **start,
const TSFieldMapEntry **end)
{
if (self->field_count == 0)
{
*start = NULL;
*end = NULL;
return;
}
TSFieldMapSlice slice = self->field_map_slices[production_id];
*start = &self->field_map_entries[slice.index];
*end = &self->field_map_entries[slice.index] + slice.length;
}
static inline void ts_language_aliases_for_symbol(const TSLanguage *self,
TSSymbol original_symbol,
const TSSymbol **start,
const TSSymbol **end)
{
*start = &self->public_symbol_map[original_symbol];
*end = *start + 1;
unsigned idx = 0;
for (;;)
{
TSSymbol symbol = self->alias_map[idx++];
if (symbol == 0 || symbol > original_symbol)
break;
uint16_t count = self->alias_map[idx++];
if (symbol == original_symbol)
{
*start = &self->alias_map[idx];
*end = &self->alias_map[idx + count];
break;
}
idx += count;
}
}
static const Length LENGTH_UNDEFINED = {0, {0, 1}};
static const Length LENGTH_MAX = {UINT32_MAX, {UINT32_MAX, UINT32_MAX}};
static TSPoint point_add(TSPoint a, TSPoint b);
static TSPoint point_sub(TSPoint a, TSPoint b);
static inline bool length_is_undefined(Length length)
{
return length.bytes == 0 && length.extent.column != 0;
}
static inline Length length_min(Length len1, Length len2)
{
return (len1.bytes < len2.bytes) ? len1 : len2;
}
static inline Length length_add(Length len1, Length len2)
{
Length result;
result.bytes = len1.bytes + len2.bytes;
result.extent = point_add(len1.extent, len2.extent);
return result;
}
static inline Length length_sub(Length len1, Length len2)
{
Length result;
result.bytes = len1.bytes - len2.bytes;
result.extent = point_sub(len1.extent, len2.extent);
return result;
}
static inline Length length_zero(void)
{
Length result = {0, {0, 0}};
return result;
}
static inline Length length_saturating_sub(Length len1, Length len2)
{
if (len1.bytes > len2.bytes)
{
return length_sub(len1, len2);
}
else
{
return length_zero();
}
}
typedef struct
{
TSLexer data;
Length current_position;
Length token_start_position;
Length token_end_position;
TSRange *included_ranges;
const char *chunk;
TSInput input;
TSLogger logger;
uint32_t included_range_count;
uint32_t current_included_range_index;
uint32_t chunk_start;
uint32_t chunk_size;
uint32_t lookahead_size;
bool did_get_column;
char debug_buffer[TREE_SITTER_SERIALIZATION_BUFFER_SIZE];
} Lexer;
void ts_lexer_init(Lexer *);
void ts_lexer_delete(Lexer *);
void ts_lexer_set_input(Lexer *, TSInput);
void ts_lexer_reset(Lexer *, Length);
void ts_lexer_start(Lexer *);
void ts_lexer_finish(Lexer *, uint32_t *);
void ts_lexer_advance_to_end(Lexer *);
void ts_lexer_mark_end(Lexer *);
bool ts_lexer_set_included_ranges(Lexer *self, const TSRange *ranges,
uint32_t count);
TSRange *ts_lexer_included_ranges(const Lexer *self, uint32_t *count);
static inline bool set_contains(TSCharacterRange *ranges, uint32_t len,
int32_t lookahead)
{
uint32_t index = 0;
uint32_t size = len - index;
while (size > 1)
{
uint32_t half_size = size / 2;
uint32_t mid_index = index + half_size;
TSCharacterRange *range = &ranges[mid_index];
if (lookahead >= range->start && lookahead <= range->end)
{
return true;
}
else if (lookahead > range->end)
{
index = mid_index;
}
size -= half_size;
}
TSCharacterRange *range = &ranges[index];
return (lookahead >= range->start && lookahead <= range->end);
}
static inline TSPoint point__new(unsigned row, unsigned column)
{
TSPoint result = {row, column};
return result;
}
static inline TSPoint point_add(TSPoint a, TSPoint b)
{
if (b.row > 0)
return point__new(a.row + b.row, b.column);
else
return point__new(a.row, a.column + b.column);
}
static inline TSPoint point_sub(TSPoint a, TSPoint b)
{
if (a.row > b.row)
return point__new(a.row - b.row, a.column);
else
return point__new(0, a.column - b.column);
}
static inline bool point_lte(TSPoint a, TSPoint b)
{
return (a.row < b.row) || (a.row == b.row && a.column <= b.column);
}
static inline bool point_lt(TSPoint a, TSPoint b)
{
return (a.row < b.row) || (a.row == b.row && a.column < b.column);
}
static inline bool point_gt(TSPoint a, TSPoint b)
{
return (a.row > b.row) || (a.row == b.row && a.column > b.column);
}
static inline bool point_gte(TSPoint a, TSPoint b)
{
return (a.row > b.row) || (a.row == b.row && a.column >= b.column);
}
static inline bool point_eq(TSPoint a, TSPoint b)
{
return a.row == b.row && a.column == b.column;
}
static inline TSPoint point_min(TSPoint a, TSPoint b)
{
if (a.row < b.row || (a.row == b.row && a.column < b.column))
return a;
else
return b;
}
static inline TSPoint point_max(TSPoint a, TSPoint b)
{
if (a.row > b.row || (a.row == b.row && a.column > b.column))
return a;
else
return b;
}
typedef struct
{
uint32_t count;
TSSymbol symbol;
int dynamic_precedence;
unsigned short production_id;
} ReduceAction;
typedef Array(ReduceAction) ReduceActionSet;
static inline void ts_reduce_action_set_add(ReduceActionSet *self,
ReduceAction new_action)
{
for (uint32_t i = 0; i < self->size; i++)
{
ReduceAction action = self->contents[i];
if (action.symbol == new_action.symbol &&
action.count == new_action.count)
return;
}
array_push(self, new_action);
}
typedef struct
{
Subtree tree;
uint32_t child_index;
uint32_t byte_offset;
} StackEntry;
typedef struct
{
Array(StackEntry) stack;
Subtree last_external_token;
} ReusableNode;
static inline ReusableNode reusable_node_new(void)
{
return (ReusableNode){array_new(), NULL_SUBTREE};
}
static inline void reusable_node_clear(ReusableNode *self)
{
array_clear(&self->stack);
self->last_external_token = NULL_SUBTREE;
}
static inline Subtree reusable_node_tree(ReusableNode *self)
{
return self->stack.size > 0
? self->stack.contents[self->stack.size - 1].tree
: NULL_SUBTREE;
}
static inline uint32_t reusable_node_byte_offset(ReusableNode *self)
{
return self->stack.size > 0
? self->stack.contents[self->stack.size - 1].byte_offset
: UINT32_MAX;
}
static inline void reusable_node_delete(ReusableNode *self)
{
array_delete(&self->stack);
}
static inline uint32_t ts_subtree_total_bytes(Subtree self);
static inline bool ts_subtree_has_external_tokens(Subtree self);
Subtree ts_subtree_last_external_token(Subtree self);
static inline uint32_t ts_subtree_child_count(Subtree self);
static inline void reusable_node_advance(ReusableNode *self)
{
StackEntry last_entry = *array_back(&self->stack);
uint32_t byte_offset =
last_entry.byte_offset + ts_subtree_total_bytes(last_entry.tree);
if (ts_subtree_has_external_tokens(last_entry.tree))
{
self->last_external_token =
ts_subtree_last_external_token(last_entry.tree);
}
Subtree tree;
uint32_t next_index;
do
{
StackEntry popped_entry = array_pop(&self->stack);
next_index = popped_entry.child_index + 1;
if (self->stack.size == 0)
return;
tree = array_back(&self->stack)->tree;
} while (ts_subtree_child_count(tree) <= next_index);
array_push(&self->stack, ((StackEntry){
.tree = ts_subtree_children(tree)[next_index],
.child_index = next_index,
.byte_offset = byte_offset,
}));
}
static inline bool reusable_node_descend(ReusableNode *self)
{
StackEntry last_entry = *array_back(&self->stack);
if (ts_subtree_child_count(last_entry.tree) > 0)
{
array_push(&self->stack,
((StackEntry){
.tree = ts_subtree_children(last_entry.tree)[0],
.child_index = 0,
.byte_offset = last_entry.byte_offset,
}));
return true;
}
else
{
return false;
}
}
static inline void reusable_node_advance_past_leaf(ReusableNode *self)
{
while (reusable_node_descend(self))
{
}
reusable_node_advance(self);
}
static inline void reusable_node_reset(ReusableNode *self, Subtree tree)
{
reusable_node_clear(self);
array_push(&self->stack, ((StackEntry){
.tree = tree,
.child_index = 0,
.byte_offset = 0,
}));
// Never reuse the root node, because it has a non-standard internal
// structure due to transformations that are applied when it is accepted:
// adding the EOF child and any extra children.
if (!reusable_node_descend(self))
{
reusable_node_clear(self);
}
}
typedef struct Stack Stack;
typedef unsigned StackVersion;
typedef struct
{
SubtreeArray subtrees;
StackVersion version;
} StackSlice;
typedef Array(StackSlice) StackSliceArray;
typedef struct
{
Length position;
unsigned depth;
TSStateId state;
} StackSummaryEntry;
typedef Array(StackSummaryEntry) StackSummary;
// Create a stack.
Stack *ts_stack_new(SubtreePool *);
// Release the memory reserved for a given stack.
void ts_stack_delete(Stack *);
// Get the stack's current number of versions.
uint32_t ts_stack_version_count(const Stack *);
// Get the state at the top of the given version of the stack. If the stack is
// empty, this returns the initial state, 0.
TSStateId ts_stack_state(const Stack *, StackVersion);
// Get the last external token associated with a given version of the stack.
Subtree ts_stack_last_external_token(const Stack *, StackVersion);
// Set the last external token associated with a given version of the stack.
void ts_stack_set_last_external_token(Stack *, StackVersion, Subtree);
// Get the position of the given version of the stack within the document.
Length ts_stack_position(const Stack *, StackVersion);
// Push a tree and state onto the given version of the stack.
//
// This transfers ownership of the tree to the Stack. Callers that
// need to retain ownership of the tree for their own purposes should
// first retain the tree.
void ts_stack_push(Stack *, StackVersion, Subtree, bool, TSStateId);
// Pop the given number of entries from the given version of the stack. This
// operation can increase the number of stack versions by revealing multiple
// versions which had previously been merged. It returns an array that
// specifies the index of each revealed version and the trees that were
// removed from that version.
StackSliceArray ts_stack_pop_count(Stack *, StackVersion, uint32_t count);
// Remove an error at the top of the given version of the stack.
SubtreeArray ts_stack_pop_error(Stack *, StackVersion);
// Remove any pending trees from the top of the given version of the stack.
StackSliceArray ts_stack_pop_pending(Stack *, StackVersion);
// Remove any all trees from the given version of the stack.
StackSliceArray ts_stack_pop_all(Stack *, StackVersion);
// Get the maximum number of tree nodes reachable from this version of the stack
// since the last error was detected.
unsigned ts_stack_node_count_since_error(const Stack *, StackVersion);
int ts_stack_dynamic_precedence(Stack *, StackVersion);
bool ts_stack_has_advanced_since_error(const Stack *, StackVersion);
// Compute a summary of all the parse states near the top of the given
// version of the stack and store the summary for later retrieval.
void ts_stack_record_summary(Stack *, StackVersion, unsigned max_depth);
// Retrieve a summary of all the parse states near the top of the
// given version of the stack.
StackSummary *ts_stack_get_summary(Stack *, StackVersion);
// Get the total cost of all errors on the given version of the stack.
unsigned ts_stack_error_cost(const Stack *, StackVersion version);
// Merge the given two stack versions if possible, returning true
// if they were successfully merged and false otherwise.
bool ts_stack_merge(Stack *, StackVersion, StackVersion);
// Determine whether the given two stack versions can be merged.
bool ts_stack_can_merge(Stack *, StackVersion, StackVersion);
Subtree ts_stack_resume(Stack *, StackVersion);
void ts_stack_pause(Stack *, StackVersion, Subtree);
void ts_stack_halt(Stack *, StackVersion);
bool ts_stack_is_active(const Stack *, StackVersion);
bool ts_stack_is_paused(const Stack *, StackVersion);
bool ts_stack_is_halted(const Stack *, StackVersion);
void ts_stack_renumber_version(Stack *, StackVersion, StackVersion);
void ts_stack_swap_versions(Stack *, StackVersion, StackVersion);
StackVersion ts_stack_copy_version(Stack *, StackVersion);
// Remove the given version from the stack.
void ts_stack_remove_version(Stack *, StackVersion);
void ts_stack_clear(Stack *);
typedef void (*StackIterateCallback)(void *, TSStateId, uint32_t);
void ts_external_scanner_state_init(ExternalScannerState *, const char *,
unsigned);
const char *ts_external_scanner_state_data(const ExternalScannerState *);
bool ts_external_scanner_state_eq(const ExternalScannerState *self,
const char *, unsigned);
void ts_external_scanner_state_delete(ExternalScannerState *self);
void ts_subtree_array_copy(SubtreeArray, SubtreeArray *);
void ts_subtree_array_clear(SubtreePool *, SubtreeArray *);
void ts_subtree_array_delete(SubtreePool *, SubtreeArray *);
void ts_subtree_array_remove_trailing_extras(SubtreeArray *, SubtreeArray *);
void ts_subtree_array_reverse(SubtreeArray *);
SubtreePool ts_subtree_pool_new(uint32_t capacity);
void ts_subtree_pool_delete(SubtreePool *);
Subtree ts_subtree_new_leaf(SubtreePool *, TSSymbol, Length, Length, uint32_t,
TSStateId, bool, bool, bool, const TSLanguage *);
Subtree ts_subtree_new_error(SubtreePool *, int32_t, Length, Length, uint32_t,
TSStateId, const TSLanguage *);
MutableSubtree ts_subtree_new_node(TSSymbol, SubtreeArray *, unsigned,
const TSLanguage *);
Subtree ts_subtree_new_error_node(SubtreeArray *, bool, const TSLanguage *);
Subtree ts_subtree_new_missing_leaf(SubtreePool *, TSSymbol, Length, uint32_t,
const TSLanguage *);
MutableSubtree ts_subtree_make_mut(SubtreePool *, Subtree);
void ts_subtree_retain(Subtree);
void ts_subtree_release(SubtreePool *, Subtree);
int ts_subtree_compare(Subtree, Subtree, SubtreePool *);
void ts_subtree_set_symbol(MutableSubtree *, TSSymbol, const TSLanguage *);
void ts_subtree_summarize(MutableSubtree, const Subtree *, uint32_t,
const TSLanguage *);
void ts_subtree_summarize_children(MutableSubtree, const TSLanguage *);
void ts_subtree_balance(Subtree, SubtreePool *, const TSLanguage *);
Subtree ts_subtree_edit(Subtree, const TSInputEdit *edit, SubtreePool *);
char *ts_subtree_string(Subtree, TSSymbol, bool, const TSLanguage *,
bool include_all);
Subtree ts_subtree_last_external_token(Subtree);
const ExternalScannerState *ts_subtree_external_scanner_state(Subtree self);
bool ts_subtree_external_scanner_state_eq(Subtree, Subtree);
#define SUBTREE_GET(self, name) \
((self).data.is_inline ? (self).data.name : (self).ptr->name)
static inline TSSymbol ts_subtree_symbol(Subtree self)
{
return SUBTREE_GET(self, symbol);
}
static inline bool ts_subtree_visible(Subtree self)
{
return SUBTREE_GET(self, visible);
}
static inline bool ts_subtree_named(Subtree self)
{
return SUBTREE_GET(self, named);
}
static inline bool ts_subtree_extra(Subtree self)
{
return SUBTREE_GET(self, extra);
}
static inline bool ts_subtree_has_changes(Subtree self)
{
return SUBTREE_GET(self, has_changes);
}
static inline bool ts_subtree_missing(Subtree self)
{
return SUBTREE_GET(self, is_missing);
}
static inline bool ts_subtree_is_keyword(Subtree self)
{
return SUBTREE_GET(self, is_keyword);
}
static inline TSStateId ts_subtree_parse_state(Subtree self)
{
return SUBTREE_GET(self, parse_state);
}
static inline uint32_t ts_subtree_lookahead_bytes(Subtree self)
{
return SUBTREE_GET(self, lookahead_bytes);
}
#undef SUBTREE_GET
// Get the size needed to store a heap-allocated subtree with the given
// number of children.
static inline size_t ts_subtree_alloc_size(uint32_t child_count)
{
return child_count * sizeof(Subtree) + sizeof(SubtreeHeapData);
}
static inline void ts_subtree_set_extra(MutableSubtree *self, bool is_extra)
{
if (self->data.is_inline)
{
self->data.extra = is_extra;
}
else
{
self->ptr->extra = is_extra;
}
}
static inline TSSymbol ts_subtree_leaf_symbol(Subtree self)
{
if (self.data.is_inline)
return self.data.symbol;
if (self.ptr->child_count == 0)
return self.ptr->symbol;
return self.ptr->first_leaf.symbol;
}
static inline TSStateId ts_subtree_leaf_parse_state(Subtree self)
{
if (self.data.is_inline)
return self.data.parse_state;
if (self.ptr->child_count == 0)
return self.ptr->parse_state;
return self.ptr->first_leaf.parse_state;
}
static inline Length ts_subtree_padding(Subtree self)
{
if (self.data.is_inline)
{
Length result = {self.data.padding_bytes,
{self.data.padding_rows, self.data.padding_columns}};
return result;
}
else
{
return self.ptr->padding;
}
}
static inline Length ts_subtree_size(Subtree self)
{
if (self.data.is_inline)
{
Length result = {self.data.size_bytes, {0, self.data.size_bytes}};
return result;
}
else
{
return self.ptr->size;
}
}
static inline Length ts_subtree_total_size(Subtree self)
{
return length_add(ts_subtree_padding(self), ts_subtree_size(self));
}
static inline uint32_t ts_subtree_total_bytes(Subtree self)
{
return ts_subtree_total_size(self).bytes;
}
static inline uint32_t ts_subtree_child_count(Subtree self)
{
return self.data.is_inline ? 0 : self.ptr->child_count;
}
static inline uint32_t ts_subtree_repeat_depth(Subtree self)
{
return self.data.is_inline ? 0 : self.ptr->repeat_depth;
}
static inline uint32_t ts_subtree_is_repetition(Subtree self)
{
return self.data.is_inline ? 0
: !self.ptr->named && !self.ptr->visible &&
self.ptr->child_count != 0;
}
static inline uint32_t ts_subtree_visible_descendant_count(Subtree self)
{
return (self.data.is_inline || self.ptr->child_count == 0)
? 0
: self.ptr->visible_descendant_count;
}
static inline uint32_t ts_subtree_visible_child_count(Subtree self)
{
if (ts_subtree_child_count(self) > 0)
{
return self.ptr->visible_child_count;
}
else
{
return 0;
}
}
static inline uint32_t ts_subtree_error_cost(Subtree self)
{
if (ts_subtree_missing(self))
{
return ERROR_COST_PER_MISSING_TREE + ERROR_COST_PER_RECOVERY;
}
else
{
return self.data.is_inline ? 0 : self.ptr->error_cost;
}
}
static inline int32_t ts_subtree_dynamic_precedence(Subtree self)
{
return (self.data.is_inline || self.ptr->child_count == 0)
? 0
: self.ptr->dynamic_precedence;
}
static inline uint16_t ts_subtree_production_id(Subtree self)
{
if (ts_subtree_child_count(self) > 0)
{
return self.ptr->production_id;
}
else
{
return 0;
}
}
static inline bool ts_subtree_fragile_left(Subtree self)
{
return self.data.is_inline ? false : self.ptr->fragile_left;
}
static inline bool ts_subtree_fragile_right(Subtree self)
{
return self.data.is_inline ? false : self.ptr->fragile_right;
}
static inline bool ts_subtree_has_external_tokens(Subtree self)
{
return self.data.is_inline ? false : self.ptr->has_external_tokens;
}
static inline bool ts_subtree_has_external_scanner_state_change(Subtree self)
{
return self.data.is_inline ? false
: self.ptr->has_external_scanner_state_change;
}
static inline bool ts_subtree_depends_on_column(Subtree self)
{
return self.data.is_inline ? false : self.ptr->depends_on_column;
}
static inline bool ts_subtree_is_fragile(Subtree self)
{
return self.data.is_inline
? false
: (self.ptr->fragile_left || self.ptr->fragile_right);
}
static inline bool ts_subtree_is_error(Subtree self)
{
return ts_subtree_symbol(self) == ts_builtin_sym_error;
}
static inline bool ts_subtree_is_eof(Subtree self)
{
return ts_subtree_symbol(self) == ts_builtin_sym_end;
}
static inline Subtree ts_subtree_from_mut(MutableSubtree self)
{
Subtree result;
result.data = self.data;
return result;
}
static inline MutableSubtree ts_subtree_to_mut_unsafe(Subtree self)
{
MutableSubtree result;
result.data = self.data;
return result;
}
typedef enum
{
TreeCursorStepNone,
TreeCursorStepHidden,
TreeCursorStepVisible,
} TreeCursorStep;
void ts_tree_cursor_init(TreeCursor *, TSNode);
void ts_tree_cursor_current_status(const TSTreeCursor *, TSFieldId *, bool *,
bool *, bool *, TSSymbol *, unsigned *);
TreeCursorStep ts_tree_cursor_goto_first_child_internal(TSTreeCursor *);
TreeCursorStep ts_tree_cursor_goto_next_sibling_internal(TSTreeCursor *);
static inline Subtree ts_tree_cursor_current_subtree(const TSTreeCursor *_self)
{
const TreeCursor *self = (const TreeCursor *)_self;
TreeCursorEntry *last_entry = array_back(&self->stack);
return *last_entry->subtree;
}
TSNode ts_tree_cursor_parent_node(const TSTreeCursor *);
typedef struct
{
const Subtree *child;
const Subtree *parent;
Length position;
TSSymbol alias_symbol;
} ParentCacheEntry;
struct TSTree
{
Subtree root;
const TSLanguage *language;
TSRange *included_ranges;
unsigned included_range_count;
};
TSTree *ts_tree_new(Subtree root, const TSLanguage *language, const TSRange *,
unsigned);
TSNode ts_node_new(const TSTree *, const Subtree *, Length, TSSymbol);
typedef uint64_t TSClock;
typedef uint64_t TSDuration;
#endif // TREE_SITTER_TREE_H_
=======
#ifndef TREE_SITTER_API_H_
#define TREE_SITTER_API_H_
#ifndef TREE_SITTER_HIDE_SYMBOLS
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC visibility push(default)
#endif
#endif
#ifdef __cplusplus
extern "C" {
#endif
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
/****************************/
/* Section - ABI Versioning */
/****************************/
/**
* The latest ABI version that is supported by the current version of the
* library. When Languages are generated by the Tree-sitter CLI, they are
* assigned an ABI version number that corresponds to the current CLI version.
* The Tree-sitter library is generally backwards-compatible with languages
* generated using older CLI versions, but is not forwards-compatible.
*/
#define TREE_SITTER_LANGUAGE_VERSION 14
/**
* The earliest ABI version that is supported by the current version of the
* library.
*/
#define TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION 13
/*******************/
/* Section - Types */
/*******************/
typedef uint16_t TSStateId;
typedef uint16_t TSSymbol;
typedef uint16_t TSFieldId;
typedef struct TSLanguage TSLanguage;
typedef struct TSParser TSParser;
typedef struct TSTree TSTree;
typedef struct TSQuery TSQuery;
typedef struct TSQueryCursor TSQueryCursor;
typedef struct TSLookaheadIterator TSLookaheadIterator;
typedef enum TSInputEncoding {
TSInputEncodingUTF8,
TSInputEncodingUTF16,
} TSInputEncoding;
typedef enum TSSymbolType {
TSSymbolTypeRegular,
TSSymbolTypeAnonymous,
TSSymbolTypeAuxiliary,
} TSSymbolType;
typedef struct TSPoint {
uint32_t row;
uint32_t column;
} TSPoint;
typedef struct TSRange {
TSPoint start_point;
TSPoint end_point;
uint32_t start_byte;
uint32_t end_byte;
} TSRange;
typedef struct TSInput {
void *payload;
const char *(*read)(void *payload, uint32_t byte_index, TSPoint position, uint32_t *bytes_read);
TSInputEncoding encoding;
} TSInput;
typedef enum TSLogType {
TSLogTypeParse,
TSLogTypeLex,
} TSLogType;
typedef struct TSLogger {
void *payload;
void (*log)(void *payload, TSLogType log_type, const char *buffer);
} TSLogger;
typedef struct TSInputEdit {
uint32_t start_byte;
uint32_t old_end_byte;
uint32_t new_end_byte;
TSPoint start_point;
TSPoint old_end_point;
TSPoint new_end_point;
} TSInputEdit;
typedef struct TSNode {
uint32_t context[4];
const void *id;
const TSTree *tree;
} TSNode;
typedef struct TSTreeCursor {
const void *tree;
const void *id;
uint32_t context[3];
} TSTreeCursor;
typedef struct TSQueryCapture {
TSNode node;
uint32_t index;
} TSQueryCapture;
typedef enum TSQuantifier {
TSQuantifierZero = 0, // must match the array initialization value
TSQuantifierZeroOrOne,
TSQuantifierZeroOrMore,
TSQuantifierOne,
TSQuantifierOneOrMore,
} TSQuantifier;
typedef struct TSQueryMatch {
uint32_t id;
uint16_t pattern_index;
uint16_t capture_count;
const TSQueryCapture *captures;
} TSQueryMatch;
typedef enum TSQueryPredicateStepType {
TSQueryPredicateStepTypeDone,
TSQueryPredicateStepTypeCapture,
TSQueryPredicateStepTypeString,
} TSQueryPredicateStepType;
typedef struct TSQueryPredicateStep {
TSQueryPredicateStepType type;
uint32_t value_id;
} TSQueryPredicateStep;
typedef enum TSQueryError {
TSQueryErrorNone = 0,
TSQueryErrorSyntax,
TSQueryErrorNodeType,
TSQueryErrorField,
TSQueryErrorCapture,
TSQueryErrorStructure,
TSQueryErrorLanguage,
} TSQueryError;
/********************/
/* Section - Parser */
/********************/
/**
* Create a new parser.
*/
TSParser *ts_parser_new(void);
/**
* Delete the parser, freeing all of the memory that it used.
*/
void ts_parser_delete(TSParser *self);
/**
* Get the parser's current language.
*/
const TSLanguage *ts_parser_language(const TSParser *self);
/**
* Set the language that the parser should use for parsing.
*
* Returns a boolean indicating whether or not the language was successfully
* assigned. True means assignment succeeded. False means there was a version
* mismatch: the language was generated with an incompatible version of the
* Tree-sitter CLI. Check the language's version using [`ts_language_version`]
* and compare it to this library's [`TREE_SITTER_LANGUAGE_VERSION`] and
* [`TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION`] constants.
*/
bool ts_parser_set_language(TSParser *self, const TSLanguage *language);
/**
* Set the ranges of text that the parser should include when parsing.
*
* By default, the parser will always include entire documents. This function
* allows you to parse only a *portion* of a document but still return a syntax
* tree whose ranges match up with the document as a whole. You can also pass
* multiple disjoint ranges.
*
* The second and third parameters specify the location and length of an array
* of ranges. The parser does *not* take ownership of these ranges; it copies
* the data, so it doesn't matter how these ranges are allocated.
*
* If `count` is zero, then the entire document will be parsed. Otherwise,
* the given ranges must be ordered from earliest to latest in the document,
* and they must not overlap. That is, the following must hold for all:
*
* `i < count - 1`: `ranges[i].end_byte <= ranges[i + 1].start_byte`
*
* If this requirement is not satisfied, the operation will fail, the ranges
* will not be assigned, and this function will return `false`. On success,
* this function returns `true`
*/
bool ts_parser_set_included_ranges(
TSParser *self,
const TSRange *ranges,
uint32_t count
);
/**
* Get the ranges of text that the parser will include when parsing.
*
* The returned pointer is owned by the parser. The caller should not free it
* or write to it. The length of the array will be written to the given
* `count` pointer.
*/
const TSRange *ts_parser_included_ranges(
const TSParser *self,
uint32_t *count
);
/**
* Use the parser to parse some source code and create a syntax tree.
*
* If you are parsing this document for the first time, pass `NULL` for the
* `old_tree` parameter. Otherwise, if you have already parsed an earlier
* version of this document and the document has since been edited, pass the
* previous syntax tree so that the unchanged parts of it can be reused.
* This will save time and memory. For this to work correctly, you must have
* already edited the old syntax tree using the [`ts_tree_edit`] function in a
* way that exactly matches the source code changes.
*
* The [`TSInput`] parameter lets you specify how to read the text. It has the
* following three fields:
* 1. [`read`]: A function to retrieve a chunk of text at a given byte offset
* and (row, column) position. The function should return a pointer to the
* text and write its length to the [`bytes_read`] pointer. The parser does
* not take ownership of this buffer; it just borrows it until it has
* finished reading it. The function should write a zero value to the
* [`bytes_read`] pointer to indicate the end of the document.
* 2. [`payload`]: An arbitrary pointer that will be passed to each invocation
* of the [`read`] function.
* 3. [`encoding`]: An indication of how the text is encoded. Either
* `TSInputEncodingUTF8` or `TSInputEncodingUTF16`.
*
* This function returns a syntax tree on success, and `NULL` on failure. There
* are three possible reasons for failure:
* 1. The parser does not have a language assigned. Check for this using the
[`ts_parser_language`] function.
* 2. Parsing was cancelled due to a timeout that was set by an earlier call to
* the [`ts_parser_set_timeout_micros`] function. You can resume parsing from
* where the parser left out by calling [`ts_parser_parse`] again with the
* same arguments. Or you can start parsing from scratch by first calling
* [`ts_parser_reset`].
* 3. Parsing was cancelled using a cancellation flag that was set by an
* earlier call to [`ts_parser_set_cancellation_flag`]. You can resume parsing
* from where the parser left out by calling [`ts_parser_parse`] again with
* the same arguments.
*
* [`read`]: TSInput::read
* [`payload`]: TSInput::payload
* [`encoding`]: TSInput::encoding
* [`bytes_read`]: TSInput::read
*/
TSTree *ts_parser_parse(
TSParser *self,
const TSTree *old_tree,
TSInput input
);
/**
* Use the parser to parse some source code stored in one contiguous buffer.
* The first two parameters are the same as in the [`ts_parser_parse`] function
* above. The second two parameters indicate the location of the buffer and its
* length in bytes.
*/
TSTree *ts_parser_parse_string(
TSParser *self,
const TSTree *old_tree,
const char *string,
uint32_t length
);
/**
* Use the parser to parse some source code stored in one contiguous buffer with
* a given encoding. The first four parameters work the same as in the
* [`ts_parser_parse_string`] method above. The final parameter indicates whether
* the text is encoded as UTF8 or UTF16.
*/
TSTree *ts_parser_parse_string_encoding(
TSParser *self,
const TSTree *old_tree,
const char *string,
uint32_t length,
TSInputEncoding encoding
);
/**
* Instruct the parser to start the next parse from the beginning.
*
* If the parser previously failed because of a timeout or a cancellation, then
* by default, it will resume where it left off on the next call to
* [`ts_parser_parse`] or other parsing functions. If you don't want to resume,
* and instead intend to use this parser to parse some other document, you must
* call [`ts_parser_reset`] first.
*/
void ts_parser_reset(TSParser *self);
/**
* Set the maximum duration in microseconds that parsing should be allowed to
* take before halting.
*
* If parsing takes longer than this, it will halt early, returning NULL.
* See [`ts_parser_parse`] for more information.
*/
void ts_parser_set_timeout_micros(TSParser *self, uint64_t timeout_micros);
/**
* Get the duration in microseconds that parsing is allowed to take.
*/
uint64_t ts_parser_timeout_micros(const TSParser *self);
/**
* Set the parser's current cancellation flag pointer.
*
* If a non-null pointer is assigned, then the parser will periodically read
* from this pointer during parsing. If it reads a non-zero value, it will
* halt early, returning NULL. See [`ts_parser_parse`] for more information.
*/
void ts_parser_set_cancellation_flag(TSParser *self, const size_t *flag);
/**
* Get the parser's current cancellation flag pointer.
*/
const size_t *ts_parser_cancellation_flag(const TSParser *self);
/**
* Set the logger that a parser should use during parsing.
*
* The parser does not take ownership over the logger payload. If a logger was
* previously assigned, the caller is responsible for releasing any memory
* owned by the previous logger.
*/
void ts_parser_set_logger(TSParser *self, TSLogger logger);
/**
* Get the parser's current logger.
*/
TSLogger ts_parser_logger(const TSParser *self);
/**
* Set the file descriptor to which the parser should write debugging graphs
* during parsing. The graphs are formatted in the DOT language. You may want
* to pipe these graphs directly to a `dot(1)` process in order to generate
* SVG output. You can turn off this logging by passing a negative number.
*/
void ts_parser_print_dot_graphs(TSParser *self, int fd);
/******************/
/* Section - Tree */
/******************/
/**
* Create a shallow copy of the syntax tree. This is very fast.
*
* You need to copy a syntax tree in order to use it on more than one thread at
* a time, as syntax trees are not thread safe.
*/
TSTree *ts_tree_copy(const TSTree *self);
/**
* Delete the syntax tree, freeing all of the memory that it used.
*/
void ts_tree_delete(TSTree *self);
/**
* Get the root node of the syntax tree.
*/
TSNode ts_tree_root_node(const TSTree *self);
/**
* Get the root node of the syntax tree, but with its position
* shifted forward by the given offset.
*/
TSNode ts_tree_root_node_with_offset(
const TSTree *self,
uint32_t offset_bytes,
TSPoint offset_extent
);
/**
* Get the language that was used to parse the syntax tree.
*/
const TSLanguage *ts_tree_language(const TSTree *self);
/**
* Get the array of included ranges that was used to parse the syntax tree.
*
* The returned pointer must be freed by the caller.
*/
TSRange *ts_tree_included_ranges(const TSTree *self, uint32_t *length);
/**
* Edit the syntax tree to keep it in sync with source code that has been
* edited.
*
* You must describe the edit both in terms of byte offsets and in terms of
* (row, column) coordinates.
*/
void ts_tree_edit(TSTree *self, const TSInputEdit *edit);
/**
* Compare an old edited syntax tree to a new syntax tree representing the same
* document, returning an array of ranges whose syntactic structure has changed.
*
* For this to work correctly, the old syntax tree must have been edited such
* that its ranges match up to the new tree. Generally, you'll want to call
* this function right after calling one of the [`ts_parser_parse`] functions.
* You need to pass the old tree that was passed to parse, as well as the new
* tree that was returned from that function.
*
* The returned array is allocated using `malloc` and the caller is responsible
* for freeing it using `free`. The length of the array will be written to the
* given `length` pointer.
*/
TSRange *ts_tree_get_changed_ranges(
const TSTree *old_tree,
const TSTree *new_tree,
uint32_t *length
);
/**
* Write a DOT graph describing the syntax tree to the given file.
*/
void ts_tree_print_dot_graph(const TSTree *self, int file_descriptor);
/******************/
/* Section - Node */
/******************/
/**
* Get the node's type as a null-terminated string.
*/
const char *ts_node_type(TSNode self);
/**
* Get the node's type as a numerical id.
*/
TSSymbol ts_node_symbol(TSNode self);
/**
* Get the node's language.
*/
const TSLanguage *ts_node_language(TSNode self);
/**
* Get the node's type as it appears in the grammar ignoring aliases as a
* null-terminated string.
*/
const char *ts_node_grammar_type(TSNode self);
/**
* Get the node's type as a numerical id as it appears in the grammar ignoring
* aliases. This should be used in [`ts_language_next_state`] instead of
* [`ts_node_symbol`].
*/
TSSymbol ts_node_grammar_symbol(TSNode self);
/**
* Get the node's start byte.
*/
uint32_t ts_node_start_byte(TSNode self);
/**
* Get the node's start position in terms of rows and columns.
*/
TSPoint ts_node_start_point(TSNode self);
/**
* Get the node's end byte.
*/
uint32_t ts_node_end_byte(TSNode self);
/**
* Get the node's end position in terms of rows and columns.
*/
TSPoint ts_node_end_point(TSNode self);
/**
* Get an S-expression representing the node as a string.
*
* This string is allocated with `malloc` and the caller is responsible for
* freeing it using `free`.
*/
char *ts_node_string(TSNode self);
/**
* Check if the node is null. Functions like [`ts_node_child`] and
* [`ts_node_next_sibling`] will return a null node to indicate that no such node
* was found.
*/
bool ts_node_is_null(TSNode self);
/**
* Check if the node is *named*. Named nodes correspond to named rules in the
* grammar, whereas *anonymous* nodes correspond to string literals in the
* grammar.
*/
bool ts_node_is_named(TSNode self);
/**
* Check if the node is *missing*. Missing nodes are inserted by the parser in
* order to recover from certain kinds of syntax errors.
*/
bool ts_node_is_missing(TSNode self);
/**
* Check if the node is *extra*. Extra nodes represent things like comments,
* which are not required the grammar, but can appear anywhere.
*/
bool ts_node_is_extra(TSNode self);
/**
* Check if a syntax node has been edited.
*/
bool ts_node_has_changes(TSNode self);
/**
* Check if the node is a syntax error or contains any syntax errors.
*/
bool ts_node_has_error(TSNode self);
/**
* Check if the node is a syntax error.
*/
bool ts_node_is_error(TSNode self);
/**
* Get this node's parse state.
*/
TSStateId ts_node_parse_state(TSNode self);
/**
* Get the parse state after this node.
*/
TSStateId ts_node_next_parse_state(TSNode self);
/**
* Get the node's immediate parent.
* Prefer [`ts_node_child_containing_descendant`] for
* iterating over the node's ancestors.
*/
TSNode ts_node_parent(TSNode self);
/**
* Get the node's child that contains `descendant`.
*/
TSNode ts_node_child_containing_descendant(TSNode self, TSNode descendant);
/**
* Get the node's child at the given index, where zero represents the first
* child.
*/
TSNode ts_node_child(TSNode self, uint32_t child_index);
/**
* Get the field name for node's child at the given index, where zero represents
* the first child. Returns NULL, if no field is found.
*/
const char *ts_node_field_name_for_child(TSNode self, uint32_t child_index);
/**
* Get the node's number of children.
*/
uint32_t ts_node_child_count(TSNode self);
/**
* Get the node's *named* child at the given index.
*
* See also [`ts_node_is_named`].
*/
TSNode ts_node_named_child(TSNode self, uint32_t child_index);
/**
* Get the node's number of *named* children.
*
* See also [`ts_node_is_named`].
*/
uint32_t ts_node_named_child_count(TSNode self);
/**
* Get the node's child with the given field name.
*/
TSNode ts_node_child_by_field_name(
TSNode self,
const char *name,
uint32_t name_length
);
/**
* Get the node's child with the given numerical field id.
*
* You can convert a field name to an id using the
* [`ts_language_field_id_for_name`] function.
*/
TSNode ts_node_child_by_field_id(TSNode self, TSFieldId field_id);
/**
* Get the node's next / previous sibling.
*/
TSNode ts_node_next_sibling(TSNode self);
TSNode ts_node_prev_sibling(TSNode self);
/**
* Get the node's next / previous *named* sibling.
*/
TSNode ts_node_next_named_sibling(TSNode self);
TSNode ts_node_prev_named_sibling(TSNode self);
/**
* Get the node's first child that extends beyond the given byte offset.
*/
TSNode ts_node_first_child_for_byte(TSNode self, uint32_t byte);
/**
* Get the node's first named child that extends beyond the given byte offset.
*/
TSNode ts_node_first_named_child_for_byte(TSNode self, uint32_t byte);
/**
* Get the node's number of descendants, including one for the node itself.
*/
uint32_t ts_node_descendant_count(TSNode self);
/**
* Get the smallest node within this node that spans the given range of bytes
* or (row, column) positions.
*/
TSNode ts_node_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end);
TSNode ts_node_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end);
/**
* Get the smallest named node within this node that spans the given range of
* bytes or (row, column) positions.
*/
TSNode ts_node_named_descendant_for_byte_range(TSNode self, uint32_t start, uint32_t end);
TSNode ts_node_named_descendant_for_point_range(TSNode self, TSPoint start, TSPoint end);
/**
* Edit the node to keep it in-sync with source code that has been edited.
*
* This function is only rarely needed. When you edit a syntax tree with the
* [`ts_tree_edit`] function, all of the nodes that you retrieve from the tree
* afterward will already reflect the edit. You only need to use [`ts_node_edit`]
* when you have a [`TSNode`] instance that you want to keep and continue to use
* after an edit.
*/
void ts_node_edit(TSNode *self, const TSInputEdit *edit);
/**
* Check if two nodes are identical.
*/
bool ts_node_eq(TSNode self, TSNode other);
/************************/
/* Section - TreeCursor */
/************************/
/**
* Create a new tree cursor starting from the given node.
*
* A tree cursor allows you to walk a syntax tree more efficiently than is
* possible using the [`TSNode`] functions. It is a mutable object that is always
* on a certain syntax node, and can be moved imperatively to different nodes.
*/
TSTreeCursor ts_tree_cursor_new(TSNode node);
/**
* Delete a tree cursor, freeing all of the memory that it used.
*/
void ts_tree_cursor_delete(TSTreeCursor *self);
/**
* Re-initialize a tree cursor to start at a different node.
*/
void ts_tree_cursor_reset(TSTreeCursor *self, TSNode node);
/**
* Re-initialize a tree cursor to the same position as another cursor.
*
* Unlike [`ts_tree_cursor_reset`], this will not lose parent information and
* allows reusing already created cursors.
*/
void ts_tree_cursor_reset_to(TSTreeCursor *dst, const TSTreeCursor *src);
/**
* Get the tree cursor's current node.
*/
TSNode ts_tree_cursor_current_node(const TSTreeCursor *self);
/**
* Get the field name of the tree cursor's current node.
*
* This returns `NULL` if the current node doesn't have a field.
* See also [`ts_node_child_by_field_name`].
*/
const char *ts_tree_cursor_current_field_name(const TSTreeCursor *self);
/**
* Get the field id of the tree cursor's current node.
*
* This returns zero if the current node doesn't have a field.
* See also [`ts_node_child_by_field_id`], [`ts_language_field_id_for_name`].
*/
TSFieldId ts_tree_cursor_current_field_id(const TSTreeCursor *self);
/**
* Move the cursor to the parent of its current node.
*
* This returns `true` if the cursor successfully moved, and returns `false`
* if there was no parent node (the cursor was already on the root node).
*/
bool ts_tree_cursor_goto_parent(TSTreeCursor *self);
/**
* Move the cursor to the next sibling of its current node.
*
* This returns `true` if the cursor successfully moved, and returns `false`
* if there was no next sibling node.
*/
bool ts_tree_cursor_goto_next_sibling(TSTreeCursor *self);
/**
* Move the cursor to the previous sibling of its current node.
*
* This returns `true` if the cursor successfully moved, and returns `false` if
* there was no previous sibling node.
*
* Note, that this function may be slower than
* [`ts_tree_cursor_goto_next_sibling`] due to how node positions are stored. In
* the worst case, this will need to iterate through all the children upto the
* previous sibling node to recalculate its position.
*/
bool ts_tree_cursor_goto_previous_sibling(TSTreeCursor *self);
/**
* Move the cursor to the first child of its current node.
*
* This returns `true` if the cursor successfully moved, and returns `false`
* if there were no children.
*/
bool ts_tree_cursor_goto_first_child(TSTreeCursor *self);
/**
* Move the cursor to the last child of its current node.
*
* This returns `true` if the cursor successfully moved, and returns `false` if
* there were no children.
*
* Note that this function may be slower than [`ts_tree_cursor_goto_first_child`]
* because it needs to iterate through all the children to compute the child's
* position.
*/
bool ts_tree_cursor_goto_last_child(TSTreeCursor *self);
/**
* Move the cursor to the node that is the nth descendant of
* the original node that the cursor was constructed with, where
* zero represents the original node itself.
*/
void ts_tree_cursor_goto_descendant(TSTreeCursor *self, uint32_t goal_descendant_index);
/**
* Get the index of the cursor's current node out of all of the
* descendants of the original node that the cursor was constructed with.
*/
uint32_t ts_tree_cursor_current_descendant_index(const TSTreeCursor *self);
/**
* Get the depth of the cursor's current node relative to the original
* node that the cursor was constructed with.
*/
uint32_t ts_tree_cursor_current_depth(const TSTreeCursor *self);
/**
* Move the cursor to the first child of its current node that extends beyond
* the given byte offset or point.
*
* This returns the index of the child node if one was found, and returns -1
* if no such child was found.
*/
int64_t ts_tree_cursor_goto_first_child_for_byte(TSTreeCursor *self, uint32_t goal_byte);
int64_t ts_tree_cursor_goto_first_child_for_point(TSTreeCursor *self, TSPoint goal_point);
TSTreeCursor ts_tree_cursor_copy(const TSTreeCursor *cursor);
/*******************/
/* Section - Query */
/*******************/
/**
* Create a new query from a string containing one or more S-expression
* patterns. The query is associated with a particular language, and can
* only be run on syntax nodes parsed with that language.
*
* If all of the given patterns are valid, this returns a [`TSQuery`].
* If a pattern is invalid, this returns `NULL`, and provides two pieces
* of information about the problem:
* 1. The byte offset of the error is written to the `error_offset` parameter.
* 2. The type of error is written to the `error_type` parameter.
*/
TSQuery *ts_query_new(
const TSLanguage *language,
const char *source,
uint32_t source_len,
uint32_t *error_offset,
TSQueryError *error_type
);
/**
* Delete a query, freeing all of the memory that it used.
*/
void ts_query_delete(TSQuery *self);
/**
* Get the number of patterns, captures, or string literals in the query.
*/
uint32_t ts_query_pattern_count(const TSQuery *self);
uint32_t ts_query_capture_count(const TSQuery *self);
uint32_t ts_query_string_count(const TSQuery *self);
/**
* Get the byte offset where the given pattern starts in the query's source.
*
* This can be useful when combining queries by concatenating their source
* code strings.
*/
uint32_t ts_query_start_byte_for_pattern(const TSQuery *self, uint32_t pattern_index);
/**
* Get all of the predicates for the given pattern in the query.
*
* The predicates are represented as a single array of steps. There are three
* types of steps in this array, which correspond to the three legal values for
* the `type` field:
* - `TSQueryPredicateStepTypeCapture` - Steps with this type represent names
* of captures. Their `value_id` can be used with the
* [`ts_query_capture_name_for_id`] function to obtain the name of the capture.
* - `TSQueryPredicateStepTypeString` - Steps with this type represent literal
* strings. Their `value_id` can be used with the
* [`ts_query_string_value_for_id`] function to obtain their string value.
* - `TSQueryPredicateStepTypeDone` - Steps with this type are *sentinels*
* that represent the end of an individual predicate. If a pattern has two
* predicates, then there will be two steps with this `type` in the array.
*/
const TSQueryPredicateStep *ts_query_predicates_for_pattern(
const TSQuery *self,
uint32_t pattern_index,
uint32_t *step_count
);
/*
* Check if the given pattern in the query has a single root node.
*/
bool ts_query_is_pattern_rooted(const TSQuery *self, uint32_t pattern_index);
/*
* Check if the given pattern in the query is 'non local'.
*
* A non-local pattern has multiple root nodes and can match within a
* repeating sequence of nodes, as specified by the grammar. Non-local
* patterns disable certain optimizations that would otherwise be possible
* when executing a query on a specific range of a syntax tree.
*/
bool ts_query_is_pattern_non_local(const TSQuery *self, uint32_t pattern_index);
/*
* Check if a given pattern is guaranteed to match once a given step is reached.
* The step is specified by its byte offset in the query's source code.
*/
bool ts_query_is_pattern_guaranteed_at_step(const TSQuery *self, uint32_t byte_offset);
/**
* Get the name and length of one of the query's captures, or one of the
* query's string literals. Each capture and string is associated with a
* numeric id based on the order that it appeared in the query's source.
*/
const char *ts_query_capture_name_for_id(
const TSQuery *self,
uint32_t index,
uint32_t *length
);
/**
* Get the quantifier of the query's captures. Each capture is * associated
* with a numeric id based on the order that it appeared in the query's source.
*/
TSQuantifier ts_query_capture_quantifier_for_id(
const TSQuery *self,
uint32_t pattern_index,
uint32_t capture_index
);
const char *ts_query_string_value_for_id(
const TSQuery *self,
uint32_t index,
uint32_t *length
);
/**
* Disable a certain capture within a query.
*
* This prevents the capture from being returned in matches, and also avoids
* any resource usage associated with recording the capture. Currently, there
* is no way to undo this.
*/
void ts_query_disable_capture(TSQuery *self, const char *name, uint32_t length);
/**
* Disable a certain pattern within a query.
*
* This prevents the pattern from matching and removes most of the overhead
* associated with the pattern. Currently, there is no way to undo this.
*/
void ts_query_disable_pattern(TSQuery *self, uint32_t pattern_index);
/**
* Create a new cursor for executing a given query.
*
* The cursor stores the state that is needed to iteratively search
* for matches. To use the query cursor, first call [`ts_query_cursor_exec`]
* to start running a given query on a given syntax node. Then, there are
* two options for consuming the results of the query:
* 1. Repeatedly call [`ts_query_cursor_next_match`] to iterate over all of the
* *matches* in the order that they were found. Each match contains the
* index of the pattern that matched, and an array of captures. Because
* multiple patterns can match the same set of nodes, one match may contain
* captures that appear *before* some of the captures from a previous match.
* 2. Repeatedly call [`ts_query_cursor_next_capture`] to iterate over all of the
* individual *captures* in the order that they appear. This is useful if
* don't care about which pattern matched, and just want a single ordered
* sequence of captures.
*
* If you don't care about consuming all of the results, you can stop calling
* [`ts_query_cursor_next_match`] or [`ts_query_cursor_next_capture`] at any point.
* You can then start executing another query on another node by calling
* [`ts_query_cursor_exec`] again.
*/
TSQueryCursor *ts_query_cursor_new(void);
/**
* Delete a query cursor, freeing all of the memory that it used.
*/
void ts_query_cursor_delete(TSQueryCursor *self);
/**
* Start running a given query on a given node.
*/
void ts_query_cursor_exec(TSQueryCursor *self, const TSQuery *query, TSNode node);
/**
* Manage the maximum number of in-progress matches allowed by this query
* cursor.
*
* Query cursors have an optional maximum capacity for storing lists of
* in-progress captures. If this capacity is exceeded, then the
* earliest-starting match will silently be dropped to make room for further
* matches. This maximum capacity is optional — by default, query cursors allow
* any number of pending matches, dynamically allocating new space for them as
* needed as the query is executed.
*/
bool ts_query_cursor_did_exceed_match_limit(const TSQueryCursor *self);
uint32_t ts_query_cursor_match_limit(const TSQueryCursor *self);
void ts_query_cursor_set_match_limit(TSQueryCursor *self, uint32_t limit);
/**
* Set the range of bytes or (row, column) positions in which the query
* will be executed.
*/
void ts_query_cursor_set_byte_range(TSQueryCursor *self, uint32_t start_byte, uint32_t end_byte);
void ts_query_cursor_set_point_range(TSQueryCursor *self, TSPoint start_point, TSPoint end_point);
/**
* Advance to the next match of the currently running query.
*
* If there is a match, write it to `*match` and return `true`.
* Otherwise, return `false`.
*/
bool ts_query_cursor_next_match(TSQueryCursor *self, TSQueryMatch *match);
void ts_query_cursor_remove_match(TSQueryCursor *self, uint32_t match_id);
/**
* Advance to the next capture of the currently running query.
*
* If there is a capture, write its match to `*match` and its index within
* the matche's capture list to `*capture_index`. Otherwise, return `false`.
*/
bool ts_query_cursor_next_capture(
TSQueryCursor *self,
TSQueryMatch *match,
uint32_t *capture_index
);
/**
* Set the maximum start depth for a query cursor.
*
* This prevents cursors from exploring children nodes at a certain depth.
* Note if a pattern includes many children, then they will still be checked.
*
* The zero max start depth value can be used as a special behavior and
* it helps to destructure a subtree by staying on a node and using captures
* for interested parts. Note that the zero max start depth only limit a search
* depth for a pattern's root node but other nodes that are parts of the pattern
* may be searched at any depth what defined by the pattern structure.
*
* Set to `UINT32_MAX` to remove the maximum start depth.
*/
void ts_query_cursor_set_max_start_depth(TSQueryCursor *self, uint32_t max_start_depth);
/**********************/
/* Section - Language */
/**********************/
/**
* Get another reference to the given language.
*/
const TSLanguage *ts_language_copy(const TSLanguage *self);
/**
* Free any dynamically-allocated resources for this language, if
* this is the last reference.
*/
void ts_language_delete(const TSLanguage *self);
/**
* Get the number of distinct node types in the language.
*/
uint32_t ts_language_symbol_count(const TSLanguage *self);
/**
* Get the number of valid states in this language.
*/
uint32_t ts_language_state_count(const TSLanguage *self);
/**
* Get a node type string for the given numerical id.
*/
const char *ts_language_symbol_name(const TSLanguage *self, TSSymbol symbol);
/**
* Get the numerical id for the given node type string.
*/
TSSymbol ts_language_symbol_for_name(
const TSLanguage *self,
const char *string,
uint32_t length,
bool is_named
);
/**
* Get the number of distinct field names in the language.
*/
uint32_t ts_language_field_count(const TSLanguage *self);
/**
* Get the field name string for the given numerical id.
*/
const char *ts_language_field_name_for_id(const TSLanguage *self, TSFieldId id);
/**
* Get the numerical id for the given field name string.
*/
TSFieldId ts_language_field_id_for_name(const TSLanguage *self, const char *name, uint32_t name_length);
/**
* Check whether the given node type id belongs to named nodes, anonymous nodes,
* or a hidden nodes.
*
* See also [`ts_node_is_named`]. Hidden nodes are never returned from the API.
*/
TSSymbolType ts_language_symbol_type(const TSLanguage *self, TSSymbol symbol);
/**
* Get the ABI version number for this language. This version number is used
* to ensure that languages were generated by a compatible version of
* Tree-sitter.
*
* See also [`ts_parser_set_language`].
*/
uint32_t ts_language_version(const TSLanguage *self);
/**
* Get the next parse state. Combine this with lookahead iterators to generate
* completion suggestions or valid symbols in error nodes. Use
* [`ts_node_grammar_symbol`] for valid symbols.
*/
TSStateId ts_language_next_state(const TSLanguage *self, TSStateId state, TSSymbol symbol);
/********************************/
/* Section - Lookahead Iterator */
/********************************/
/**
* Create a new lookahead iterator for the given language and parse state.
*
* This returns `NULL` if state is invalid for the language.
*
* Repeatedly using [`ts_lookahead_iterator_next`] and
* [`ts_lookahead_iterator_current_symbol`] will generate valid symbols in the
* given parse state. Newly created lookahead iterators will contain the `ERROR`
* symbol.
*
* Lookahead iterators can be useful to generate suggestions and improve syntax
* error diagnostics. To get symbols valid in an ERROR node, use the lookahead
* iterator on its first leaf node state. For `MISSING` nodes, a lookahead
* iterator created on the previous non-extra leaf node may be appropriate.
*/
TSLookaheadIterator *ts_lookahead_iterator_new(const TSLanguage *self, TSStateId state);
/**
* Delete a lookahead iterator freeing all the memory used.
*/
void ts_lookahead_iterator_delete(TSLookaheadIterator *self);
/**
* Reset the lookahead iterator to another state.
*
* This returns `true` if the iterator was reset to the given state and `false`
* otherwise.
*/
bool ts_lookahead_iterator_reset_state(TSLookaheadIterator *self, TSStateId state);
/**
* Reset the lookahead iterator.
*
* This returns `true` if the language was set successfully and `false`
* otherwise.
*/
bool ts_lookahead_iterator_reset(TSLookaheadIterator *self, const TSLanguage *language, TSStateId state);
/**
* Get the current language of the lookahead iterator.
*/
const TSLanguage *ts_lookahead_iterator_language(const TSLookaheadIterator *self);
/**
* Advance the lookahead iterator to the next symbol.
*
* This returns `true` if there is a new symbol and `false` otherwise.
*/
bool ts_lookahead_iterator_next(TSLookaheadIterator *self);
/**
* Get the current symbol of the lookahead iterator;
*/
TSSymbol ts_lookahead_iterator_current_symbol(const TSLookaheadIterator *self);
/**
* Get the current symbol type of the lookahead iterator as a null terminated
* string.
*/
const char *ts_lookahead_iterator_current_symbol_name(const TSLookaheadIterator *self);
/*************************************/
/* Section - WebAssembly Integration */
/************************************/
typedef struct wasm_engine_t TSWasmEngine;
typedef struct TSWasmStore TSWasmStore;
typedef enum {
TSWasmErrorKindNone = 0,
TSWasmErrorKindParse,
TSWasmErrorKindCompile,
TSWasmErrorKindInstantiate,
TSWasmErrorKindAllocate,
} TSWasmErrorKind;
typedef struct {
TSWasmErrorKind kind;
char *message;
} TSWasmError;
/**
* Create a Wasm store.
*/
TSWasmStore *ts_wasm_store_new(
TSWasmEngine *engine,
TSWasmError *error
);
/**
* Free the memory associated with the given Wasm store.
*/
void ts_wasm_store_delete(TSWasmStore *);
/**
* Create a language from a buffer of Wasm. The resulting language behaves
* like any other Tree-sitter language, except that in order to use it with
* a parser, that parser must have a Wasm store. Note that the language
* can be used with any Wasm store, it doesn't need to be the same store that
* was used to originally load it.
*/
const TSLanguage *ts_wasm_store_load_language(
TSWasmStore *,
const char *name,
const char *wasm,
uint32_t wasm_len,
TSWasmError *error
);
/**
* Get the number of languages instantiated in the given wasm store.
*/
size_t ts_wasm_store_language_count(const TSWasmStore *);
/**
* Check if the language came from a Wasm module. If so, then in order to use
* this language with a Parser, that parser must have a Wasm store assigned.
*/
bool ts_language_is_wasm(const TSLanguage *);
/**
* Assign the given Wasm store to the parser. A parser must have a Wasm store
* in order to use Wasm languages.
*/
void ts_parser_set_wasm_store(TSParser *, TSWasmStore *);
/**
* Remove the parser's current Wasm store and return it. This returns NULL if
* the parser doesn't have a Wasm store.
*/
TSWasmStore *ts_parser_take_wasm_store(TSParser *);
/**********************************/
/* Section - Global Configuration */
/**********************************/
/**
* Set the allocation functions used by the library.
*
* By default, Tree-sitter uses the standard libc allocation functions,
* but aborts the process when an allocation fails. This function lets
* you supply alternative allocation functions at runtime.
*
* If you pass `NULL` for any parameter, Tree-sitter will switch back to
* its default implementation of that function.
*
* If you call this function after the library has already been used, then
* you must ensure that either:
* 1. All the existing objects have been freed.
* 2. The new allocator shares its state with the old one, so it is capable
* of freeing memory that was allocated by the old allocator.
*/
void ts_set_allocator(
void *(*new_malloc)(size_t),
void *(*new_calloc)(size_t, size_t),
void *(*new_realloc)(void *, size_t),
void (*new_free)(void *)
);
#ifdef __cplusplus
}
#endif
#ifndef TREE_SITTER_HIDE_SYMBOLS
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC visibility pop
#endif
#endif
#endif // TREE_SITTER_API_H_
>>>>>>> master